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Abstract: In this article, we introduce common fixed-point theorems ofCaristi-type mappings by using the absolute derivative of
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1 Introduction

Development of the Caristi’s fixed-point theorems [1] has
been carried out by researchers through a variety of
different ways such as combining the Banach’s fixed
point theorems to that Caristi’s fixed-point theorems [2].
In 1996, Kada-Suzuki and Takahashi used thew-distance
functions to characterize the Caristi-type mappings [3].
Further, there exist several results involving set-valued
mappings into Caristi-type conditions (see [4] [5], [6]).

In 1981, Bhakta and Basu [7] introduced a common
fixed-point theorems of Caristi-type mappings on
complete metric spaces. In 2010, Obama and Kuroiwa [8]
proved the same thing by usingω-distance function
which was introduced by Kada et al [3] as a
generalization of common fixed-point theorems of Bhakta
and Basu. In 2015, Sitthikul and Saejung discussed the
result by Obama with weaker assumption [9]. Moreover,
L. Samih et al. introduced common fixed-point theorems
of Caristi-type mappings in cone metric spaces [10].

Motivated by the above results, in particular, by
Bhakta and Basu [7], in this article, we introduce a
common fixed-point theorem of Caristi-type mapping by
using the absolute derivative as a generator of its Caristi
type. In previous articles, we characterized Caristi-type
mapping by its absolute derivative but only for one
mapping [11]. In this article, we obtain a common

fixed-point theorem of Caristi-type mapping for two
mappings. We also give some examples to illustrate the
main results in this article.

2 Common fixed-point of Caristi-type
mappings

For the convenience, in the next we recall the Caristi’s
fixed-point theorems as follows.

Let (X,d) be a complete metric space andK ⊂ X.
Caristi’s fixed-point theorem states that each mapping
f : K −→ K satisfies the condition: there exists a lower
semi-continuous functionϕ : K −→ [0,+∞) such that

d(x, f (x)) ≤ ϕ(x)−ϕ( f (x)), (1)

for eachx∈ X has a fixed point.
Some authors have mentioned that a mapping

f : K −→ K is called Caristi-type mappings if the
inequalities (1) is satisfied.

Suppose(X,d) and(Y,ρ) are two metric spaces. Then
we use the notationP0(X) (resp.CL (X) ) as the family
of all non-empty (resp. closed ) subsets ofX.

The mappingF : X −→ P0(Y) is called set-valued
functions where the mapsF(x) ∈ P0(Y) for eachx ∈ X.
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We say that a pointz∈ X is a fixed point ofF if z∈ F(z).
The function f : X −→ Y is said to beselection of F if
f (x) ∈ F(x) for all x∈ X.

By using Caristi’s fixed-point theorems, in 1989,
Mizoguchi and Takahashi [5] resulted in fixed-point
theorem for set-valued mappings.

Theorem 1.Let (X.d) be a complete metric space andF :
X −→ P0(X) be a set-valued mapping. If there existsϕ :
X −→ [0,+∞] is a lower semi continuous function such
that for eachx∈ X, there existsy∈ F(x) such that

d(x,y)≤ ϕ(x)−ϕ(y), (2)

then the set-valued mapF has a fixed point.
In 1971 Ciric [12] introduced the notion of orbital

continuity as follows

Definition 1. Let (X,d) be a metric space andf : X → X
be a mapping. The set

O{x0}= {xn = f nx0 : n= 1,2,3· · ·} (3)

is called orbit of f at fixed point x0 ∈ X, where
f n = f ◦ f ◦ f · · · ◦ f

︸ ︷︷ ︸

n−times

. Then the mappingf is called

orbitally continuous if lim
k→∞

f mkx0 = t, then

lim
k→∞

f f mkx0 = f (t).

Every continuous mappingf : X → X is orbitally
continuous but not conversely [12].

In 1981, Bhakta and Basu [7] proved a common
fixed-point theorem of the Caristi-type mapping for two
mappings on complete metric spaces. The following
theorem in question.

