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Abstract: We present a technique for improving the accuracy of a given multistep method. We first propose a new formulation of the
θ-method providing a general framework for studying stability and allowing to select the appropriate values of the parameter θ that
increase the order of accuracy. The idea is followed through to generate optimal linear multistep methods.
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1. Introduction

Consider the linear k-step method

ρ(E)Un = ∆tσ(E)fn (1)

for solving the first-order initial-value problem

du

dt
= f(u, t), u(0) = u0, (2)

where ρ(ξ) and σ(ξ) are the characteristic polynomials

ρ(ξ) =
k∑

j=0

αjξ
j , σ(ξ) =

k∑
j=0

βjξ
j ,

and E is the shift operator defined by

EUn = Un+1.

In (1), Un is the numerical solution at time level tn =
n∆t, ∆t is the time step, and fn = f(Un, tn). The coef-
ficients αn and βn are real constants with αk ̸= 0, and not
both α0 and β0 are zero. It is conventional to normalize (1)
by letting αk = 1. When βk = 0, the method is said to be
explicit; otherwise it is implicit. The local truncation error
of the method at time tn+k is given by

ϵ(tn+k) =
1

∆t

 k∑
j=0

αju(tn+j)−∆t
k∑

j=0

βju
′(tn+j)

 .

(3)

If u is sufficiently smooth, then Taylor series expansions
about t = tn yield after collecting terms

ϵ(tn+k) =
1

∆t
[C0u(tn) + C1∆tu′(tn) (4)

+C2∆t2u′′(tn) + · · ·+ Cp∆tpu(p)(tn) + · · ·
]
,

where Cp are constants given by

C0 =
k∑

j=0

αj ,

C1 =
k∑

j=0

(jαj − βj),

C2 =

k∑
j=0

(
1

2
j2αj − jβj

)
,

...

Cp =
k∑

j=0

(
1

p!
jpαj −

1

(p− 1)!
jp−1βj

)
, p = 3, 4, · · · .

(5)

We verify that C0 = ρ(1) and C1 = ρ′(1) − σ(1), so
consistency is expressed by the relations:

ρ(1) = 0 and ρ′(1) = σ(1). (6)

We say that (1) has order p and error constant Cp+1 if, in
(4), C0 = C1 = · · · = Cp = 0, Cp+1 ̸= 0.

A linear multistep method is said to be zero-stable if
the roots of the characteristic polynomial ρ satisfy the root
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condition; that is, they reside in the closed unit disk and
any of unit modulus is simple. The absolute stability of a
linear multistep method is analyzed by applying it to the
linear test equation

du

dt
= λu, (7)

where λ is a complex number. The region of absolute sta-
bility of (1) is the set of all h̄ = λ∆t in the complex plane
for which the roots of the characteristic equation

ρ(ξ)− h̄σ(ξ) = 0

satisfy the root condition.
The simplest numerical methods for solving the initial-

value problem (2) are the forward and backward Euler
methods given by

Un+1−Un = ∆tfn and Un+1−Un = ∆tfn+1, (8)

respectively. Both methods are first-order accurate. The so-
called θ-method for solving (2) is regarded as a weighted
average method obtained by taking the weighted average
of the two formulas [9],

Un+1 − Un = ∆t(θfn+1 + (1− θ)fn), (9)

where 0 ≤ θ ≤ 1. Formula (9) can be interpreted geomet-
rically: the slope of the solution is assumed to be piecewise
constant and is provided by a linear combination of deriva-
tives at the endpoints of each time interval [6].

The local truncation error of (9) is given by

ϵ(tn+1) = ∆t

(
1

2
− θ

)
u′′(tn) (10)

+∆t2
(
1

6
− θ

2

)
u′′′(tn) +O(∆t3).

Forward and backward Euler methods correspond to the
choices of θ = 0 and θ = 1 in (9), respectively, while
the choice θ = 1/2 yields the trapezoidal rule which is
second-order accurate.

Based on a new interpretation of the θ-method, we
show that, for a given linear multistep method of order p, it
is possible to construct another linear multistep method of
order p+ 1, using a parameter θ. The main result is stated
in Theorem 1.

The rest of the paper is organized as follows. In Sec-
tion 2, we investigate a new formulation of the θ-method
providing a general framework for studying stability and
allowing to select the appropriate values of the parameter
θ that increase the order of accuracy. This idea is followed
through in Section 3 to gererate modified linear multistep
methods with improved properties. The case of second-
order methods is treated similarly in Section 4.

