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Abstract: The purpose of this study is to estimate unknown parameters, reliability, the hazard rate, and the reversed hazard rate

function of the inverted Kumaraswamy distribution based on progressively type-II censoring samples. Maximum likelihood estimators

are obtained. The Bayesian estimation is studied under quadratic (squared error) and general entropy loss functions using Lindley’s

approximation.Non-informative prior distributions are used for the parameters. Based on a Monte Carlo simulation study, the statistical

performances of Bayes estimators based on quadratic and general entropy loss functions are compared between various estimates.
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1 Introduction

In 1980, Kumaraswamy proposed a continuous probability distribution for double-bounded random variable defined on
the interval [0,1]. It is identified as an applicable alternative to beta distribution because they both have same shape
properties such as unimodal, uniantimodal, increasing, decreasing, monotone or constant.
The inverted distributions are widely employed in economic, biological, engineering sciences, survey sampling, medical
research, finance literature, environmental studies, survival, and reliability theory problems. The inverted Kumaraswamy
distribution is considered one of the most important distributions that play an important role in the field of life testing and
studying reliability measures where the failure time of component is observed to the nearest hours, days or months,
hydrological data like daily rainfall and daily streamflow, atmospheric temperatures and growth models such as
epidemiology. For more details [See [1], [4], [5], [6] and [7].

In statistical inference, there are two approaches to estimate the population parameters of several phenomena. The first
one is the non-Bayesian approach (maximum likelihood estimation) where the population parameters under study are fixed
but unknown and the second one is the Bayesian approach in which the population parameters under study are viewed to
be a random variable with a prior probability distribution. This prior distribution supplies an additional information about
unknown parameter θ that was available before the data were obtained, and there are two types of priors: informative and
non-informative.
The Bayesian approach merge the information in the study sample with the available prior information about population
parameters, and the result of the merger is the posterior distribution of the population parameters, see [9], [8] and [10].
In the Bayesian approach, in order to specify a single value as expressing our ”best” estimators of the unknown parameter,
a loss function must be defined. There are various types of loss functions such as the square error loss function (SE) which
is a quadratic symmetric function suitable in the cases of highest estimate and lowest estimates, and the general entropy
loss function which is asymmetric about the point of origin.
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There are numerous phenomena in life-testing, in reliability experiments, and survival analysis in which the experimenter
usually doesn’t have complete control of failure times from the experiments in hand. For example, patients may enroll
a clinic for treatment from a certain disease at random points of time and leave before completion of treatment or die
from a cause different from the one under consideration. In an industrial experiment, units may break accidentally. In
several situations, however, the removal of units prior to failure is prepared in advance that provides savings in terms of
time and cost associated with testing. Hence, the recorded survival times involve randomly censored data. A progressive
type-II censoring scheme can be described as follows: Suppose n units are placed on a life test and the experimenter
decides beforehand the quantity m and the number of failures to be observed. Now at the time of the first failure, R1 of
the remaining n− 1 surviving units are randomly removed from the experiment. At the time of the second failure, R2 of
the remaining n−R1 − 2 units are randomly removed from the experiment. Finally, at the time of the mth failure, all the
remaining surviving units Rm = n−m−R1− ...−Rm−1 are removed from the experiment. Therefore, a progressive type-II
censoring scheme consists of m, and R1, . . . ,Rm−1, such that R1 + . . . +Rm = n−m The failure times obtained from a
progressive type-II censoring scheme is denoted by x1, ...,xm

Assuming X is a random variable which has the Inverted Kumaraswamy distribution (IKum) with shape parameters, α
and β > 0, denoted by X ∼ IKum(α,β ).
The probability density function (pdf) and cumulative distribution function (cdf) [See, [11]] are given, respectively, by

f (x;α,β ) = αβ (1+ x)−(α+1)[
1− (1+ x)−α]β−1

,x > 0,α,β > 0. (1.1)

And

F (x;α,β ) =
[
1− (1+ x)−α]β

,x > 0,α,β > 0. (1.2)

The Reliability Function is

R(x) = P(X > x) = 1−
(
1− (1+ x)−α)β

,x > 0. (1.3)

The hazard (hr f ) denoted by h1(x) and reversed hazard rate functions (rhr f ) denoted by h2(x) are given by

h1 (x) =
f (x)

R(x)
=

αβ (1+ x)−(α+1)[
1− (1+ x)−α]β−1

1−
(
1− (1+ x)−α)β

,x > 0,α,β > 0. (1.4)

h2 (x) =
f (x)

F (x)
= αβ (1+ x)−(α+1)[1− (1+ x)−α ]−1,x > 0,α,β > 0. (1.5)

This paper is organized as follows: maximum likelihood estimation for the parameters, reliability function, hazard rate
function, and reversed hazard rate function of the IKum distribution based on progressive type-II censored samples are
obtained in section 2, Bayesian estimation of the parameters, reliability, hazard rate function, and reversed hazard rate
function of the IKum distribution based on progressive type-II censored samples under the square error loss function, and
general entropy loss function are derived in section 3. A simulation study applying Monte Carlo method is presented in
section 4 to illustrate results developed in this paper.