Theorem 2. Let (X,d) be a complete metric space and
f ,g : X −→ X be two orbitally continuous mappings onX.
If there are two mappingsϕ ,ψ : X −→ [0,∞) satisfying the
condition:

d( f x,gy)≤ ϕ(x)−ϕ( f x)+ψ(y)−ψ(gy) (4)

for all x,y∈ X, then f andg have a unique common fixed
point.

Theorem2 has been generalized by Obama [8] with
usingω-distance function and then followed by Sitthikul
with weaker requirement [9].

3 Absolute derivatives

In 1971, E. Braude introduced the derivative of the
metric-valued function with abstract metric domains
which is known as ”metrically differentiable” (see [13]).

Definition 2. Let (X,d) and (Y,ρ) be two metric spaces
and letp∈ X be a limit point. The mappingf : X −→Y is
saidmetrically differentiable at p if a real numberf ′(p)
exists with the property that for everyε > 0 there exists

δ > 0 such that for everyx,y∈ X,x 6= y and 0< d(x, p)<
δ ,0< d(y, p)< δ , then

∣
∣
∣
∣

ρ( f (x), f (y))
d(x,y)

− f ′(p)

∣
∣
∣
∣
< ε. (5)

On the other hand, in 1975, K. Skaland defined the
weaker form of Braude’s definition.

Definition 3. Let (X,d) and(Y,ρ) be a metric spaces and
let p ∈ X be a limit point. The mappingf : X −→ Y is
said differentiable at p if real number f ′(p) exists with
the property that for everyε > 0 there existsδ > 0 such
that for everyx∈ Nδ (p) then

∣
∣
∣
∣

ρ( f (x), f (p))
d(x, p)

− f ′(p)

∣
∣
∣
∣
< ε. (6)

A non-negative real numberf ′(p) is calledmetrically
derivative[13] or quasiderivative[14] of the mappingf at
the pointp∈ X.

Example 1. Let X = [−1,1]. The function
f : [−1,1] −→ R with f (x) = |x| for eachx ∈ [−1,1] is
metrically differentiable onX. For p = 0 ∈ [−1,1], we
obtain

f ′(0) = lim
x→0−

||x|−0|
|x|

= lim
x→0−

|− x|
|x|

= 1,

and

f ′(0) = lim
x→0+

||x|−0|
|x|

= lim
x→0+

|x|
|x|

= 1.

For each 0< x < 1 and−1 < x < 0, we havef ′(x) = 1.
We know thatf is not differentiable in the classical sense
atx= 0.

Since the value of the derivative is always a
non-negative real number, its derivative is called absolute
derivative.

Throughout this paper, we use the notationf ′abs as an
absolute derivative of the functionf and a function
differentiable in the sense of the metric is called
metrically differentiable.

4 Existence of common fixed point

Our first main result modifies the common fixed-point
theorem (Theorem2). The modification is done by
replacing two non-negative real functionsϕ and ψ on
Theorem2 by two absolute derivatives of the functionsf
and g provided that the functionf and g are metrically
differentiable.

Theorem 4. Let (X,d) be a complete metric space and
f ,g : X −→ X be two orbitally continuous mappings onX.
If f andg are metrically differentiablae onX such that the
absolute derivativef

′

abs,g
′

abs : X −→ [0,∞) satisfying the
condition:

d( f x,gy)≤ f
′

abs(x)− f
′

abs( f x)+g
′

abs(y)−g
′

abs(gy) (7)

c© 2019 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.13, No. 1, 17-24 (2019) /www.naturalspublishing.com/Journals.asp 19

for all x,y∈ X, then f andg have a unique common fixed
point.

