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Abstract: We present a technique for improving the accuracy of a given multistep method. We first propose a new formulation of the
0-method providing a general framework for studying stability and allowing to select the appropriate values of the parameter 6 that
increase the order of accuracy. The idea is followed through to generate optimal linear multistep methods.
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1. Introduction

Consider the linear k-step method
p(BYU™ = Ato(B)f" (1)

for solving the first-order initial-value problem

du = f(uvt)a

- _,,0

where p(£) and o(€) are the characteristic polynomials
pO= o o= B¢
3=0 3=0

and I is the shift operator defined by
EU" =U"

In (1), U™ is the numerical solution at time level ¢,, =
nAt, At is the time step, and f* = f(U™,t,). The coef-
ficients «v,, and 3, are real constants with «x, # 0, and not
both g and 3 are zero. It is conventional to normalize (1)
by letting a; = 1. When S5 = 0, the method is said to be
explicit; otherwise it is implicit. The local truncation error
of the method at time ¢, is given by

k

k
1
e(tntr) = 5 > ajultnsg) — At Biu ()
=0

=0
3

If w is sufficiently smooth, then Taylor series expansions
about t = t,, yield after collecting terms

1
G(tn+k) = E [C()u(tn) + ClAtu'(tn) @
+Co AU (1) + - - -+ CpAPuP) (£,) + -+ |

where C), are constants given by

k
C(): E aj,
j=0

k
Cr = Z(jaj - Bj),
=0
b1 5
Cr=3 <2J2%‘ - Jﬂj) » ®
=0

. k
1. 1 iy
Co= 3 (e G ') s =

Jj=0

We verify that Cy = p(1) and C; = p/(1) — o(1), so
consistency is expressed by the relations:

p(1)=0 and  p'(1)=0o(1). (6)
We say that (1) has order p and error constant C, 1 if, in
4),Co=Cy=-=Cp=0,Cpss £0.

A linear multistep method is said to be zero-stable if
the roots of the characteristic polynomial p satisfy the root
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condition; that is, they reside in the closed unit disk and
any of unit modulus is simple. The absolute stability of a
linear multistep method is analyzed by applying it to the
linear test equation

du

— = A 7

7 u, @)
where A is a complex number. The region of absolute sta-

bility of (1) is the set of all A = AAt in the complex plane
for which the roots of the characteristic equation

p(&) ~ ha(&) =0

satisfy the root condition.

The simplest numerical methods for solving the initial-
value problem (2) are the forward and backward Euler
methods given by

Un+1 _U" = Atfn and Un+1 _U" = Atfn+17 (8)
respectively. Both methods are first-order accurate. The so-
called #-method for solving (2) is regarded as a weighted

average method obtained by taking the weighted average
of the two formulas [9],

Untl —un = A0+ (1 - 0)f), 9)

where 0 < 6 < 1. Formula (9) can be interpreted geomet-
rically: the slope of the solution is assumed to be piecewise
constant and is provided by a linear combination of deriva-
tives at the endpoints of each time interval [6].

The local truncation error of (9) is given by

€(tnsr) = At (; _ 9) o (k) (10)
Az (L2 an) + ocar
+ 6 2)¢ (tn) +O(AL").

Forward and backward Euler methods correspond to the
choices of 8 = 0 and § = 1 in (9), respectively, while
the choice § = 1/2 yields the trapezoidal rule which is
second-order accurate.

Based on a new interpretation of the #-method, we
show that, for a given linear multistep method of order p, it
is possible to construct another linear multistep method of
order p + 1, using a parameter #. The main result is stated
in Theorem 1.

The rest of the paper is organized as follows. In Sec-
tion 2, we investigate a new formulation of the §-method
providing a general framework for studying stability and
allowing to select the appropriate values of the parameter
6 that increase the order of accuracy. This idea is followed
through in Section 3 to gererate modified linear multistep
methods with improved properties. The case of second-
order methods is treated similarly in Section 4.