2 Maximum Likelihood Estimation

This section develops the maximum likelihood estimation (MLE) of the shape parameters, reliability function (rf), hrf,
and rhrf based on progressively type-II censored samples. Based on the observed sample x1, ...,xm from a progressive
type-II censoring scheme (R1, ...,Rm), the likelihood function can be written as

L(x̄;α,β ) = c
m

∏
i=1

f (xi) [1−F (xi)]
Ri , (2.1)

where c = n(n−1−R1)...(n−R1 − ...−Rm−1 −m−1), f (.) and F(.), are given by (1.1) and (1.2) respectively. Then

L(x̄;α,β ) = cαmβ m
m

∏
i=1

(
1+ x(i)

)−(α+1)
m

∏
i=1

(
1−
(
1+ x(i)

)−α
)β−1[

1−
(
1− (1+ xi)

−α)β
]Ri

The log-likelihood function can be written as
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Log(L) = ℓ= Log [c]+mLog [α]+mLog [β ]− (α + 1)
m

∑
i=1

(Log [1+ xi])

+(β − 1)
m

∑
i=1

(
Log

[
1− (1+ xi)

−α])+
m

∑
i=1

(
RiLog

[
1−
(
1− (1+ xi)

−α)β
]) . (2.2)

The MLEs of the unknown parameters can be obtained by differentiating the log-likelihood function (2.2) with respect
to the unknown parameters and equating to zero, we get

m
α −

m

∑
i=1

Log [1+ xi]+ (−1+β)
m

∑
i=1

Log[1+xi](1+xi)
−α

1−(1+xi)
−α

+
m

∑
i=1

−
β Log[1+xi]Ri(1+xi)

−α(1−(1+xi)
−α)

−1+β

1−(1−(1+xi)
−α)

β = 0,

m
β +

m

∑
i=1

Log
[
1− (1+ xi)

−α]+
m

∑
i=1

−
Log[1−(1+xi)

−α ]Ri(1−(1+xi)
−α)

β

1−(1−(1+xi)
−α)

β = 0





. (2.3)

The solution of the non-linear equations numerically (2.3) is α̂, β̂ .

The MLEs of the reliability function, the hazard rate function, and reversed hazard rate functions are given as

R̂(t) = 1−
[
1− (1+ t)−α̂

]β̂
, t > 0 (2.4)

ĥ1 (t) =
α̂ β̂ (1+ t)−(α̂+1)

[
1− (1+ t)−α̂

]β̂−1

1−
[
1− (1+ t)−α̂

]β̂
, t > 0 (2.5)

ĥ2 (t) = α̂β̂ (1+ t)−(α̂+1)
[
1− (1+ t)−α̂

]−1

, t > 0. (2.6)

3 Bayesian Estimates for the Unkown Parameters α and β

In this section, Bayesian estimation of the parameters of the inverted Kumaraswamy distribution along with reliability
function, hazard rate, and reversed hazard rate functions, using progressive type-II censoring samples, based on the square
error loss function, and general entropy loss function, assuming non-informative prior, are obtained.
Assuming that α,β are independent random variables, and no information about α and β is available, considering a
non-informative prior distribution for α in the form

π (α) ∝
1

α
;0 < α < ∞

and a non-informative prior distribution for β in the form

π (β ) ∝
1

β
;0 < β < ∞.

The joint non-informative prior for α and β is given by

π (α,β ) ∝
1

αβ
;0 < α < ∞,0 < β < ∞ (3.1)

by using equations (2.1, 3.1) we get the joint posterior distribution for α and β as follows

π (α,β |x̄) =
π(α ,β )L(x̄;α ,β )

∫∞
0 ∫∞

0 π(α ,β )L(x̄;α ,β )dαdβ

=
cαm−1β m−1

m

∏
i=1

(1+x(i))
−(α+1) m

∏
i=1

(
1−(1+x(i))

−α
)β−1[

1−(1−(1+xi)
−α)

β
]Ri

∫∞
0 ∫∞

0 cαm−1β m−1
m

∏
i=1

(1+x(i))
−(α+1) m

∏
i=1

(
1−(1+x(i))

−α
)β−1[

1−(1−(1+xi)
−α)

β
]Ri

dαdβ

(3.2)

Integration in equation (3.2) cannot be obtained in a closed form, so we solve it numerically. In the following sections
we derive Bayesian estimators for shape parameters, the reliability function, the hazard rate function and reversed hazard
rate under two different loss functions.
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3.1 Bayesian Estimators Under Square Error Loss Function

1. Bayesian estimator for shape parameter α

α̂sq = E (α) =

∞
∫
0

∞
∫
0

α
cαm−1β m−1

m

∏
i=1

(1+x(i))
−(α+1) m

∏
i=1

(
1−(1+x(i))

−α
)β−1[

1−(1−(1+xi)
−α)

β
]Ri

∫∞
0 ∫∞

0 cαm−1β m−1
m

∏
i=1

(1+x(i))
−(α+1) m

∏
i=1

(
1−(1+x(i))