Proof. We take two pointsx0 ∈ X andy0 ∈ X fixed. Thus,
we can form the sequences as follows

x1 = f x0,x2 = f x1 = f 2x0, · · ·xk = f kx0, · · ·

and

y1 = gy0,y2 = gy1 = g2y0, · · ·yk = gky0, · · ·

for k∈ N.
By inequalities (7), we obtain

n

∑
i=1

d(xi ,yi) =
n

∑
i=1

d( f xi−1,gyi−1)

≤
n

∑
i=1

{ f
′

abs(xi−1)− f
′

abs( f xi−1)+g
′

abs(yi−1)−g
′

abs(gyi−1)}

=
n

∑
i=1

{ f
′

abs(xi−1)− f
′

abs(xi)+g
′

abs(yi−1)−g
′

abs(yi)}

= f
′

abs(x0)− f
′

abs(xn)+g
′

abs(y0)−g
′

abs(yn)

≤ f
′

abs(x0)+g
′

abs(y0). (8)

Similarly, we can get

n

∑
i=1

d(yi ,xi+1) =
n

∑
i=1

d(gyi−1, f xi)

≤
n

∑
i=1

{ f
′

abs(xi)− f
′

abs( f xi)+g
′

abs(yi−1)−g
′

abs(gyi−1)}

=
n

∑
i=1

{ f
′

abs(xi)− f
′

abs(xn+1)+g
′

abs(y0)−g
′

abs(yn)}

= f
′

abs(x1)− f
′

abs(xn+1)+g
′

abs(y0)−g
′

abs(yn)

≤ f
′

abs(x1)+g
′

abs(y0). (9)

From inequalities (8) and (9), we have the inequality as
follows

n

∑
i=1

d(xi ,xi+1)≤
n

∑
i=1

{d(xi ,yi)+d(yi,xi+1)}

≤ f
′

abs(x0)+ f
′

abs(x1)+2g
′

abs(y0).

Since partial sums
n

∑
i=1

d(xi ,xi+1) is a bounded, the series

∞

∑
i=1

d(xi ,xi+1) is convergent. Consequently the sequence

non-negative real number{d(xi ,xi+1)} converges to zero
(asi −→ ∞). For eachm,n∈ N with m> n, we obtain

d(xn,xm)≤
m−1

∑
i=n

d(xi ,xi+1)−→ 0

asn→ ∞. So, the sequence{xn} is a Cauchy sequence on
X.

Similarly, in the same way, the sequence{yn} is also
Cauchy sequence onX. SinceX is complete, each of them
is convergent, namelyxn → t ∈X andyn → s∈X asn→∞.

If lim
n→∞

f (xn) = t implies lim
n→∞

f ( f xn) = f t and if

lim
n→∞

g(xn) = s implies lim
n→∞

g(gxn) = gs by f and g are

orbitally continuous. It allows the sequencexn+1 → f (t)
and yn+1 → g(s) as n → ∞. This gives thatf t = t and
gs= s. So the pointt is a fixed point off and the points
is a fixed point ofg. By inequalities (7), we obtain

d(t,s) = d( f t,gs) ≤ f
′

abs(t)− f
′

abs( f t)+g
′

abs(s)−g
′

abs(gs)

= f
′

abs(t)− f
′

abs(t)+g
′

abs(s)−g
′

abs(s) = 0.

This meanst = s. In the other words, the pointt is a
common fixed point off andg (t = f t = gt).

Supposef has the other fixed pointu∈ X ( f u= u). By
applying (7), we have

d(u, t) = d( f u,gt)

≤ f
′

abs(u)− f
′

abs( f u)+g
′

abs(t)−g
′

abs(gt)

= f
′

abs(u)− f
′

abs(u)+g
′

abs(t)−g
′

abs(t)

= 0,

which impliesu = t (unique). Hence, the pointt is the
unique fixed point off . Similarly, we can show thatt is
also the unique fixed point ofg. This completes the proof.
�.

Example 2.Let X = [0.68,1] endowed by usual metrics.