2. General formulation of the -method

We now introduce the parameterized multistep method
p(EYU"™ = Ato(E) ™ + 0Atp(E) 7, (11)

where the parameter 6 is nonnegative. The method is ob-
tained by adding the term 0 Atp(E)f™ to the right-hand
side of (1). Formula (9) can be rearranged in the following
form

Ut U™ = Atf™ + 0AL(f" T — ),

and hence it fits the general pattern (11) with p(§) = £ —
1 and o(§) = 1. The simple geometric intuition is now
replaced by a general and formal approach.

Properties of the new method (11) are given in the fol-
lowing propositions. We shall assume throughout the pa-
per that the original method (1) is consistent and zero-
stable.

Proposition 1 There holds

(i) The method (11) preserves consistency and zero-stability

properties for all values of 0 > 0.

(ii) There is a unique value 6* of 0 for which the method
(11) is at least second-order accurate. The method is
first-order accurate otherwise.

Proof. (i) We have p'(1) = o(1) + 0p(1) since p(1) =
0. Hence, the consistency conditions (6) are satisfied. The
zero-stability of the method is clear.

(i1) The method (11) is at least second-order accurate if
the parameter 6 is selected so that the coefficient C in the

local truncation error of (11) is zero; that is, if
1
5[0 () + 9 (V)] = /(1) ~ 6/ (1) = 0.

Since p’(1) cannot vanish (£ = 1 cannot be a repeated root
of p), solving the previous equation for 6 yields

35[0 (1) +p'(1D)] —o'(1)
p'(1)

If 6 # 6%, then Cy # 0 and the method is only first-order
accurate.

0" =

Next, we investigate the stability of (11). A numeri-
cal method is said to be A-stable if its region of abso-
lute stability contains the left half-plane Re(AA¢) < 0.
The A-stability property is often desirable for stiff ODE
problems. Dahlquist [4] has proved that any A-stable lin-
ear multistep method has order of accuracy p < 2. On the
other hand, Cryer [3] has proved there exist A(0)-stable
linear multistep methods of arbitrary high order. Since the
eigenvalues associated with parabolic problems are real
and negative, the application of an A(0)-stable method
yields an unconditionally stable scheme, that is, no stabil-
ity restriction on the size of At can result (see, e.g., Chap-
ter 5 in [5]). We have the following stability result.
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Proposition 2 There holds

(i) If the interval of absolute stability of (1) is the in-
terval [—w, 0], where w > 0 is a real number, then the
method (11) is A(0)-stable if > w™1, and its interval
of absolute stability reduces to [—we,0] if § < w1,

where
w

16w
(ii) If the region of absolute stability of (1) contains the

disk {h € C, |h + a| < a}, where a > 0 is a real
number, then (11) is A-stable if 20 > a=*.

We

Proof. The region of absolute stability of (11) is the set of
all h = AAt in the complex plane for which all the roots £
of the characteristic equation

p(&) = h(a(€) + p(€)) =0

satisfy the root condition. We rearrange this equation in

the form B
p(§) —¥(h)a(§) =0,

where ¥ is the one-to-one mapping defined by

- h
U(h) = =,
(h) 1—-06h

12)

We denote by C~ the left half complex plane Re(h) <
0. To prove the proposition, we shall first determine the
images of (—o0,0] and C~ by the mapping ¥. We first
notice that ¥ maps the interval (—oo, 0] into (—1/6,0].
The method is then A(0)-stable if (—1/6,0] is a subset of
[—w, 0]. This holds when § > w™ . If § < w1, then one
can verify that ¥ maps the interval [—wy, 0] into [—w, 0],
where the value of wy is given in the proposition.

For the second part of the proposition, one can verify
that ¥ maps the whole set C™~ into the set

- 1 1 1
[ P QD S
Tog| = 29} \ { 9}
The set S* is the closed disk of center —1/(26) and radius

1/(26) from which the point —1/6 is excluded. Indeed, we
have

S*_{EG(C,

h 1 1+4+6h 1 1
—_— = — = <=
1—0h 26 1—0h 20| — 26
since N
1+6h)
1—0h|—

if Re(h) < 0. The method (11) is A-stable if S* is a sub-
set of the region of absolute stability of (1). If this latter
contains the disk mentioned in the proposition, then (11)
is A-stable when 20 > a~1.