−α
)β−1[

1−(1−(1+xi)
−α)

β
]Ri

dαdβ

(3.3)

Provided that E(α) exists and is finite. This integration cannot be solved analytically, so we use Lindley’s Bayes
approximation, [2]. Let u(α,β ) be a function of α and β , and we want to find Bayes estimator for it, based on π(α,β ) as
a prior distribution. The log-likelihood function for the inverted Kumaraswamy distribution based on progressive type-II
censored samples is given by (2.2), Bayes estimate using Lindley approximation is obtained as follows:

E (u(α,β ) |x̄) =
∫∞

0 ∫∞
0 u(α,β )π (α,β )L(x̄;α,β )dαdβ

∫∞
0 ∫∞

0 π (α,β )L(x̄;α,β )dαdβ

Let Q(α,β ) = log [π(α,β )]

E (u(α,β ) |x̄ ) =

(
u(α,β )+

1

2

[

∑
i

∑
j

(ui j + 2uiQ j)τi j +∑
i

∑
j
∑
k

∑
w

Li jkuwτi jτkw

])

(α ,β )ML

(3.4)

∀i, j,k,w = 1,2,Q1 =
∂Q(α ,β )

∂α ,Q2 =
∂Q(α ,β )

∂β ,u1 =
∂u(α ,β )

∂α ,u2 =
∂u(α ,β )

∂β ,

u11 =
∂ 2u(α ,β )

∂α2 ,u22 =
∂ 2u(α ,β )

∂β 2 ,u12 =
∂ 2u(α ,β )

∂α∂β ,L11 =
∂ 2ℓ
∂α2 ,L12 =

∂ 2ℓ
∂α∂β ,

L22 =
∂ 2ℓ
∂β 2 ,L111 =

∂ 3ℓ
∂α3 ,L112 =

∂ 3ℓ
∂α2∂β

,L122 =
∂ 3ℓ

∂α∂β 2 ,L222 =
∂ 3ℓ
∂β 3

Calculate the elements of matrix
{
−Li j

}

∑
=

[
− ∂ 2ℓ

∂α2 − ∂ 2ℓ
∂α∂β

− ∂ 2ℓ
∂α∂β − ∂ 2ℓ

∂β 2

]−1

=

(
τ11 τ12

τ21 τ22

)
,

by using Mathematica, the values of , i, j = 1,2, can be obtained where τi j are the elements of the information matrix
Σ.

Substituting in equation (3.4), Q1 =
−1
α ,Q2 =

−1
β ,u = α, the Bayesian estimator for shape parameter α is given as

α̂sq ≈ α −
τ11

α
−

τ12

β
+

1

2
(L111τ11

2 + 3L112τ11τ12 +L122(τ22τ11 + 2τ12
2)+L222τ12τ22)

2. Bayesian estimator for shape parameter β
Substituting in equation (3.4),

Q1 =
−1

α
,Q2 =

−1

β
,u = β ,

the Bayesian estimator for shape parameter β is given as

β̂sq ≈ β −
τ12

α
−

τ22

β
+

1

2

(
L111τ11τ12 +L112

(
τ22τ11 + 2τ12

2
)
+ 3L122τ12τ22 +L222τ22

2
)

3. Bayesian estimator for reliability function R(t)
Substituting in equation (3.4), Q1 =

−1
α ,Q2 =

−1
β ,u= R(t), the Bayesian estimator for reliability function R(t) is given

as

R̂sq ≈ R(t)− 1
α (u1τ11 + u2τ12)−

1
β (u1τ12 + u2τ22)+

1
2
(u11τ11 + 2u12τ12 + u22τ22)

+ 1
2

[
L111

(
u1τ11

2 + u2τ11τ12

)
+L112

(
3u1τ11τ12 + u2

(
τ11τ22 + 2τ12

2
))

+
L122

(
u1

(
2τ12

2 + τ11τ12

)
+ 3u2τ12τ22

)
+L222

(
u1τ12τ22 + u2τ22

2
)
]

4. Bayesian estimator for Hazard rate function h1(t)
Substituting in equation (3.4), Q1 =

−1
α ,Q2 =

−1
β ,u = h1(t), the Bayesian estimator for Hazard rate function h1(t) is

given as
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ĥ1sq ≈ h1(t)−
1
α (u1τ11 + u2τ12)−

1
β (u1τ12 + u2τ22)+

1
2
(u11τ11 + 2u12τ12 + u22τ22)

+ 1
2

[
L111(u1τ11

2 + u2τ11τ12)+L112(3u1τ11τ12 + u2(τ11τ22 + 2τ12
2))

+L122(u1(2τ12
2 + τ11τ12)+ 3u2τ12τ22)+L222(u1τ12τ22 + u2τ22

2)

]

5. Bayesian estimator for Reversed Hazard rate function h2(t)

Substituting in equation (3.4), Q1 =
−1
α ,Q2 =

−1
β ,u = h2(t), the Bayesian estimator for reversed hazard rate function

h2(t) is given as

ĥ2sq ≈ h2(t)−
1
α (u1τ11 + u2τ12)−

1
β (u1τ12 + u2τ22)+

1
2
(u11τ11 + 2u12τ12 + u22τ22)