Let f ,g : [0.68,1]→ R be a real function withf (x) = x
7
2

andg(x) =−x+2 for all x∈ [0.68,1]. It is clear thatf and
g are orbitally continuous and metrically differentiable on
(0.68,1) with derivative as follows

f ′abs(x) =

∣
∣
∣
∣
∣

7x
5
2

2

∣
∣
∣
∣
∣
=

7x3

2
(10)

and
g′abs(x) = |−1|= 1, (11)

respectively. From the equation (10) and (11) we obtain

f ′abs( f x) =

∣
∣
∣
∣
∣

7x
35
4

2

∣
∣
∣
∣
∣
=

x
35
4

2
(12)

and
g′abs(gx) = |−1|= 1. (13)

Now, we investigate as follows: Forx = y = 0.68, we
obtain

| f (0.68)−g(0.68)|= 1.0608< 1.2147

= f ′abs(0.68)− f ′absf (0.68)+g′abs(0.68)−g′absg(0.68).
(14)

Forx= y= 1, we obtain

| f (1)−g(1)|= 0= f ′abs(1)− f ′absf (1)+g′abs(1)−g′absg(1).
(15)
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Forx= 0.68 andy= 1, we obtain

| f (0.68)−g(1)|= 0.7408< 1.2147

= f ′abs(0.68)− f ′absf (0.68)+g′abs(1)−g′absg(1). (16)

For all 0.68< x,y< 0.791, we have

f ′absx=
7x

5
2

2
≥−y+2= gy

and

f ′absf (x) =
7x

35
4

2
≤ x

7
2 = f x

so that

f ′absx− f ′absf x+g′absy−g′absgy=
7x

5
2

2
−

7x
35
4

2
+1−1

> (−y+2)− x
7
2 = |(−y+2)− x

7
2 |= |gy− f x|

= | f x−gy|. (17)

For all 0.791< x,y< 0.878, we have

f ′absf (x) =
7x

35
4

2
≤−y+2= gy

and

f ′absx=
7x

5
2

2
≥ x

7
2 = f x

so that

f ′absf x− f ′absx=
7x

35
4

2
−

7x
5
2

2

< (−y+2)− x
7
2 = |(−y+2)− x

7
2 |. (18)

If both sides are multiplied by the number−1, then we
have

f ′absx− f ′absf x> (−1)|(−y+2)− x
7
2 |

= |x
7
2 − (−y+2)|= | f (x)−g(y)|. (19)

For all 0.878< x,y< 1, we have
7x

35
4

2
≥ −y+2> 0 and

7x
5
2

2
≥ x

7
2 > 0 so that

f ′absx− f ′absf x+g′absy−g′absgy=
7x

5
2

2
−

7x
35
4

2
+1−1

> (−y+2)− x
7
2 = |(−y+2)− x

7
2 |= | f (x)−gy|.

(20)

Since the inequality (7) is satisfied, the functionf andg
have a unique fixed point, namely 1= f (1) = g(1).

Let F = { f | f : X → X} be a collection of all
metrically differentiable.

Corolary 1. Let (X,d) be a complete metric space. If two
mappingsf ,g ∈ F such that the absolute derivativef

′

abs

andg
′

abs satisfying the following condition:

d( f x,gy)≤ f
′

abs(x)− f
′

abs( f x)+g
′

abs(y)−g
′

abs(gy)

for all x,y∈ X, then f andg have a unique common fixed
point.

Proof By Theorem4, it is clear f and g have a unique
common fixed pointx0 ∈ X. If h is the other mapping in
F , then f andh have a unique common fixed pointu∈ X
by Theorem4. Sincex0 ∈ X is the unique fixed point of
the mappingf , hencex0 = u. So the pointx0 is a unique
common fixed point off , g andh. Of course,x0 is a unique
common fixed point of the mappings inF becauseh is an
arbitrary mapping in the collectionF . �

Theorem 5. Let (X,d) be a complete metric space and
f ,g : X −→ X be two mappings onX. If f and g are
metrically differentiable onX such that the absolute
derivative f

′

abs,g
′

abs : X −→ [0,∞) satisfying the condition
:

d(x,y)+d(x, f x)+d(y,gy)

≤ f
′

abs(x)− f
′

abs( f x)+g
′

abs(y)−g
′

abs(gy) (21)

for all x,y∈ X, then f andg have a unique common fixed
point.