2. General formulation of the θ-method

We now introduce the parameterized multistep method

ρ(E)Un = ∆tσ(E)fn + θ∆tρ(E)fn, (11)

where the parameter θ is nonnegative. The method is ob-
tained by adding the term θ∆tρ(E)fn to the right-hand
side of (1). Formula (9) can be rearranged in the following
form

Un+1 − Un = ∆tfn + θ∆t(fn+1 − fn),

and hence it fits the general pattern (11) with ρ(ξ) = ξ −
1 and σ(ξ) = 1. The simple geometric intuition is now
replaced by a general and formal approach.

Properties of the new method (11) are given in the fol-
lowing propositions. We shall assume throughout the pa-
per that the original method (1) is consistent and zero-
stable.

Proposition 1 There holds

(i) The method (11) preserves consistency and zero-stability
properties for all values of θ ≥ 0.

(ii) There is a unique value θ∗ of θ for which the method
(11) is at least second-order accurate. The method is
first-order accurate otherwise.

Proof. (i) We have ρ′(1) = σ(1) + θρ(1) since ρ(1) =
0. Hence, the consistency conditions (6) are satisfied. The
zero-stability of the method is clear.
(ii) The method (11) is at least second-order accurate if
the parameter θ is selected so that the coefficient C2 in the
local truncation error of (11) is zero; that is, if

1

2
[ρ′′(1) + ρ′(1)]− σ′(1)− θρ′(1) = 0.

Since ρ′(1) cannot vanish (ξ = 1 cannot be a repeated root
of ρ), solving the previous equation for θ yields

θ∗ =
1
2 [ρ

′′(1) + ρ′(1)]− σ′(1)

ρ′(1)
.

If θ ̸= θ∗, then C2 ̸= 0 and the method is only first-order
accurate.

Next, we investigate the stability of (11). A numeri-
cal method is said to be A-stable if its region of abso-
lute stability contains the left half-plane Re(λ∆t) ≤ 0.
The A-stability property is often desirable for stiff ODE
problems. Dahlquist [4] has proved that any A-stable lin-
ear multistep method has order of accuracy p ≤ 2. On the
other hand, Cryer [3] has proved there exist A(0)-stable
linear multistep methods of arbitrary high order. Since the
eigenvalues associated with parabolic problems are real
and negative, the application of an A(0)-stable method
yields an unconditionally stable scheme, that is, no stabil-
ity restriction on the size of ∆t can result (see, e.g., Chap-
ter 5 in [5]). We have the following stability result.
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Proposition 2 There holds

(i) If the interval of absolute stability of (1) is the in-
terval [−w, 0], where w > 0 is a real number, then the
method (11) is A(0)-stable if θ ≥ w−1, and its interval
of absolute stability reduces to [−wθ, 0] if θ < w−1,
where

wθ =
w

1− θw
.

(ii) If the region of absolute stability of (1) contains the
disk {h̄ ∈ C, |h̄ + a| ≤ a}, where a > 0 is a real
number, then (11) is A-stable if 2θ ≥ a−1.

Proof. The region of absolute stability of (11) is the set of
all h̄ = λ∆t in the complex plane for which all the roots ξ
of the characteristic equation

ρ(ξ)− h̄(σ(ξ) + θρ(ξ)) = 0

satisfy the root condition. We rearrange this equation in
the form

ρ(ξ)− Ψ(h̄)σ(ξ) = 0,

where Ψ is the one-to-one mapping defined by

Ψ(h̄) =
h̄

1− θh̄
. (12)

We denote by C− the left half complex plane Re(h̄) ≤
0. To prove the proposition, we shall first determine the
images of (−∞, 0] and C− by the mapping Ψ . We first
notice that Ψ maps the interval (−∞, 0] into (−1/θ, 0].
The method is then A(0)-stable if (−1/θ, 0] is a subset of
[−w, 0]. This holds when θ ≥ w−1. If θ < w−1, then one
can verify that Ψ maps the interval [−wθ, 0] into [−w, 0],
where the value of wθ is given in the proposition.

For the second part of the proposition, one can verify
that Ψ maps the whole set C− into the set

S∗ =

{
h̄ ∈ C,

∣∣∣∣h̄+
1

2θ

∣∣∣∣ ≤ 1

2θ

}
\
{
−1

θ

}
.