+ 1
2

[
L111(u1τ11

2 + u2τ11τ12)+L112(3u1τ11τ12 + u2(τ11τ22 + 2τ12
2))

+L122(u1(2τ12
2 + τ11τ12)+ 3u2τ12τ22)+L222(u1τ12τ22 + u2τ22

2)

]

3.2 Bayesian Estimator Under General Entropy Loss Function

1. Estimator for shape parameter α

α̂Gentropy =
[
E
(
α−q

)]− 1
q

Provided that E (α−q) exists and is finite. Substituting in equation (3.4), Q1 = −1
α ,Q2 = −1

β ,u = α−q, the Bayesian

estimator for shape parameter α is given as

α̂Gentropy ≈

[
α−q + qα−q−1τ11

α + qα−q−1τ12
β + q(q+1)α−q−2τ11

2

− qα−q−1

2
(ℓ111τ11

2 + 3ℓ112τ11τ12 + ℓ122(τ11τ22 + 2τ12
2)+ ℓ222τ12τ22)

]−1
q

2. Bayesian estimator for shape parameter β
Substituting in equation (3.4), Q1 =

−1
α ,Q2 =

−1
β ,u = β−q, the Bayesian estimator for shape parameter β is given as

β̂Gentropy ≈

(
β−q + qβ−q−1τ12

α + q(q+1)β−q−2τ22

2
+ qβ−q−1τ22

β

+ 1
2
qβ−q−1(L111τ11τ12 + 3L112(τ22τ11 + 2τ12

2)+ 3L122τ12τ22 +L222τ22
2)

)−1
q

3. Bayesian estimator for reliability function R(t)

Substituting in equation (3.4), Q1 =
−1
α ,Q2 =

−1
β ,u = (R(t))−q

, the Bayesian estimator for reliability function R(t) is

given as

R̂Gentropy ≈ (R(t))−q − 1
α (u1τ11 + u2τ12)−

1
β (u1τ12 + u2τ22)

+ 1
2
(u11τ11 + 2u12τ12 + u22τ22)+

1
2




L111

(
u1τ11

2 + u2τ11τ12

)

+L112

(
3u1τ11τ12 + u2

(
τ11τ22 + 2τ12

2
))

+L122

(
u1

(
2τ12

2 + τ11τ12

)

+3u2τ12τ22

)

+L222

(
u1τ12τ22 + u2τ22

2
)




4. Bayesian estimator for Hazard rate function h1(t)

Substituting in equation (3.4), Q1 =
−1
α ,Q2 =

−1
β ,u = (h1(t))

−q
, the Bayesian estimator for hazard rate function h1(t)

is given as

ĥ1Gentropy ≈ (h1(t))
−q − 1

α (u1τ11 + u2τ12)−
1
β (u1τ12 + u2τ22)

+ 1
2
(u11τ11 + 2u12τ12 + u22τ22)+

1
2




L111(u1τ11
2 + u2τ11τ12)+L112(3u1τ11τ12

+u2(τ11τ22 + 2τ12
2))+L122(u1(2τ12

2 + τ11τ12)
+3u2τ12τ22)+L222(u1τ12τ22 + u2τ22

2)




5. Bayesian estimator for Reversed Hazard rate function h2(t)

Substituting in equation (3.4), Q1 = −1
α ,Q2 = −1

β ,u = (h2(t))
−q
, the Bayesian estimator for reversed hazard rate

function h2(t) is given as
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ĥ2Gentropy ≈ (h2(t))
−q − 1

α (u1τ11 + u2τ12)−
1
β (u1τ12 + u2τ22)

+ 1
2
(u11τ11 + 2u12τ12 + u22τ22)+

1
2




L111(u1τ11
2 + u2τ11τ12)+

L112(3u1τ11τ12 + u2(τ11τ22 + 2τ12
2))

+L122(u1(2τ12
2 + τ11τ12)+ 3u2τ12τ22)

+L222(u1τ12τ22 + u2τ22
2)




It is worth noting that when the value q =−1, the general entropy loss function is the same as the squared error
loss function.

4 Simulation Studies

To prove the importance of the results obtained in the previous sections, simulation studies are performed. For this study,
by using the Monte Carlo method, with fixed sample size n (the total items put in a life test), with constant censoring
scheme, where R1 = R2 = ...= Rm, where m is the sample size of progressively censored from the sample of size n.

The following algorithm is used to generate sample based on progressive type-II censoring scheme, based on any
continuous df F, see [3].

1.Generate m independent uniform (0,1) observations W1, ...,Wm.

2.Set Vi =Wi

1
γi ,γi =

(
i+

m

∑
j=m−i+1

R j

)
, i = 1,2, ...,m.

3.Set Ui = 1−VmVm−1 . . .Vm−i+1, i = 1,2, . . . ,m.

4.Set Xi = F−1 (Ui) , ,then Xi for i = 1,2, . . . ,m is the progressive type-II censoring scheme based on the df F.
5.We have repeated steps 1,2,3and4 (10000) times, for different values of n and m.