Proof Now consider two pointsx0 ∈X andy0 ∈X as fixed.
Then, we can form sequences as follows.

x1 = f x0,x2 = f x1 = f 2x0, · · ·xk = f kx0, · · ·

and

y1 = gy0,y2 = gy1 = f 2y0, · · ·yk = gky0, · · ·

for k∈ N.
By inequalities (21), we obtain

n

∑
i=1

d(xi−1,xi)

≤
n

∑
i=1

{d(xi−1,yi−1)+d(xi−1,xi)+d(yi−1,yi)}

=
n

∑
i=1

{d(xi−1,yi−1)+d(xi−1, f xi−1)+d(yi−1,gyi−1)}

≤
n

∑
i=1

{ f
′

abs(xi−1)− f
′

abs(xi)+g
′

abs(yi−1)−g
′

abs(yi)}

= f
′

abs(x0)− f
′

abs(xn)+g
′

abs(y0)−g
′

abs(yn)

≤ f
′

abs(x0)+g
′

abs(y0). (22)

This implies that the series
∞

∑
i=1

d(xi−1,xi) is convergent.

As the proof in Theorem4, the sequence{xn} is a Cauchy
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sequence. Likewise, the sequence{yn} is a Cauchy
sequence.

Since metric spaceX is complete, each of them is
convergent, namelyxn → u∈ X andyn → v∈ X asn→ ∞.

If lim
n→∞

f (xn) = u implies lim
n→∞

f ( f xn) = f u and if

lim
n→∞

g(xn) = v implies lim
n→∞

g(gxn) = gv by f and g are

orbitally continuous. It allows the sequencexn+1 → f (u)
and yn+1 → g(v) as n → ∞. This gives thatf u = u and
gv= v. So the pointu is a fixed point off and the pointv
is a fixed point ofg.
By inequalities (21), we obtain

d(u,v) ≤ d(u,v)+d(u, f u)+d(v,gv)

≤ f
′

abs(u)− f
′

abs( f u)+g
′

abs(v)−g
′

abs(gv)

= f
′

abs(u)− f
′

abs(u)+g
′

abs(v)−g
′

abs(v)

= 0.

This meansu = v. In the other words, the pointu is a
common fixed point off andg (u= f u= gu).

Supposef has the other fixed pointw∈ X ( f w = w).
By applying (21), we have

d(w,u)≤ d(w,u)+d(w, f w)+d(u,gu)

≤ f
′

abs(w)− f
′

abs( f w)+g
′

abs(u)−g
′

abs(gu)

= f
′

abs(w)− f
′

abs(w)+g
′

abs(u)−g
′

abs(u)

= 0,

which impliesw = u (unique). Hence, the pointu is the
unique fixed point off . Similarly, we can show thatu is
also the unique fixed point ofg. This completes the proof.
�

Example 3.
Let X = [0.6,1] be endowed by usual metrics. Let

f ,g : [0.6,1] → R be a real function withf (x) = x2 and
g(x) = x3 for all x ∈ [0.6,1]. It is clear that f and g
orbitally continuous and metrically differentiable on
[0.6,1] with absolute derivative as follows

f ′abs(x) = |2x|= 2x (23)

and
g′abs(x) = |3x2|= 3x2

, (24)

respectively. From the equation (23) and (24) we obtain

f ′abs( f x) = |2x2|= 2x2 (25)

and
g′abs(gx) = |3x6|= 3x6

, (26)

respectively. Now, we investigate as follows: From (23)
and (25) we have that

f ′abs(x)− f ′abs( f x) = 2x−2x2 ≥ 0

for all x∈ [0.6,1].

From (24) and (26) we have that

g′abs(y)−g′abs(gy) = 3y2−3y6 ≥ 0

for all y∈ [0.6,1].