The set S∗ is the closed disk of center −1/(2θ) and radius
1/(2θ) from which the point −1/θ is excluded. Indeed, we
have ∣∣∣∣ h̄

1− θh̄
+

1

2θ

∣∣∣∣ = ∣∣∣∣1 + θh̄

1− θh̄

1

2θ

∣∣∣∣ ≤ 1

2θ

since ∣∣∣∣1 + θh̄

1− θh̄

∣∣∣∣ ≤ 1

if Re(h̄) ≤ 0. The method (11) is A-stable if S∗ is a sub-
set of the region of absolute stability of (1). If this latter
contains the disk mentioned in the proposition, then (11)
is A-stable when 2θ ≥ a−1.

The stability region of the forward Euler method con-
sists of the closed disk of center −1 and radius 1. By the
proposition, the method (9) is A-stable when θ ≥ 1/2,
and its interval of absolute stability reduces to the interval

[−2(1 − 2θ)−1, 0] when θ < 1/2. The case θ = 1/2 is
particularly interesting because it allows the method to be
both second-order accurate and A-stable.

We finally notice that if (1) is implicit, then we can
rearrange it in the following form

ρ(E)Un = ∆t[σ(E)−βkρ(E)]fn+βk∆tρ(E)fn, (13)

where the polynomial σ− βkρ is at least one degree lower
than ρ. This new form of (1) is useful for the approximate
factorization of some parabolic problems, see [2,7].

3. Highly accurate methods
The results in Proposition 1 are not affected when ρ(E) in
(11) is replaced by (E − 1), since we have only used the
properties that ρ(1) = 0 and ρ′(1) ̸= 0. The disadvantage
of choosing ρ(E) in (11) is that if (1) is second-order ac-
curate, then (11) is first-order accurate for any θ ̸= 0. We
notice that if ρ′(1) = 0, then second-order accuracy is pre-
served with any value of θ, and there is a unique value of θ
that makes C3 = 0, thus producing a third-order accurate
method. Assuming ρ′(1) = 0 is of course not possible for
stability reason. An alternative would be to add a term of
the form θ(E − 1)2 to the left-hand side of (1). This has
the advantage of preserving both second-order accuracy
and zero-stability. Furthermore, there is a specific value of
θ for which the resulting method is third-order accurate.
The following theorem presents this idea is a more general
form. It provides a technique for generating higher-order
methods. The novelty in this theorem is the relationship
between θ and the coefficient Cp+1. In the theorem ϕp is a
polynomial of degree p given by ϕp(ξ) = (ξ − 1)p.
Theorem 1 Assume that the linear k-step method (1) has
order p and error constant Cp+1. Consider the following
linear multistep method

Eνρ(E)Un = ∆tEνσ(E)fn + θ∆tϕp(E)fn, (14)

where ν = max{0, p − k}. Then, there is a unique value
of θ, θ∗ = Cp+1, for which the method (14) is at least of
order p+ 1. The method is of order p otherwise.

Proof. The local truncation error of the pth order method
(1) at time tn+k is of the form

ϵ(tn+k) = Cp+1∆tp+1u(p+1)(tn) +O(∆tp+2). (15)

The local truncation error of the (k + ν)-step method

Eνρ(E)Un = ∆tEνσ(E)fn,

can be written in the same form at time tn+k+ν . On the
other hand, we notice that since ϕ

(m)
p (1) = 0 for m =

0, . . . , p− 1, we have that

ϕp(E)u′(tn) =
1

p!
ϕ(p)
p (1)∆tpu(p+1)(tn) +O(∆tp+1)

= ∆tpu(p+1)(tn) +O(∆tp+1).

As a result, the method (14) is at least of order p + 1 if
θ = Cp+1, and of order p otherwise.
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We remark that if p ≤ k and k is odd, a recursive appli-
cation of (14) with optimal values of θ leads to an optimal
multistep method.

Other methods for generating higher-order linear mul-
tistep methods, based on damping the leading error, can be
found in the literature, see for instance [1,5]. One of these
methods is the so-called deferred correction. The idea of
this method is to start out with a computed low-order so-
lution, and then raise the accuracy one or two levels by
using this one for estimating the leading error. This proce-
dure can then be continued to any order of accuracy. The
implementation of the method is quite easy, and has the ad-
vantage that the properties of the basic low-order method,
to a large extend, characterizes the whole algorithm, see
[5] for further details.