Estimation average =

10000

∑
i=1

θ̂i

10000
, mean square error =

10000

∑
i=1

(θ̂i−θ)
2

10000
, where, θ is the parameter and θ̂ is the estimator.

Extensive computations are performed using Mathematica 11.
Since the non-linear equations (2.3) are not solvable analytically, numerical methods can be used, as Newton Raphson
method with initial values closed to real values of the parameters.

Throughout this section we use the following abbreviations:

1.MLE : means that the estimate by using the maximum likelihood method,
2.Est.: estimator,
3.Esq : means that the estimate under squared error loss function,
4.EGe,q=0.3: means that the estimate under general entropy loss function at q = 0.3.

From the simulation studies we noted that:

1.In general, the Bayesian estimators have mean square error less than that of the MLE.
2.In general, the Bayesian estimators under general entropy loss function is better than the Bayesian estimators under

squared error loss function
3.Increasing the sample size leads to decrease mean square error and increase the accuracy of estimators.
4.For the parameter α, the estimate under general entropy loss function is the best especially at the value q = 1, and it

followed by the squared error loss function.
5.Furthermore, by decreasing the value of the parameter β , the accuracy of estimator α increases and mean square error

decreases.
6.For the parameter β , the estimate under general entropy loss function is the best especially at the value q = 2, and it

is followed by the squared error loss function.
7.Furthermore, by increasing the value of the parameter α, the accuracy of estimator β increases and mean square error

decreases.
8.The estimate of the reliability function R(t)under squared error loss function is the best, and it is followed by the

general entropy loss function.
9.The estimate of the hazard rate function h1 (t) under general entropy loss function is the best especially at the value

q = 1, and it is followed by the squared error loss function.
10.The estimate of the reversed hazard rate function h2 (t) under general entropy loss function is the best.
11.By decreasing the time t, the accuracy of estimate R(t) , h1 (t) and h2 (t) increases and mean square error decreases
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Table 1. The average, mean square error, (α = 0.8,β = 1.5, t = 2).
n m Est. Real MLE Esq EGE,q=0.3 EGE,q=0.7 EGE,q=1 EGE,q=2 EGE,q=5

200 100 α̂ 0.8 0.819

(0.0118)

0.8147

(0.0009)

0.8046

(0.0002)

0.8035

(0.0001)

0.7992

(1.5 ×
10−6)

0.7957

(0.0002)

0.7795

(0.0004)

β̂ 1.5 1.5371

(0.0381)

1.5324

(0.0014)

1.5181

(0.0003)

1.5155

(0.0002)

1.507

(0.0004)

1.5026

(0.0001)

1.473

(0.0007)

R̂(t) 0.5528 0.5505

(0.0015)

0.5520

(7.3 ×
10−7)

0.5512

(2.8 ×
10−6)

0.5504

(5.9 ×
10−6)

0.5501

(7.6 ×
10−6)

0.5492

(0.0001)

0.5461

(0.0004)

ĥ1(t) 0.2297 0.2343

(0.0008)

0.2331

(0.0001)

0.2306

(7.6 ×
10−7)

0.2304

(4.1 ×
10−7)

0.2295

(8.1 ×
10−8)

0.2285

(1.5 ×
10−6)

0.2246

(0.0002)

ĥ2(t) 0.2840 0.2861

(0.0001)

0.2866

(6.8 ×
10−6)

0.2852

(1.4 ×
10−6)

0.285

(8.7 ×
10−7)

0.2841

(2.2 ×
10−8)

0.2839

(2.9 ×
10−8)

(0.2812)

(8.1 ×
10−6)

100 50 α̂ 0.8 0.8360

(0.0261)

0.8263

(0.0006)

0.812

(0.0001)

0.8047

(0.0002)

0.8045

(0.0002)

0.7902

(0.0001)

0.7651

(0.0012)

β̂ 1.5 1.5754

(0.0897)

1.5666

(0.0044)

1.5376

(0.0014)

1.5294

(0.0086)

1.5258

(0.0007)

1.5011

(0.0003)

1.455

(0.0021)

R̂(t) 0.5528 0.5491

(0.0023)

0.5523

(3.5 ×
10−7)

0.5484

(0.0002)

0.5489

(0.0001)

0.5472

(0.0003)

0.5458

(0.0005)

0.5408

(0.0001)

ĥ1(t) 0.2297 0.2382

(0.0017)

0.2354

(0.0003)

0.2323

(6.6 ×
10−6)

0.2303

(3.7 ×
10−7)

0.2304

(5.1 ×
10−7)

0.2268

(8.5 ×
10−6)

0.2202

(0.0009)

ĥ2(t) 0.2840 0.2885

(0.0001)

0.2888

(0.0002)

0.2862

(4.7 ×
10−6)

0.286

(4.1 ×
10−6)

0.2854

(2 ×
10−6)

0.2835

(4.4 ×
10−7)

0.2792

(0.0002)