Since(x−x2)≥ 0 and(y−y3)≥ 0 for all x,y∈ [0.6,1],
we obtain

|x− f x|= |x− x2|= (x− x2)

≤ 2(x− x2) = f ′abs(x)− f ′abs( f x) (27)

and

|y−gy|= |y− y3|= (y− y3)

≤ 3(y2− y6) = g′abs(y)−g′abs(gy) (28)

for all x,y∈ [0.6,1].

Further, we consider the form|x− y|+ |x− f x|+ |y−
gy|= |x− y|+(x− x2)+ (y− y3) for all x 6= y∈ [0.6,1].

If x− y> 0, then we obtain

|x− y|+ |x− f x|+ |y−gy|= (x− y)+ (x− x2)+ (y− y3)

= (2x− x2)− y3
< (2x−2x2)+ (y2− y3)

< (2x−2x2)+ (y2− y6)

< 2(x− x2)+3(y2− y6)

= f ′abs(x)− f ′abs( f x)+g′abs(y)−g′abs(gy), (29)

for all x 6= y∈ [0.6,1] by inequalities (27) and (28).

If x− y< 0, then we obtain

|x− y|+ |x− f x|+ |y−gy|= (−x+ y)+ (x− x2)+ (y− y3)

=−x2+(2y− y3)< (x− x2)+ (2y− y3)

< 2(x− x2)+3(y2− y6)

= f ′abs(x)− f ′abs( f x)+g′abs(y)−g′abs(gy), (30)

for all x 6= y∈ [0.6,1] by inequalities (27) and (28). Thus,
all of the calculations above were fulfilling the inequality
(21) so that f and g have common fixed pointz= 1 =
f (1) = g(1).

5 Common fixed-point for set-valued
functions

Next, we consider common fixed-point theorems of
Caristi-type mappings for set-valued mappings. To the
proof of theorem below, we shall use the following
Lemma.

Lemma 5. [15] Let (X,d) be a metric space and let
F : X −→ CL (X) be an upper semi-continuous. Suppose
{xn} is a sequence inX such thatxn+1 ∈ Fxn. If the
sequence{xn} converges tou∈ X, thenu∈ Fu.
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Theorem 6. Let (X,d) be a complete metric space and
F,G : X −→ CL (X) be two upper semi-continuous
set-valued mappings onX. If there exists selectionf ∈ F
andg∈ G are metrically differentiable onX such that the
absolute derivativef

′

abs,g
′

abs : X −→ [0,∞) satisfying the
following condition: For each two pointsx,y ∈ X there
existsu∈ Fx andv∈ Gysuch that

d(u,v)≤ f
′

abs(x)− f
′

abs(u)+g
′

abs(y)−g
′

abs(v), (31)

thenF andG have a unique common fixed point.

Proof We take two pointsx0 ∈ X andy0 ∈ X fixed. Thus,
we can form sequences as follows.

x1 ∈ Fx0,x2 ∈ Fx1, · · ·xk ∈ Fxk−1, · · ·

and
y1 ∈ Gy0,y2 ∈ Gy1, · · ·yk ∈ Gyk−1, · · ·

for k∈ N. In general we have

xn ∈ Fxn−1 and yn ∈ Gyn−1

for all n∈ N.
Suppose two pointsxi−1,yi−1 are arbitrary inX, we

can choose a pointxi ∈ Fxi−1 and a pointyi ∈ Gyi−1. By
inequalities (31), we obtain

d(xi ,yi)≤ f
′

abs(xi−1)− f
′

abs(xi)+g
′

abs(yi−1)−g
′

abs(yi)
(32)

for all i ∈ N.
Suppose two pointsxi ,yi−1 are arbitrary inX, we can

choose a pointxi+1 ∈ Fxi and a pointyi ∈ Gyi−1. By
inequalities (31), we obtain

d(xi+1,yi)≤ f
′

abs(xi)− f
′

abs(xi+1)+g
′

abs(yi−1)−g
′

abs(yi)
(33)

for all i ∈ N.
Suppose two pointsxi ,yi is arbitrary in X, we can

choose a pointxi+1 ∈ Fxi and a pointyi+1 ∈ Gyi . By
inequalities (31), we obtain

d(xi+1,yi+1)≤ f
′

abs(xi)− f
′

abs(xi+1)+g
′

abs(yi)−g
′

abs(yi+1)
(34)

for all i ∈ N.
From inequality (32), (33) and (34) and similar way

to proof of Theorem4, both sequences{xn} and{yn} are
Chauchy sequences.