As a first application of Theorem 1, consider the mid-
point method

Un+2 − Un = 2∆tfn+1,

for which C3 = 1/3. According to the thereom, the method

Un+2 − Un = 2∆tfn+1 +
∆t

3
(fn+2 − 2fn+1 + fn)

is at least third-order accurate. This formula is indeed the
Simpson rule. The method is symmetric and so fourth-
order accurate. Many other examples can be given. For
instance, the 2-step Adams-Bashforth method

Un+2 − Un+1 =
∆t

2
(3fn+1 − fn)

is second-order accurate and has the error constant C3 =
5/12. By Theorem 1, the method

Un+2 − Un+1 =
∆t

2
(3fn+1 − fn)

+
5

12
∆t(fn+2 − 2fn+1 + fn)

=
∆t

12
(5fn+2 + 8fn+1 − fn)

is at least third-order accurate. This is the 2-step Adams-
Moulton method. The 3-step Adams-Bashforth method

Un+3 − Un+2 =
∆t

12
(23fn+2 − 16fn+1 + 5fn)

is third-order accurate with C4 = 3/8. Hence, the im-
proved method

Un+3 − Un+2 =
∆t

12
(23fn+2 − 16fn+1 + 5fn)

+
3

8
∆t(fn+3 − 3fn+2 + 3fn+1 − fn)

=
∆t

24
(9fn+3 + 19fn+2 − 5fn+1 + fn)

is at least fourth-order accurate. This is the 3-step Adams-
Moulton method. It can shown that all the Adams-Moulton

methods can be obtained from the Adams-Bashforth meth-
ods using (14). The relationship between Adams meth-
ods has also another interpretation based on the original
derivation of the methods using interpolating polynomials.

The next example concerns the trapezoidal rule for which
ν = 1 in Theorem 1. Substituting θ = 1/2 in (10) yields
C3 = −1/12. As a result, the method

Un+2 − Un+1 =
∆t

2
(fn+2 + fn+1)

− 1

12
∆t(fn+2 − 2fn+1 + fn)

is at least third-order accurate. One can verify that this
is exactly the third-order Adams-Moulton method found
previously. Repeating this process generates higher-order
Adams-Moulton methods.

The last example concerns the BDF2 formula

Un+2 − 4

3
Un+1 +

1

3
Un =

2

3
∆tfn+2

having the error constant C3 = −2/9. If we consider the
parametrized multistep method

Un+2 − 4

3
Un+1 +

1

3
Un

=
2

3
∆tfn+2 + θ∆t(fn+2 − 2fn+1 + fn),

then, by Theorem 1, the choice θ = −2/9 yields a method
which is at least third-order accurate.

The previous examples show that (14) provides an effi-
cient tool for the derivation of multistep methods. Starting
from a simple and low-order method one can use (14) to
generate a higher-order method. Formula (14) is not re-
stricted to linear multistep methods. It can be applied to
any numerical method having a local truncation error of
the form given by (15).

Consider now the implicit k-step method

ρ(E)Un = ∆tσ̃(E)fn (16)

of order p and assuming for simplicity that p ≤ k + 1. We
can rearrange (16) in the following form

ρ(E)Un = ∆tσ(E)fn + βk∆tϕp+1(E)fn,

where σ(ξ) = σ̃(ξ) − βkϕp(ξ). Then, we can verify that
the method

ρ(E)Un = ∆tσ(E)fn (17)

is explicit and of order p − 1. Indeed, βk is the error con-
tant of (17). Formulas (16) and (17) can be combined to
produce a predictor-corrector method, where (17) is the
predictor and (16) the corrector. Let Un+k,∗ be the pre-
dicted approximation from (17) and Un+k the corrected
approximation from (16). Then it is easy to verify that the
corrector method can be written in the following form

Un+k = Un+k,∗ + βk ∆t f(Un+k,∗) (18)
+βk∆tϕ̄p−1(E)fn,
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where ϕ̄p−1(ξ) = (ξ−1)p−1−ξp−1. From Milne’s device,
we deduce that the predictor-corrector method is of order
p; that is, of the same order than the corrector. It is inter-
esting to notice that the corrector method (18) does not in-
volve any characteristic polynomial. For instance, we will
have this form when the predictor is an Adams-Bashforth
method of order p − 1, and the corrector is an Adams-
Moulton method of order p.

We now extend some of the previous results to second-
order ordinary differential equations.