The stability region of the forward Euler method con-
sists of the closed disk of center —1 and radius 1. By the
proposition, the method (9) is A-stable when 6 > 1/2,
and its interval of absolute stability reduces to the interval

[-2(1 — 20)~%,0] when 6§ < 1/2. The case § = 1/2 is
particularly interesting because it allows the method to be
both second-order accurate and A-stable.

We finally notice that if (1) is implicit, then we can
rearrange it in the following form

p(E)U" = Atlo(E)=Pep(E)f" +Be Atp(E) [, (13)

where the polynomial o — [y p is at least one degree lower
than p. This new form of (1) is useful for the approximate
factorization of some parabolic problems, see [2,7].

3. Highly accurate methods

The results in Proposition 1 are not affected when p(E) in
(11) is replaced by (E — 1), since we have only used the
properties that p(1) = 0 and p’(1) # 0. The disadvantage
of choosing p(FE) in (11) is that if (1) is second-order ac-
curate, then (11) is first-order accurate for any 6 # 0. We
notice that if p’(1) = 0, then second-order accuracy is pre-
served with any value of 6, and there is a unique value of 0
that makes C3 = 0, thus producing a third-order accurate
method. Assuming p’(1) = 0 is of course not possible for
stability reason. An alternative would be to add a term of
the form §(E — 1)? to the left-hand side of (1). This has
the advantage of preserving both second-order accuracy
and zero-stability. Furthermore, there is a specific value of
0 for which the resulting method is third-order accurate.
The following theorem presents this idea is a more general
form. It provides a technique for generating higher-order
methods. The novelty in this theorem is the relationship
between ¢ and the coefficient Cj ;. In the theorem ¢,, is a
polynomial of degree p given by ¢, (&) = (£ — 1).
Theorem 1 Assume that the linear k-step method (1) has
order p and error constant Cpy . Consider the following
linear multistep method

Ep(E)U™ = AtE o (E)f" + 0At¢,(E) ™, (14)

where v = max{0,p — k}. Then, there is a unique value
of 6, 8* = Cpy1, for which the method (14) is at least of
order p + 1. The method is of order p otherwise.

Proof. The local truncation error of the pth order method
(1) at time ¢,,4 is of the form

€(tnsk) = Cpr APy PHD (1) £ O(APT2). (15)
The local truncation error of the (k + v/)-step method
EYp(E\U"™ = AtEVo(E) f",
can be written in the same form at time ¢, x+,. On the

other hand, we notice that since gbl()m)(l) = 0form =
0,...,p— 1, we have that

p(B)u(tn) = $¢§ap)(1)ﬂtpu(p+1)(t7,,) +O(AP)

= AtPuPTY (1) + O(APT).

As a result, the method (14) is at least of order p + 1 if
0 = Cp+1, and of order p otherwise.
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We remark that if p < k and k& is odd, a recursive appli-
cation of (14) with optimal values of € leads to an optimal
multistep method.

Other methods for generating higher-order linear mul-
tistep methods, based on damping the leading error, can be
found in the literature, see for instance [1,5]. One of these
methods is the so-called deferred correction. The idea of
this method is to start out with a computed low-order so-
lution, and then raise the accuracy one or two levels by
using this one for estimating the leading error. This proce-
dure can then be continued to any order of accuracy. The
implementation of the method is quite easy, and has the ad-
vantage that the properties of the basic low-order method,
to a large extend, characterizes the whole algorithm, see
[5] for further details.

