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Abstract: In this work, multiple traveling wave solutions for one kind of nonlinear partial differential equations of fractional order

using the tanh-function method are investigated. Namely, time fractional generalized nonlinear Huxley equation is explored. The

proposed method benefits in handling other related general forms of fractional nonlinear partial differential equations. The analytic

solutions behavior is illustrated graphically. In addition, a numerical treatment for the same problem is proposed using the cubic spline

function method. Stability of the method is investigated based on the Von Neumann concept. The method proved to be conditionally

stable. A numerical example is presented to assert that the proposed algorithm is effective. The results confirmed the effectiveness and

accuracy of the proposed technique.

Keywords: Tanh-function method, time fractional Huxley equation, cubic parametric spline method, Von Neumann method.

1 Introduction

In many fields in mathematical physics, such as optical fibers, plasma physics, solid state physics, chemical kinetics
geochemistry, quantum technologies and fluid mechanics, the nonlinear partial differential equations appear as
mathematical models [1,2,3,4,5]. Different powerful analytical methods have recently been considered to such
mathematical models. The analytical traveling wave solutions help engineers and physicists to better understand the
behavior and mechanism that govern such mathematical models and possible applications. Some powerful methods
involve the tanh-coth method and the sine - cosine method [6,7,8,9,10,11]. Moreover, the extended tanh-function
method is the most recently used to find exact solutions to some nonlinear partial differential equations, see for example
[12,13,14].

Recently, analytical and numerical solutions for different types of fractional differential equations, including Burger,
Burgers-Huxley, regularized long–wave, Fokker-Plank and other fractional equations, are considered fractional partial
differential equations and which several authors investigate, see for example [15,16,17,18,19,20,21,22,23].

The present paper aims to implement the tanh-function method to obtain multiple traveling wave solutions of the
generalized nonlinear Huxley equation with time-fractional derivative of the form:

uα
t − uxx − u(1− uδ)(uδ −λ ) = 0, 0 < α ≤ 1,

subject to boundary conditions

u(a, t) = g1 (t) , u(b, t) = g2 (t) , t ≥ 0,

and the initial condition u(x,0) = f (x) , a ≤ x ≤ b , where λ and δ are parameters, δ > 0,λ ∈ (0,1).
To show its effectiveness and convenience, solution procedure of this method is obtained with the help of Mathematica.
Applying non-polynomial spline (NPS) functions to solve some partial differential equations is not regarded as a new

subject because one can pursue this subject in the pieces of literature using NPS in solving Burgers’ equation, cubic
nonlinear Schrödinger equation, nonlinear Klein-Gordon equation, variable coefficient fourth-order wave equations and
Bratu’s problem [24,25,26,27,28]. A large number of non-polynomial splines based methods that investigate approximate
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solutions of boundary value problems of different orders are recently considered, see for example, [29,30,31,32]. The
existence and uniqueness of the solution of partial differential equations can be found in [33].

The paper is organized as follows: In section Two, the tanh- function method is first described and the analytic solution
is then obtained. In section Three, the cubic non-polynomial spline function method is presented. Stability analysis of the
proposed numerical method is derived in section Four and it proved that the method is conditionally stable. In section
Five, numerical results are discussed and presented to illustrate the applicability and accuracy of both methods. Section
Six is devoted to conclusion.

2 The Use of the Tanh-Function Method

2.1 Description of the Method

The use of the tanh-function method is a good solution technique to compute exact traveling wave solutions for fractional
nonlinear partial differential equations. The technique depends on introducing a power series in tanh form to obtain

analytical solutions of traveling wave type. The wave variable η = (x− c tα

Γ (1+α)
) or η = (x+ c tα

Γ (1+α)
) [34,35] carries

the fractional nonlinear partial differential equation

P(u,utux,uxx,uxxx, ...) = 0, (1)

to a nonlinear ordinary differential equation

O(u,u′,u′′,u′′′, ...) = 0. (2)

Equation (2) is integrated as long as all terms contain derivatives where integration constants are neglected. Then, we
introduce a new independent variable

y = Tanh(µη), (3)

that leads to

d

dη
= µ(1− y2)

d

dy
, (4)

d2

dη2
= µ(1− y2)

d2

dy2

d

dη
+(−2µy)

d

dy

d

dη
. (5)