4. Methods for second-order ODEs

A linear k-step method for solving the following second-
order initial value problem

d2u

dt2
= f(u, t), u(0) = u0,

du

dt
(0) = v0, (19)

is defined by the difference equation

ρ(E)Un = ∆t2σ(E)fn, (20)

where the polynomials ρ and σ are previously defined.
We normalize (20) by setting αk = 1. Consistency is ex-
pressed by the relations

ρ(1) = ρ′(1) = 0, ρ′′(1) = 2σ(1).

Explicit methods are still popular for solving second-order
ODEs. The method

Un+2 − 2Un+1 + Un = ∆t2fn+1 (21)

is the most popular and is known as the leapfrog method.
A more general method is given by the formula

Un+2− 2 Un+1 + Un

= ∆t2(θfn+2 + (1− 2θ)fn+1 + θfn),

where θ is a parameter to be selected in [0, 1/2]. The method
has been considered for instance in [8]. It reduces to (21)
when θ = 0, and can be rearranged in the form

Un+2− 2 Un+1 + Un

= ∆t2fn+1 + θ∆t2(fn+2 − 2fn+1 + fn).

Thus, it can be viewed as a special case of the generalized
θ-method

ρ(E)Un = ∆t2σ(E)fn + θ∆t2ρ(E)fn. (22)

Properties of (22) are summarized in the following propo-
sition whose proof is similar to that of Proposition 1.

Proposition 3 There holds

(i) The method (22) preserves consistency and zero-stability
properties for all values of θ.

(ii) There is a unique value θ∗ of θ for which (22) is at
least third-order accurate. The method is second-order
accurate otherwise.

(iii) If the interval of absolute stability of (20) is the in-
terval [−w, 0] (w > 0), then (22) is A(0)-stable if
θ ≥ w−1, and its interval of absolute stability reduces
to [−wθ, 0] if θ < w−1, where

wθ =
w

1− θw
.

The interval of absolute stability of the leapfrog method
(21) is the interval [−4, 0]. We deduce from proposition
that (22) is A(0)-stable if θ ∈ [1/4, 1/2], and its inter-
val of absolute stability reduces to [−4(1 − 4θ)−1, 0] if
0 ≤ θ < 1/4. The optimal value θ∗ = C3 = 1/12
generates a fourth-order accurate method known as the
Numerov method, having the interval of absolute stability
[−6, 0].

A general class of time discretization methods well-
known in the engineering literature is given by the so-
called Newmark method [10]. When applied to (19), it
reads

Un+2− 2 Un+1 + Un (23)

= ∆t2
[
θfn+2 +

(
1

2
− 2θ + γ

)
fn+1

+

(
1

2
+ θ − γ

)
fn

]
,

where θ ≥ 0 and γ ≥ 0 are free parameters. Based on
our previous analysis, we can easily determine its order of
accuracy. Indeed, we first rearrange the method in the form

Un+2− 2 Un+1 + Un

= ∆t2fn+1 + θ∆t2(fn+2 − 2fn+1 + fn)

+

(
γ − 1

2

)
∆t2(fn+1 − fn),

or,

ρ(E)Un = ∆t2σ(E)fn + θ∆t2ρ(E)fn

+

(
γ − 1

2

)
∆t2η(E)fn,

where ρ(ξ) = (ξ − 1)2, σ(ξ) = ξ and η(ξ) = (ξ − 1).
Therefore, we conclude that the Newmark method (23) is
of order p = 1 if γ = 1/2, p = 4 if γ ̸= 1/2 and θ = 1/12,
and p = 2 otherwise.

To study the stability of the method, we rearrange it in
the form

ρ(E)Un = ∆t2κ(E)fn + θ∆t2ρ(E)fn,

where

κ(ξ) =

(
γ +

1

2

)
ξ −

(
γ − 1

2

)
.

A simple test of stability shows that the method

ρ(E)Un = ∆t2κ(E)fn (24)

has the interval of absolute stability [−2/γ, 0] when γ ≥
1/2, but has no interval of absolutely stable when γ < 1/2.
Now, by applying the results in Proposition 3 to (24) using
w = 2/γ, we obtain
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Proposition 4 The Newmark method (23) is A(0)-stable if
2θ ≥ γ ≥ 1/2 and its interval of absolute stability reduces
to [−2/(γ − 2θ), 0] when 2θ < γ and γ ≥ 1/2.

5. Conclusion

We presented a procedure for improving the accuracy of a
given multistep method. Improving accuracy may in gen-
eral reduce stability. It is then desirable to adjust the pro-
cedure in order to construct methods that combine a high
order with certain specific stability requirements.
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