Table 2. The average, mean square error, (α = 0.8,β = 1, t = 2).
n m Est. Real MLE Esq EGE,q=0.3 EGE,q=0.7 EGE,q=1 EGE,q=2 EGE,q=5

200 100 α̂ 0.8 0.8225

(0.0161)

0.817

(0.0002)

0.8079

(0.0006)

0.802

(4.3 ×
10−6)

0.8007

(8.8 ×
10−7)

0.7941

(0.0003)

0.7751

(0.0006)

β̂ 1 1.0208

(0.0143)

1.0168

(0.0002)

1.0109

(0.0001)

1.006

(0.0003)

1.007

(0.0005)

0.9993

(1.1 ×
10−6)

0.9859

(0.0002)

R̂(t) 0.4152 0.4119

(0.0013)

0.4132

(4.2 ×
10−6)

0.4106

(0.0002)

0.4104

(0.0002)

0.4103

(0.0002)

0.4074

(0.0006)

0.4036

(0.0013)

ĥ1(t) 0.2666 0.2729

(0.0013)

0.2714

(0.0002)

0.2692

(6.4 ×
10−6)

0.2677

(1.1 ×
10−6)

0.2672

(3.3 ×
10−7)

0.2658

(7.2 ×
10−7)

0.2605

(0.0003)

ĥ2(t) 0.1893 0.1897

(0.0001)

0.1897

(1.1 ×
10−7)

0.1891

(4.7 ×
10−8)

0.1888

(3.08 ×
10−7)

0.1891

(7.6 ×
10−8)

0.188

(1.8 ×
10−6)

0.187

(5.4 ×
10−6)

100 50 α̂ 0.8 0.8472

(0.0362)

0.836

(0.0013)

0.8175

(0.0003)

0.8065

(0.0004)

0.8062

(0.0004)

0.791

(0.0008)

0.7621

(0.0014)

β̂ 1 1.0434

(0.0315)

1.0353

(0.0012)

1.0232

(0.0005)

1.0137

(0.0018)

1.0146

(0.0002)

1.003

(0.0001)

0.9764

(0.0005)

R̂(t) 0.4152 0.4084

(0.0029)

0.4107

(0.0002)

0.4057

(0.0009)

0.4050

(0.0001)

0.4034

(0.0004)

0.4006

(0.0001)

0.3926

(0.0005)

ĥ1(t) 0.2666 0.2799

(0.003)

0.2767

(0.0001)

0.2721

(0.0003)

0.2693

(7.21 ×
10−6)

0.2692

(6.83 ×
10−6)

0.2651

(2.63 ×
10−6)

0.2566

(0.0001)

ĥ2(t) 0.1893 0.1901

(0.0001)

0.1900

(4.3 ×
10−7)

0.1889

(1.6 ×
10−7)

0.1882

(1.24 ×
10−6)

0.1882

(1.23 ×
10−6)

0.1874

(3.7 ×
10−6)

0.1849

(0.0001)
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Table 3. The average, mean square error, (α = 1,β = 1.5, t = 2).
n m Est. Real MLE Esq EGE,q=0.3 EGE,q=0.7 EGE,q=1 EGE,q=2 EGE,q=5

200 100 α̂ 1 1.0251

(0.0188)

1.0189

(0.0003)

1.0084

(0.0006)

1.0047

(0.0002)

1.0024

(6.7 ×
10−6)

0.9935

(0.0004)

0.9748

(0.0006)

β̂ 1.5 1.5389

(0.0391)

1.534

(0.0116)

1.5194

(0.0037)

1.5149

(0.0022)

1.5123

(0.0014)

1.5017

(6.8 ×
10−6)

1.4721

(0.0008)

R̂(t) 0.4557 0.4524

(0.0013)

0.4541

(2.5 ×
10−6)

0.452

(0.0001)

0.4516

(0.0001)

0.4513

(0.0001)

0.4504

(0.0002)

0.4455

(0.0001)

ĥ1(t) 0.2986 0.3055

(0.0014)

0.3037

(0.0002)

0.3009

(5.2 ×
10−6)

0.2999

(1.6 ×
10−6)

0.2992

(4.2 ×
10−7)

0.2968

(3.6 ×
10−6)

0.2918

(0.0004)

ĥ2(t) 0.25 0.2509

(0.0001)

0.2512

(1.4 ×
10−6)

0.2502

(4.7 ×
10−8)

0.25

(6.7 ×
10−9)

0.2498

(2.3 ×
10−8)

0.2494

(3.6 ×
10−7)

0.247

(8.9 ×
10−6)

100 50 α̂ 1 1.051

(0.0423)

1.0388

(0.0015)

1.012

(0.0001)

1.01

(0.0001)

1.0061

(0.0004)

0.9904

(0.0001)

0.9596

(0.0016)

β̂ 1.5 1.5779

(0.0896)

1.5691

(0.0047)

1.5345

(0.0011)

1.293

(0.0008)

1.525

(0.0006)

1.5037

(0.0004)

1.4568

(0.0019)

R̂(t) 0.4557 0.4486

(0.0028)

0.452

(0.0001)

0.4495

(0.0003)

0.447

(0.0007)

0.4465

(0.0008)