Substituting (4) in (5), we obtain

d2

dη2
= µ2(1− y2)(−2y

d

dy
+(1− y2)

d2

dy2
), (6)

where higher derivatives can be derived in a similar way. We then propose the following series expansion:

u(µη) = f (y) =
L

∑
i=0

aiy
i, (7)

and L is a positive integer in most cases that will be defined. Applying Equations (6) and (7) into Equation (2), we get an
equation in power of y. After L is defined, coefficients of powers of y are obtained in the resulting equation where these
coefficients have to vanish. Then, a system of algebraic equations for the parameters ai, i(i = 0,1, ....L) , c and µ is given.
Deterring these parameters to obtain the value of L and using (7), then an analytical solution u(x, t) is obtained in a closed
form. For non-integer values of L, an approximate transformation formula will be used so that an integer value can be
obtained. This will be introduced in the forthcoming problems.

c© 2021 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 7, No. 4, 237-248 (2021) / www.naturalspublishing.com/Journals.asp 239

2.2 Tanh-Function Method for Generalized Nonlinear Huxley Equation with Time Fractional

Derivative

In this subsection, the tanh-function method is implemented to obtain analytical solution for the generalized nonlinear
Huxley equation with time fractional derivative given as:

uα
t − uxx − u(1− uδ)(uδ −λ ) = 0 .

Or equivalently,

∂ α u

∂ tα
− ∂ 2u

∂x2
− (1+λ )uδ+1+ u2δ+1+λ u = 0 (8)

Equation (8) describes nerve pulse propagation in nerve fibers and wall motion in liquid crystals. Using the

transformation η = (x− c tα

Γ (1+α)
), we obtain

−cu′− u′′− (1+λ )uδ+1+ u2δ+1+λ u = 0 . (9)

We define the degree of u as D [u] = L to balance the highest order linear term with nonlinear term which gives rise to the
degree of other expressions as:

D

[

dqu

dξ q

]

= L+ q, D

[

up

(

dqu

dξ q

)s]

= Lp+ s(L+ q). (10)

Using (10), balancing u2δ+1 with u′′ gives

2+L = (2δ + 1)L so that L =
1

δ
. (11)

It is normal to use the transformation

u(x, t) = v
1
δ , (12)

then substituting Equation (12) into Equation (9), we get:

−c
1

δ
v

1−δ
δ v′− 1

δ
(

1− δ

δ
)v

1−2δ
δ v′2 − 1

δ
v

1−δ
δ v′′− (1+λ )v

1+δ
δ + v

1+2δ
δ +λ v

1
δ = 0. (13)

Simplifying Equation (13) yields

cδvv′− δvv′′− (1− δ )v′2− (1+λ )δ 2v3 + δ 2v4 + δ 2λ v3 = 0. (14)

Balancing vv′′ with v4, we find

4L = L+ 2+L so that L = 1. (15)

Now, using the tanh-function method, we set

v(x, t) = f (y) = a0 + a1y, (16)

and

y′ = µ − µ y2. (17)

With the help of Mathematica, we get the system of algebraic equations

−cδ µa0a1 − δ 2a3
0 + δ 2λ a2

0 − µ2a2
1 − δ 2λ a3

0 + δ 2a4
0 + µ2a2

1δ = 0,
2δ µ2a0a1 + 4δ 2a3

0a1 + 2δ 2λ a0a1 − 3δ 2a2
0a1 − cδ µa2

1− 3δ 2λ a2
0a1 = 0,

kδ 2λ a2
1 − 3δ 2λ a0a2

1 − 3δ 2a0a2
1 + 6δ 2a2

0a2
1 + cδ µa1a0 + 2µ2a2

1 = 0,
−δ 2λ a3

1 − δ 2a3
1 + 4δ 2a0a3

1 + cδ µa2
1− 2δ µ2a1a0 = 0,

δ 2a4
1 −υµ2a2

1 − µ2a2
1δ = 0,

from Equation (16) into Equation (13) and calculating the coefficients of y.
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Solving this system, we get the coefficients a0,a1,c and µ which are given by:

a0 =
λ

2
, a1 =±λ

2
, c =±δ

√

λ

δ + 1
, µ =

δ

2
√

δ + 1
, (18)

a0 =
1

2
, a1 =∓1

2
, c =∓δ

√

1

δ + 1
, µ =

δ

2
√

δ + 1
. (19)