SinceX is complete metric spaces, each of them is
convergent, namely,xn → u ∈ X and yn → v ∈ X as
n → ∞. Since F and G are upper semi-continuous, by
Lemma5, we haveu∈ Fu andv∈ Gv. From inequalities
(31), we obtain

d(u,v)≤ f
′

abs(u)− f
′

abs(u)+g
′

abs(v)−g
′

abs(v) = 0.

This meansu= v. Hence,u∈ Fu∩Gu.

SupposeF has the other fixed pointw∈ X (w∈ Fw).
By applying (31), we have

d(w,u)≤ f
′

abs(w)− f
′

abs(w)+g
′

abs(u)−g
′

abs(u) = 0.

So,w= u. In the other words, the pointu is the only fixed
point ofF .

Supposet ∈ X satisfiest ∈ Gt. By applying (31) again,
we have

d(u, t)≤ f
′

abs(u)− f
′

abs(u)+g
′

abs(t)−g
′

abs(t) = 0.

So,t = u. In the other words, the pointu is the only fixed
point of G. Thus the pointu is a unique common fixed
point ofF andG. This completes the proof.�
Example 4.Let X = [0,1] be endowed by usual metrics.
Let F,G : [0,1] → R be an interval-valued function with
Fx= [x2−x,x] andGx= [1

2x2+ 1
2,1] for all x∈ [0,1]. We

choose selectionsf x= (x2−x)∈ Fx andgx= (1
2x2+ 1

2)∈
Gx It is clear thatf andg are metrically differentiable on
[0,1] with absolute derivative

f ′absx= |2x−1|= 2x−1, g′absx= |x|= x (35)

sincex∈ [1,2].
For eachx,y∈X, we choose the pointsu∈ Fx= [x2−x,x]
andv∈ Gy= [1

2y2+ 1
2,1] such that

x2− x≤ u≤ x,
1
2

y2+
1
2
≤ v≤ 1. (36)

Now, we calculate as follows:
Let (u− v)≥ 0, v≤ u≤ x, x≤ y. From (35) and (36)

we obtain

|u− v|= u− v= (3u−2u)− v≤ (3x−2u)− v

≤ (2x−2u)+ (x− v)

≤ (2x−2u)+ (y− v)

= (2x−1)− (2u−1)+(y− v)

= f ′absx− f ′absu+g′absy−g′absv.

Let (u− v)≤ 0, u≤ v ≤ x, x≤ y. From (35) and (36)
we obtain

|u− v|= v−u= v+(u−2u)≤ x+(x−2u)

≤ (2x−2u)+ (y− v)

= (2x−1)− (2u−1)+(y−v)

= f ′absx− f ′absu+g′absy−g′absv.

Let (u− v)≥ 0, v≤ u≤ y, y ≤ x. From (35) and (36)
we obtain

|u− v|= u− v= (3u−2u)− v≤ (3y−2u)− v

≤ (2y−2u)+ (y− v)

≤ (2x−2u)+ (y− v)

= (2x−1)− (2u−1)+(y−v)

= f ′absx− f ′absu+g′absy−g′absv.

c© 2019 NSP
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Let (u− v) ≤ 0, u≤ v≤ y, y≤ x. From (35) and (36)
we obtain

|u− v|= v−u= v+(u−2u)≤ y+(y−2u) = 2y−2u

≤ (2x−2u)≤ (2x−1)− (2u−1)+(y−v)

= f ′absx− f ′absu+g′absy−g′absv.

Thus, all of the calculations above are fulfilling the
inequality (31) and the pointz = 1 ∈ F(1) ∩ G(1) is
unique common fixed point of set-valuedF andG.
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