As a first application of Theorem 1, consider the mid-
point method

Un+2 _U" = QAtfnJrl,

for which C's = 1/3. According to the thereom, the method
U71,+2 _ Un — 2Atfn+1 + ﬁ(fn—&-Q _ 2fn+1 4 fn)
3

is at least third-order accurate. This formula is indeed the
Simpson rule. The method is symmetric and so fourth-
order accurate. Many other examples can be given. For
instance, the 2-step Adams-Bashforth method

At
Un+2 o Un+1 _ ?(3fn+1 o fn)

is second-order accurate and has the error constant C3 =
5/12. By Theorem 1, the method

At

Un+2 o Un+1 _ 7(?)fn-'rl _ fn)
)
_’_EAt(fn-‘rQ _ 2fn+1 + fn)
At

= TGI8 — g

is at least third-order accurate. This is the 2-step Adams-
Moulton method. The 3-step Adams-Bashforth method

At

Un+3 _ Un+2 _ ﬁ(23fn-i-2 _ 16fn+1 + 5fn)
is third-order accurate with Cy = 3/8. Hence, the im-
proved method
At

UnJrS o Un+2 _ 172(23.](~77,Jr2 o 16fn+1 + 5fn)

3 ‘
+§At(f”+3 —3fnt2 g gpmtl

t n n

— 24(9fn+3+19fﬂ+2_5f +1+f )

is at least fourth-order accurate. This is the 3-step Adams-
Moulton method. It can shown that all the Adams-Moulton

methods can be obtained from the Adams-Bashforth meth-
ods using (14). The relationship between Adams meth-
ods has also another interpretation based on the original
derivation of the methods using interpolating polynomials.
The next example concerns the trapezoidal rule for which
v = 1 in Theorem 1. Substituting # = 1/2 in (10) yields
C3 = —1/12. As aresult, the method
At

Un+2 _ Un+1 —_ 7(fn—‘,-Q + fn+1)

A 2 g )

is at least third-order accurate. One can verify that this
is exactly the third-order Adams-Moulton method found
previously. Repeating this process generates higher-order
Adams-Moulton methods.

The last example concerns the BDF2 formula

4 1 2

U7L+2 _ 7U7L+1 UM = 2 At n+2
3 + 3 3 /

having the error constant C3 = —2/9. If we consider the

parametrized multistep method

4 1
n+2 _ Trmnm+l 1
U 3U + 3U
2
— gAtfn” + OAL(frT2 —2fntl 4y,

then, by Theorem 1, the choice # = —2/9 yields a method
which is at least third-order accurate.

The previous examples show that (14) provides an effi-
cient tool for the derivation of multistep methods. Starting
from a simple and low-order method one can use (14) to
generate a higher-order method. Formula (14) is not re-
stricted to linear multistep methods. It can be applied to
any numerical method having a local truncation error of
the form given by (15).

Consider now the implicit k-step method

p(EYU" = Ate(E) " (16)

of order p and assuming for simplicity that p < k& 4+ 1. We
can rearrange (16) in the following form

p(EYU" = Ato(E) f" + BrAtop11(E) f,

where 0(§) = (&) — Brdp(§). Then, we can verify that
the method
p(E)U™ = Ato(E) " (17)

is explicit and of order p — 1. Indeed, [, is the error con-
tant of (17). Formulas (16) and (17) can be combined to
produce a predictor-corrector method, where (17) is the
predictor and (16) the corrector. Let Untk* pe the pre-
dicted approximation from (17) and U"** the corrected
approximation from (16). Then it is easy to verify that the
corrector method can be written in the following form

Untk = gnthe g At f(UTR) (18)
+BxAtgp 1 (E) [,
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where ¢, _1(&) = (€—1)P~1 —¢P~1 From Milne’s device,
we deduce that the predictor-corrector method is of order
p; that is, of the same order than the corrector. It is inter-
esting to notice that the corrector method (18) does not in-
volve any characteristic polynomial. For instance, we will
have this form when the predictor is an Adams-Bashforth
method of order p — 1, and the corrector is an Adams-
Moulton method of order p.

We now extend some of the previous results to second-
order ordinary differential equations.