Now, we have two sets of traveling wave solutions where c is a free parameter. Recalling that u = v
1
δ and using (18)

and (19), the following forms of traveling wave solutions are obtained. The first form of the analytical wave solution is

u(x, t) =

{

λ

2
± λ

2
tanh(

δ λ

2
√

δ + 1
(x∓ 1+ δ −λ

1+ δ

√

1+ δ)
tα

Γ (1+α)
)

}
1
δ

, (20)

and the second is of the form

u(x, t) =

{

1

2
∓ 1

2
tanh(

δ

2
√

(δ + 1)

(

x± δ
√

1+ δ
) tα

Γ (1+α)
)

}
1
δ

. (21)

Note: Taking δ = 1 the solution of time fractional Huxley equation takes the form

u(x, t) =

{

λ

2
± λ

2
tanh(

λ

2
√

2
(x∓ (2−λ )

√
2)

tα

Γ (1+α)
)

}

. (22)

3 Derivation of the Proposed Cubic the Non-polynomial Spline Functions Method

In this section, to get a new numerical method that helps get numerical solutions, the cubic non-polynomial spline
functions that have a polynomial and trigonometric part is applied to the generalized nonlinear Huxley equation with
time fractional derivative of the form:

∂ α u

∂ tα
− ∂ 2u

∂x2
= u(1− uδ)(uδ −λ ), 0 ≤ α ≤ 1, (23)

subject to boundary conditions

u(a, t) = g1 (t) , u(b, t) = g2 (t) , t ≥ 0, (24)

and initial conditions

u(x,0) = f (x) , a ≤ x ≤ b, (25)

where λ and δ are parameters, δ > 0,λ ∈ (0,1).
The proposed spline function takes the form [36], T3 = span{1,x,sinω x,cosω x} with ω as a frequency of the

trigonometric part of the spline functions used to improve the method accuracy.
Now, the region R = [a,b]× [0,∞[ is discretized by a set of points Rh,k which are the vertices of a grid of points(xi, t j),

where xi = a+ ih, i = 0,1, ...,N + 1, and t j = jk, j = 0,1, ... .

The quantities h and k are mesh sizes in the space and time directions.

Let Z
j
i ≡ Z(xi, t j) be an approximate to u

j
i ≡ u(xi, t j), that forms by the segment Pi(x, t j) of the spline function passing

through the points (xi,Z
j
i ) and (xi+1,Z

j
i+1). Each of these segments takes the form

Pi(x, t j) = ai(t j) cosω(x− xi)+ bi(t j) sin ω(x− xi)+ ci(t j) (x− xi)+ di(t j), (26)

for each i = 0,1, . . . ,N. To obtain expressions for the coefficients of (4) in terms of Z
j
i , Z

j
i+1, S

j
i and S

j+1
i , we first define

Pi(xi, t j) = Z
j
i , Pi(xi+1, t j) = Z

j
i+1, P

(2)
i (xi, t j) = S

j
i ,and P

(2)
i (xi+1, t j) = S

j
i+1. (27)

Using Equations (4) and (5), we obtain

ai + di = Z
j
i ,
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ai cosθ + bi sinθ + cih+ di = Z
j
i+1, (28)

−aiω
2 = S

j
i ,

−aiω
2 cosθ − biω

2 sinθ = S
j
i+1,

where ai ≡ ai(t j), bi ≡ bi(t j), ci ≡ ci(t j), di ≡ di(t j) and θ = ω h. Solving the last four equations, we obtain the following
expressions

ai =− h2

θ 2
S

j
i ,bi =

h2
(

cosθ S
j
i − S

j
i+1

)

θ 2 sinθ
,ci =

(

Z
j
i+1 −Z

j
i

)

h
+

h
(

S
j
i+1 − S

j
i

)

θ 2
,di =

h2

θ 2
S

j
i +Z

j
i . (29)

From continuity condition of the first derivative at x = xi, that is P1
i (xi, t j) = P1

i−1(xi, t j), we obtain

biω + ci =−ai−1ω sinθ + bi−1ω cosθ + ci−1. (30)

Using expressions in (29), Eq. (30) becomes

h2ω
(

cosθ S
j
i −S

j
i+1

)

θ 2 sinθ
+

(

Z
j
i+1−Z

j
i

)

h
+

h

(

S
j
i+1−S

j
i

)