0.4442

(0.0013)

0.4367

(0.0003)

ĥ1(t) 0.2986 0.3129

(0.0034)

0.3091

(0.0001)

0.3018

(0.0001)

0.3015

(8.3 ×
10−6)

0.3002

(2.7 ×
10−6)

0.2958

(8.7 ×
10−6)

0.2869

(0.0003)

ĥ2(t) 0.25 0.2514

(0.0001)

0.2521

(4.5 ×
10−6)

0.2504

(2.3 ×
10−7)

0.2497

(1.2 ×
10−7)

0.2496

(1.7 ×
10−7)

0.2485

(2.3 ×
10−6)

0.2449

(0.0002)

Table 4. The average, mean square error, (α = 0.8,β = 1.5, t = 0.6).
n m Est. Real MLE Esq EGE,q=0.3 EGE,q=0.7 EGE,q=1 EGE,q=2 EGE,q=5

200 100 α̂ 0.8 0.8205

(0.0117)

0.8154

(0.0002)

0.8068

(0.0004)

0.804

(0.0001)

0.8021

(4.9 ×
10−6)

0.7958

(0.0001)

0.7787

(0.0004)

β̂ 1.5 1.542

(0.039)

1.5346

(0.0019)

1.5224

(0.0004)

1.5153

(0.0002)

1.5121

(0.0001)

1.5029

(0.0001)

1.4713

(0.0008)

R̂(t) 0.8245 0.8249

(0.0005)

0.8253

(5.8 ×
10−7)

0.8254

(7×10−7)
0.8248

(5.7 ×
10−8)

0.8248

(3 ×
10−8)

0.8248

(3.2 ×
10−8)

0.8234

(1.3 ×
10−6)

ĥ1(t) 0.3496 0.3524

(0.0013)

0.3508

(1.3 ×
10−6)

0.3477

(3.5 ×
10−6)

0.3476

(4.1 ×
10−6)

0.347

(6.9 ×
10−6)

0.3448

(0.0002)

0.3401

(0.0008)

ĥ2(t) 1.6431 1.6735

(0.0001)

1.6707

(0.0007)

1.6621

(0.0003)

1.6559

(0.0001)

1.6535

(0.0001)

1.6468

(0.0001)

1.6206

(0.0005)

100 50 α̂ 0.8 0.8248

(0.0265)

0.8299

(0.0008)

0.8142

(0.0002)

0.8086

(0.0007)

0.8027

(0.0001)

0.7937

(0.0005)

0.7686

(0.0010)

β̂ 1.5 1.5765

(0.0869)

1.5677

(0.0045)

1.5442

(0.0019)

1.5322

(0.0010)

1.5234

(0.0055)

1.5052

(0.0005)

1.4563

(0.0020)

R̂(t) 0.8245 0.8249

(0.0010)

0.8258

(1.5 ×
10−6)

0.8260

(1.8 ×
10−6)

0.8253

(5.2 ×
10−7)

0.8253

(4.7 ×
10−7)

0.8245

(1.2 ×
10−8)

0.8223

(5.2 ×
10−6)

ĥ1(t) 0.3496 0.3555

(0.0031)

0.3520

(5.8 ×
10−6)

0.3463

(0.0001)

0.3452

(0.0001)

0.3435

(0.0003)

0.3408

(0.0007)

0.3328

(0.0002)

ĥ2(t) 1.6431 1.7014

(0.0001)

1.6962

(0.0028)

1.6800

(0.0013)

1.6703

(0.0073)

1.6637

(0.0042)

1.6492

(0.0005)

1.6078

(0.0013)
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Table 5. The average, mean square error, (α = 0.8,β = 1, t = 0.6).
n m Est. Real MLE Esq EGE,q=0.3 EGE,q=0.7 EGE,q=1 EGE,q=2 EGE,q=5

200 100 α̂ 0.8 0.8214

(0.016)

0.8159

(0.0002)

0.8043

(0.0001)

0.8034

(0.0001)

0.8017

(3.3 ×
10−6)

0.7925

(0.0005)

0.7746

(0.0006)

β̂ 1 1.02

(0.0139)

1.0166

(0.0002)

1.0084

(0.0007)

1.0081

(0.0006)

1.0074

(0.0005)

0.9998

(6×10−7)
0.9855

(0.0002)

R̂(t) 0.6866 0.6861

(0.0008)

0.6865

(2.5 ×
10−8)

0.6857

(8.4 ×
10−7)

0.6854

(1.3 ×
10−6)

0.6854

(1.4 ×
10−6)

0.6846

(3.9 ×
10−6)

06831

(0.0001)

ĥ1(t) 0.5 0.5067

(0.0031)

0.5046

(0.0002)

0.501

(9.3 ×
10−7)

0.5007

(4.5 ×
10−7)

0.5

(1.1 ×
10−8)

0.4971

(8.4 ×
10−6)

04902

(0.0009)

ĥ2(t) 1.0954 1.1096

(0.0001)

1.1068

(0.0001)

1.1008

(0.0002)

1.1006

(0.0002)

1.1003

(0.0002)