4. Methods for second-order ODEs

A linear k-step method for solving the following second-
order initial value problem

d*u 0 du 0
o flu,t), u(0) =u”, E(O) =v", (19)
is defined by the difference equation
p(E)U" = At*0(E) f", (20)

where the polynomials p and o are previously defined.
We normalize (20) by setting a, = 1. Consistency is ex-
pressed by the relations

p(L)=p'(1)=0,  p'(1)=

Explicit methods are still popular for solving second-order
ODEs. The method

20(1).

Ut —2untt 4 UM = AP @1

is the most popular and is known as the leapfrog method.
A more general method is given by the formula

U’n+2_ 2 UnJrl 4 Un
= AP0+ (L =20) "+ 6f"),
where 6 is a parameter to be selected in [0, 1/2]. The method

has been considered for instance in [8]. It reduces to (21)
when 6 = 0, and can be rearranged in the form

U7L+2_ 2 Un+1 4 Un
_ Athn—I—l + eAtQ(fn-i-Q _ 2fn+1 4 fn).

Thus, it can be viewed as a special case of the generalized
f-method

p(EYU" = At?o(E)f" 4+ 0 A p(E) f. (22)
Properties of (22) are summarized in the following propo-
sition whose proof is similar to that of Proposition 1.

Proposition 3 There holds

(i) The method (22) preserves consistency and zero-stability
properties for all values of 6.

(ii) There is a unique value 6% of 0 for which (22) is at
least third-order accurate. The method is second-order
accurate otherwise.

(iii) If the interval of absolute stability of (20) is the in-
terval [—w,0] (w > 0), then (22) is A(0)-stable if

0 > w™!, and its interval of absolute stability reduces

to [—wp, 0] if § < w1, where

o w
C1—-6w’
The interval of absolute stability of the leapfrog method
(21) is the interval [—4,0]. We deduce from proposition
that (22) is A(0)-stable if 6 € [1/4,1/2], and its inter-
val of absolute stability reduces to [—4(1 — 40)~1,0] if
0 < 6 < 1/4. The optimal value 0* = C5 = 1/12
generates a fourth-order accurate method known as the
Numerov method, having the interval of absolute stability
[—6,0].

A general class of time discretization methods well-
known in the engineering literature is given by the so-
called Newmark method [10]. When applied to (19), it
reads

Un+2_ ) Un+1 +Un
1
= A? {91‘“2 + <2 - 260 + 7> frt

1 n
(oe-)r]

where 6 > 0 and v > 0 are free parameters. Based on
our previous analysis, we can easily determine its order of
accuracy. Indeed, we first rearrange the method in the form

Un+2_ ) Un+1 +Un
— At2fn+1 + 9At2(fn+2 _ 2fn+l + fn)

+(v-g) argmee .

we

(23)

or,

p(EYU™ = At*a(E)f" 4+ 0 A p(E) f™
(o= 2) s
where p(¢§) = (£ —1)%, 0(§) = Eand n(§) = (£ — 1).

Therefore, we conclude that the Newmark method (23) is
oforderp = 1ify=1/2,p=4ify#1/2and 6 = 1/12,
and p = 2 otherwise.

To study the stability of the method, we rearrange it in
the form

p(EYU™ = APK(E) " + A8 p(E) ",

w(€) = (V+;)§(7;)-

A simple test of stability shows that the method
p(E)U™ = At*k(E) f"

where

(24)

has the interval of absolute stability [—2/+, 0] when v >
1/2, but has no interval of absolutely stable when y < 1/2.
Now, by applying the results in Proposition 3 to (24) using
w = 2/~, we obtain
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Proposition 4 The Newmark method (23) is A(0)-stable if
20 > v > 1/2 and its interval of absolute stability reduces
to [—2/(y — 26),0] when 20 < v and v > 1/2.

5. Conclusion

We presented a procedure for improving the accuracy of a
given multistep method. Improving accuracy may in gen-
eral reduce stability. It is then desirable to adjust the pro-
cedure in order to construct methods that combine a high
order with certain specific stability requirements.
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