θ 2

= h2ω
θ 2 S

j
i−1 sinθ +

h2ω
(

cosθ S
j
i−1−S

j
i

)

θ 2 sinθ
cosθ +

(

Z
j
i −Z

j
i−1

)

h
+

h
(

S
j
i −S

j
i−1

)

θ 2 ,

or

Z
j
i+1 − 2Z

j
i +Z

j
i−1 =

(

h2

θ sinθ − h2

θ 2

)

S
j
i+1 +

(

−h2 cosθ
θ sinθ + h2

θ 2 − h2 cosθ
θ sinθ + h2

θ 2

)

S
j
i

+
(

h2 sinθ
θ + h2 cos2 θ

θ sinθ − h2

θ 2

)

S
j
i−1, where θ = hω .

After some manipulations, we get

Z
j
i+1 − 2Z

j
i +Z

j
i−1 = γS

j
i+1 +β S

j
i + γS

j
i−1, i = 1,2, ...,N, (31)

where γ = h2

θ sinθ − h2

θ 2 , β =− 2h2 cosθ
θ sinθ + 2h2

θ 2 and θ = ωh.
Remarks
1- Truncation error for Equation (31), that is

T
∗ j

i =
(

u
j
i−1 + u

j
i+1

)

− 2u
j
i − γ

(

D2
xu

j
i−1 +D2

xu
j
i+1

)

−β D2
xu

j
i ,

can be achieved by expanding this equation in Taylor series in terms of u(xi, t j) and its derivatives are as follows:

T
∗ j

i =
(

h2 − (β + 2γ)
)

D2
xu

j
i + h2

(

h2

12
− γ

)

D4
xu

j
i + h4

(

h2

360
− γ

12

)

D6
xu

j
i + . . . .

Using that formula, with β + 2γ = h2 the schema is off O
(

h2
)

, however with β + 2γ = h2 and γ = h2

12
the schema is of

O
(

h4
)

.

2- As ω → 0, that is θ (ω) → 0, then (γ,β ) →
(

h2

6
, 4h2

6

)

, β + 2γ = h2. The system (31) becomes a normal cubic

spline, that is

Z
j
i+1 − 2Z

j
i +Z

j
i−1 =

h2

6
(S j

i+1 + 4S
j
i + S

j
i−1), i = 1,2, . . . ,N.

Using the generalized Huxley Equation (23), we can write S
j
i in the form

S
j
i+1 =

∂ 2Z
j
i+1

∂x2
=

(

∂ α Z
j
i+1

∂ tα
− (Z j

i+1)
(

1− (Z j
i+1)

δ
)(

(Z j
i+1)

δ −λ
)

)

,

S
j
i =

∂ 2Z
j
i

∂x2
=

(

∂ α Z
j
i

∂ tα
− (Z j

i )
(

1− (Z j
i )

δ
)(

(Z j
i )

δ −λ
)

)

, (32)
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S
j
i−1 =

∂ 2Z
j
i−1

∂x2
=

(

∂ α Z
j
i−1

∂ tα
− (Z

j
i−1)

(

1− (Z
j
i−1)

δ
)(

(Z
j
i−1)

δ −λ
)

)

.

Applying the partial fractional formula of Caputo derivative, we get

∂ α Z (xi, t j)

∂ tα
=

1

Γ (1−α)

∫ t j

0

∂Z (xi,s)

∂ t
(t j − s)−α

ds, t j = jk, 0 < α < 1. (33)

Applying the technique of piecewise, Equation (33) takes the form

∂ α Z (xi, t j)

∂ tα
=

1

Γ (1−α)

j−1

∑
q=0

∫ (q+1)k

qk

∂Z (xi,s)

∂ t
(t j − s)−α

ds, 0 < α < 1. (34)

Because of the non-negative of (t j − s)−α
cannot be negative on [qk, (q+ 1)k], the Theorem of Weighted Mean Value for

Integrals [37], given [38,39],

∫ (q+1)k

qk

∂Z (xi,s)

∂ t
(t j − s)−α

ds =
∂Z (xi,s

∗)
∂ t

∫ (q+1)k

qk
(t j − s)−α

ds, qk < s∗ < (q+ 1)k.