1.0945

(1.2 ×
10−6)

1.0838

(0.0013)

100 50 α̂ 0.8 0.8466

(0.0358)

0.8354

(0.0012)

0.8124

(0.0001)

0.8096

(0.0009)

0.8064

(0.0004)

0.787

(0.0001)

0.7606

(0.0015)

β̂ 1 1.0445

(0.0320)

1.0364

(0.0013)

1.0197

(0.0001)

1.0165

(0.0002)

1.0157

(0.0002)

0.9992

(4.9 ×
10−6)

0.9738

(0.0007)

R̂(t) 0.6866 0.6854

(0.0016)

0.6861

(2.2 ×
10−7)

0.6846

(3.9 ×
10−6)

0.6836

(9×10−6)
0.6838

(7.7 ×
10−6)

0.6825

(0.0001)

0.679

(0.0005)

ĥ1(t) 0.5 0.5149

(0.0067)

0.5105

(0.0001)

0.5032

(0.0001)

0.5027

(7.3 ×
10−6)

0.50106

(1.1 ×
10−6)

0.4945

(0.0003)

0.4831

(0.0028)

ĥ2(t) 1.0954 1.1254

(0.0001)

1.1202

(0.0006)

1.1082

(0.0001)

1.1056

(0.0001)

1.1057

(0.0001)

1.0931

(7.5 ×
10−6)

1.0729

(0.0005)
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Table 6. The average, mean square error, (α = 1,β = 1.5, t = 0.6).
n m Est. Real MLE Esq EGE,q=0.3 EGE,q=0.7 EGE,q=1 EGE,q=2 EGE,q=5

200 100 α̂ 1 1.0241

(0.0189)

1.0179

(0.0003)

1.0069

(0.0004)

1.0052

(0.0002)

1.0014

(3 ×
10−6)

0.9941

(0.0003)

0.9744

(0.0006)

β̂ 1.5 1.5379

(0.0392)

1.5332

(0.0010)

1.5184

(0.0003)

1.5166

(0.0002)

1.5112

(0.0001)

1.5004

(4.3 ×
10−6)

1.4744

(0.0006)

R̂(t) 0.7704 0.7704

(0.0006)

0.7710

(3.8 ×
10−7)

0.7705

(8.6 ×
10−9)

0.7705

(1.1 ×
10−8)

0.7703

(1.1 ×
10−8)

0.7697

(4.5 ×
10−7)

0.7689

(2.1 ×
10−6)

ĥ1(t) 0.4658 0.4709

(0.0025)

0.4685

(7.5 ×
10−6)

0.4653

(2.5 ×
10−7)

0.4645

(1.7 ×
10−6)

0.4635

(5.2 ×
10−6)

04614

(0.0001)

0.4544

(0.0001)

ĥ2(t) 1.5625 1.5875

(0.0001)

1.5853

(0.0005)

1.5755

(0.0001)

1.5747

(0.0001)

1.5709

(0.0006)

1.5634

(2.3 ×
10−6)

1.5456

(0.0002)

100 50 α̂ 1 1.0494

(0.042)

1.0402

(0.0016)

1.0198

(0.0003)

1.012

(0.0001)

1.0042

(0.0002)

0.9880

(0.0001)

0.9608

(0.0015)

β̂ 1.5 1.5761

(0.0905)

1.5745

(0.0055)

1.5451

(0.0020)

1.5345

(0.0011)

1.5209

(0.0004)

1.5001

(0.0003)

1.4589

(0.0018)

R̂(t) 0.7703 0.7702

(0.0013)

0.7719

(2.3 ×
10−6)

0.7708

(1.6 ×
10−7)

0.7705

(2.5 ×
10−8)

0.7696

(6.1 ×
10−7)

0.7693

(1.2 ×
10−6)

0.7672

(0.0001)

ĥ1(t) 0.4658 0.4771

(0.0053)

0.472

(0.0003)

0.4659

(1.1 ×
10−7)

0.4635

(5×10−6)
0.4622

(0.0001)

0.4565

(0.0008)

0.4461

(0.0003)

ĥ2(t) 1.5624 1.6171

(0.0001)

1.6138

(0.0026)

1.5946

(0.0010)

1.5877

(0.0006)

1.5774

(0.0002)

1.564

(0.0001)

1.5338

(0.0008)
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5 Conclusions

In this study, Bayesian and non-bayesian maximum likelihood estimators of the two-shape parameters, reliability, hazard
rate, and reversed hazard rate functions for the inverted Kumaraswamy distribution based on progressively type-II
censoring samples under the non-informative prior distribution by using Lindley’s approximation are accomplished. By
using a Mathematica program, we have generated the samples to compute the estimated parameters. based on a Monte
Carlo simulation study, it has been seen that the Bayes estimator performs better than the MLE’s and the Bayes estimator
under general entropy loss function has the smallest MSE’s as compared with Bayes estimator under squared error loss
function. The accuracy of estimators increases and mean square error decreases when increasing the sample sizes.The
simulation also stresses the importance of general Entropy loss functions which is applicable in the case studied.
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