The above-mentioned can be discretized as

∫ (q+1)k

qk

∂Z (xi,s)

∂ t
(t j − s)−α

ds ≈ Z
q+1
i −Z

q
i

k

∫ (q+1)k

k
(t j − s)−α

ds

=

[

Z
q+1
i −Z

q
i

k

][

(t j − qk)1−α − (t j − qk− k)1−α

1−α

]

=

[

Z
q+1
i −Z

q
i

k

][

( jk− qk)1−α − ( jk− qk− k)1−α

1−α

]

=
1

kα (1−α)

[

Z
q+1
i −Z

q
i

] [

( j− q)1−α − ( j− q− 1)1−α
]

.

Hence, the partial fractional derivative approaches (12) takes the form

∂ α Z (xi, t j)

∂ tα
≈ σ

j−1

∑
q=0

ϕα
j,q

[

Z
q+1
i −Z

q
i

]

, 0 < α < 1, (35)

where ϕα
j,q = ( j− q)1−α − ( j− q− 1)1−α

and σ = 1
(1−α)Γ (1−α)kα . Formula (35) allows us to express S

j
i in the form

S
j
i ≈ σ

j−1

∑
q=0

ϕα
j,q

[

Z
q+1
i −Z

q
i

]

+ ρ j
i

(

Z
j
i

)

, (36)

which may be written as:

S1
i−1 = σ

(

Z1
i−1 −Z0

i−1

)

+ρ1
i−1

(

Z1
j

)

,

S1
i = σ

(

Z1
i −Z0

i

)

+ρ1
i

(

Z1
j

)

, (37)

S1
i+1 = σ

(

Z1
i+1 −Z0

i+1

)

+ρ1
i+1

(

Z1
j

)

,

S
j
i−1 = σ

(

Z
j
i−1 −Z

j−1
i−1

)

+σ
j−2

∑
q=0

ϕα
j,q

[

Z
q+1
i−1 −Z

q
i−1

]

+ρ
j

i−1

(

Z
j
i−1

)

,

S
j
i = σ

(

Z
j
i −Z

j−1
i

)

+σ
j−2

∑
q=0

ϕα
j,q

[

Z
q+1
i −Z

q
i

]

+ρ
j

i

(

Z
j
i

)

, (38)
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S
j
i+1 = σ

(

Z
j
i+1 −Z

j−1
i+1

)

+σ
j−2

∑
q=0

ϕα
j,q

[

Z
q+1
i+1 −Z

q
i+1

]

+ρ j
i+1

(

Z
j
i+1

)

,

where ρ j
i = η

(

1− (Z j
i )

δ
)(

(Z j
i )

δ −λ
)

. Using (16) in Equation (31), we get the following system

AiZ
1
i−1 +BiZ

1
i +CiZ

1
i+1 = A∗

i Z0
i−1 +B∗

i Z0
i +C∗

i Z0
i+1, (39)

and

AiZ
j
i−1 +BiZ

j
i +CiZ

j
i+1 = A∗

i Z
j−1
i−1 +B∗

i Z
j−1
i +C∗

i Z
j−1
i+1 + µ j

i , i = 1,2, ...,N and j = 1,2, ..., (40)

where

Ai = σ − γ +σγρ
j

i−1, A∗
i =−γ,

Bi =−2σ −β +σβ ρ j
i , B∗

i =−β ,

Ci = σ − γ +σγρ
j

i−1, C∗
i =−γ,

and

µ j
i = σγ

j−2

∑
q=0

ϕα
j,q

[

Z
q+1
i−1 −Z

q
i−1

]

+σβ
j−2

∑
q=0

ϕα
j,q

[

Z
q+1
i −Z

q
i

]

+σγ
j−2

∑
q=0

ϕα
j,q

[

Z
q+1
i+1 −Z

q
i+1

]

, j ≥ 2.

Or

µ
j

i = σ
j−2

∑
q=0

ϕα
j,q

(

γZ
q+1
i−1 +β Z

q+1
i + γZ

q+1
i+1

)

−σ
j−2

∑
q=0

ϕα
j,q

(

γZ
q
i−1 +β Z

q
i + γZ

q
i+1

)

, j ≥ 2. (41)

System (41) represents of N equations on unspecified variables Zi, i = 0, ...,N+1. Toget a system solution, one needs
2-more equations. Such equations are obtained when applying conditions in (24)

Remarks In order to cope with the nonlinear terms in (41), we follow the following steps:
1- At j = 1, we approximate ρ1

i by ρ1&
i obtained from Z0

i and get a first approximation to Z1
i . Hence, we get δ 1

i from

Z1
i to refine the approximation to Z1

i .

2- At j = m, we approximate ρm
i by remarks ρm&

i obtained from Zm−1
i and get a first approximation to Zm

i . Now, we
calculate δ m

i from Zm
i to refine the approximation to Zm

i .

4 Stability Analysis of the Proposed Numerical Method

In this section, the Von-Neumann concept is applied to study the stability analysis of the suggested scheme. To carry

out this, we linearise the nonlinear term u(1− uδ )(uδ − λ ) of Huxley equation (8) by making the quantity Ψ (u) =

u(1−uδ )(uδ −λ ) a locally constant which is equivalent to assuming values ρi+1,ρi and ρi−1 are equal to a local constant
d∗ in difference equation (41). According to the Von Neumann method, we have [6]

Z
j
i = ζ j exp(qϕ ih) , (42)

with ϕ is the mode number, q =
√
−1, h is element size and ζ is the amplification factor. Substituting Equation (42) into

Equation (40), we obtain

ζ j+1 {Ai exp((i− 1)qϕh)+Bi exp(iqϕh)+Ci exp((i+ 1)qϕh)}=
ζ j {A∗

i exp((i− 1)qϕh)+B∗
i exp(iqϕh)+C∗

i exp((i+ 1)qϕh)} , (43)

where

Ai = σ − γ +σγρ
j

i−1, A∗
i =−γ,
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Bi =−2σ −β +σβ ρ j
i , B∗

i =−β ,

Ci = σ − γ +σγρ j
i−1, C∗

i =−γ.

After simple calculations, Equation (43) becomes

ζ =
A∗

i exp(−qφ)+B∗
i +C∗

i exp(qφ)

Ai exp(−qφ)+Bi+Ci exp(qφ)
, (44)

where φ = ϕh. Using Euler’s formula, that is exp[qφ ] = cosφ + qsinφ , Equation (44) can be rewritten in the form

ζ =
(C∗

i +A∗
i )cosφ +B∗

i + q(C∗
i −A∗

i )sinφ

(Ci +Ai)cosφ +Bi + q(Ci −Ai)sinφ
, (45)

which can be rewritten as

ζ =
(−2γ)cosφ +(−β )

(2σ − 2γ + 2σγd∗)cosφ +(−2σ −β +σβ d∗)
,

or

ζ =
−(β + 2γ cosφ)

−2σ (1− cosφ)− (β + 2γ cosφ)+σd∗ (β + 2γ cosφ)
.

After slight rearrangement, this equation becomes

ζ =
(β + 2γ cosφ)

(β + 2γ cosφ)+ 2σ (1− cosφ)− d∗ (σβ + 2σγ cosφ)
.

If we take β > 0 and γ > 0 such that β > 2γ but (1− cosφ) is non-negative then we will be sure that β + 2γ cosφ > 0 .
If choosing σ , γ and β small enough to make d∗ (σβ + 2σγ cosφ)→ 0 then, the last equation is close to

ζ =
(β + 2γ cosφ)

(β + 2γ cosφ)+ 2σ (1− cosφ)
.

For stability, we must have |ζ | ≤ 1 (otherwise ζ j in (42) would grow in an unbounded manner). This condition is satisfied
for β > 0, γ > 0 and β > 2γ . Finally, we can say that our system is stable for β > 0, γ > 0 and β > 2γ such that σ , γ and
β are chosen to be small enough such that σ depends on α → 1.

5 Numerical Results

Here, using the method presented above by applying it to the generalised Huxley Equation (23), we present the numerical
results obtained. The exact solution of this equation is of the form

u(x, t) =

{

λ

2
+

λ

2
tanh

[

δλ

2

√

η

(1+ δ )

(

x− 1+ δ −λ

1+ δ

√

(1+ δ )
tα

Γ (1+α)

)]}1/δ

, a ≤ x ≤ b, t ≥ 0,

where λ and δ are parameters, δ > 0,λ ∈ (0,1). Using the following conditions

u(x,0) =

{

λ

2
+

λ

2
tanh

[

δλ

2

√

1

(1+ δ )
x

]}1/δ

,

u(0, t) =

{

λ

2
+

λ

2
tanh

[

δλ

2

√

1

(1+ δ )

(

−1+ δ −λ

1+ δ

√

(1+ δ )
tα

Γ (1+α)

)

]}1/δ

,

u(1, t) =

{

λ

2
+

λ

2
tanh

[

δλ

2

√

1

(1+ δ )

(

1− 1+ δ −λ

1+ δ

√

(1+ δ )
tα

Γ (1+α)

)

]}1/δ

,
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Table 1: ∆ t = 0.005,h = 0.025, λ = 0.1, γ = h2/12, and β = h2 −2γ ,α = 0.5

Time 2.00 2.5 3.00 3.5

L∞ −error 2.3199×10−5 2.37462×10−5 2.37462×10−5 2.413868−5

Table 2: ∆ t = 0.005,h = 0.025, γ = 0.1, α = h2/12, and β = h2 −2γ ,α = 0.7

Time 2.00 2.5 3.00 3.5

L∞ −error 2.28919×10−6 2.34831×10−6 2.3905×10−6 2.42073−6

Table 3: ∆ t = 0.005,h = 0.025, λ = 0.1, γ = h2/12, and β = h2 −2γ ,α = 0.9

Time 2.00 2.5 3.00 3.5

L∞ −error 1.63149×10−7 1.692×10−7 1.7371×10−7 1.77103−7

Table 4: ∆ t = 0.005,h = 0.025, γ = 0.1, α = h2/12, and β = h2 −2γ ,α = 1

Time 2.00 2.5 3.00 3.5

L∞ −error 7.40148×10−8 7.376×10−8 7.34161×10−8 7.29844−8

where a = 0 and b = 1. Accuracy between the analytic and numerical solutions at each mesh point is measured by
computing the absolute error, then compute the L∞ - error norm. The numerical results are summarized in the following
tables for ∆x = 0.025 and δ = 1 . The numerical results for λ = 0.1 are presented in Tables (5.1-5.6).

Table 5: t = 3.7,∆ t = 0.005, λ = 0.1, γ = h2/12,β = h2 −2γ , and α = 0.5

x Numerical Solution Analytic Solution

0.0 0.041377294947890371 0.041377294947890374

0.1 0.04154302242954488 0.0415536570733319

0.2 0.04171042542357709 0.041727794914301106

0.3 0.04187949977788283 0.0419012287026391

0.4 0.04205024186321015 0.042074273460570896

05 0.04222264856776379 0.04224707575652421

0.6 0.042396717290171554 0.04241971985128984

07 0.042572445930789016 0.04259225983232278

0.8 0.04274983288132666 0.042764732840558

0.9 0.042928877012791196 0.042937165539863355

1.0 0.0431095776617424143 0.0431095776617424142

Table 6: t = 3.7,∆ t = 0.005, λ = 0.1, γ = h2/12,β = h2 −2γ , and α = 0.9

x Numerical Solution Exact Solution

0.0 0.04130262685316931 0.04130262685316924

0.1 0.041474124464810726 0.04147420624927227

0.2 0.04164583842893575 0.04164596887606904

0.3 0.041817764808917364 0.041817925573029824

0.4 0.041989899654741314 0.041989075522075225

0.5 0.04216223900333557 0.04216241624011511

0.6 0.04233477887888606 0.042334944614419806

0.7 0.042507515293137774 0.042507657217380035

0.8 0.04268044424568129 0.0426805504365799

0.9 0.042853561724224394 0.042853620538718176

1.0 0.0430268637048488622 0.0430268637048488632
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Fig. 1: illustrates the behavior of the exact and numerical solution at α = 0.5 for t = 3.7, ∆ t = 0.005, λ = 0.1,h = 0.025,γ = h2

12

and β = h2 −2γ

Fig. 2: illustrates the behavior of the exact and numerical solution at α = 0.9 for t = 3.7, ∆ t = 0.005, λ = 0.1,h = 0.025,γ = h2

12

and β = h2 −2γ
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6 Conclusion

In this paper, the tanh-function method is successfully used to obtain multiple traveling wave solutions to the problem
under consideration. Also, new numerical method for solving the generalized nonlinear Huxley equation with fractional
time derivative based on non-polynomial splines was proposed. Applying the Von-Neumann stability analysis, the
developed method conditionally stable. The obtained approximate numerical solutions maintained good accuracy
compared with the exact solutions at α → 1.
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