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Abstract: In this paper, a new hypothesis test is constructed to test exponentiality against Renewal New Better than Used in moment-

generating function
(
RNBUmg f

)
based on Laplace transform order and another test based on goodness of fit approach follows as a

special case. Pitman Asymptotic Efficiency (PAE) are studied, the critical values of the tests are tabulated for sample sizes n = 5(5)50,

and the power estimates are calculated to assess the performance of the tests. Also a test of exponentiality versus
(
RNBUmg f

)
for right

censored data is considered. The power estimates of the tests are simulated for some commonly used distributions in reliability. Finally,

sets of real data are used as examples to elucidate the use of the proposed test statistic for practical problems in case of complete and

uncomplete data in the reliability analysis.

Keywords: Moment generating function, RNBU , RNBUmg f , laplace transform, goodness of fit, efficiency, monte Carlo method, power

and censored data

1 Introduction

The concept of ageing is very important in reliability analysis, it describes how a component or system improves or
deteriorates with age. Many classes of life distributions are categorized or defined in literature according to their ageing
properties. An important aspect of such classifications is that the exponential distribution is nearly always a member of
each class. The notion of stochastic ageing plays an important role in any reliability analysis and many test statistics have
been developed in the literature for testing exponentiality against different ageing alternatives. Consider a device (system
or component ) with life time T and a continuous life distribution F(t), is put on operation. When the failure occurs the
device will be replaced by a sequence of mutually independent devices. The spare devices are independent of the first
device and are identically distributed with the same life distribution F(t). In the long run, the remaining life distribution
of the system under operation at time t is given by stationary renewal distribution as follows:

WF (x) =
1

µ

∫ x

0
F (t)dt, 0 ≤ t < ∞.

with renewal survival function,

W F (x) =
1

µ

∫ ∞

x
F (t)dt, 0 ≤ t < ∞.

Where µ =
∫ ∞

0 F (u)du.

For extra details, see (Abouammoh, and Ahmed [1,2]), ( Barlow and Proschan [10]).
A non-negative random variable X is said to be renewal new better than used (denoted by X ∈ RNBU) if, and only, if

W F (x+ t)≤W F (x)W F (t) , ∀ x, t ≥ 0

Statisticians and reliability analysts studied renewal new better than used classes of life distributions from various points
of view. Related papers dealing with RNBU see Abu-Youssef [4], Diab et al. [11], EL-Arishy et al. [15] and Elbatal [18].
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Definition 1.1: [Klar and Muller [22]] Given two non-negative random variables X and Y , with survival functions F

and G, respectively, X is said to be smaller than Y in the moment-generating function ordering
(
denoted byX <mg f Y

)
if

and only if, ∫ ∞

0
eλ xF (x)dx ≤

∫ ∞

0
eλ yG(y)dy, ∀ λ > 0.

Definition 1.2: We say that X is renewal new better than used in the moment-generating function order(
denoted by X ∈ RNBUmg f

)
if Xt ≤mg f Y for all t > 0, where Y is an exponential random variable with the same mean

as X . Equivalently, X ∈ RNBUmg f if, and only if,

∫ ∞

0
eλ xW F (x+ t)dx ≤W F (t)

∫ ∞

0
eλ xW F (x)dx, ∀ λ > 0 (1)

In literature, many papers proposed tests for testing exponentiality against some classes of life distributions based on
Laplace transform see Abu youssef et al. [6], Al-Gashgari et al. [8], Atallah et al. [9] and Mahmoud et al. [26]. Also, testing
exponentiality against some classes of life distributions based on goodness of fit approach is studied by Abu youssef and
Bakr [5], Ahmad [7], Diab and Mahmoud [12], Diab [13,14], El-Arishy et al. [16], El-Atfy et al. [17], Kayid et al. [21],
Mahmoud and Abdel-Alim [24] and Mahmoud and Diab [25].

The rest of this paper is organized as follows, In Section 2, testing exponentiality against RNBUmg f is proposed based
on laplace transform order and another test based on goodness of fit approach follows as a special case. In Section 3, PAE
is studied. Monte Carlo null distribution critical points are simulated for sample sizes n = 5(5)50 and the power estimates
of the tests are also calculated for some common alternative distributions in Section 4. The case of right-censored data
is considered, the critical values and the power estimates of the tests are tabulated in Section 5. Finally, in Section 6,
we discuss some applications to elucidate the usefulness of the proposed tests in reliability analysis for complete and
uncomplete data.

2 Testing Against RNBUmg f in laplace transform order

In this section, a test statistic based on laplace transform order is presented for testing H0 : F is exponential against the
alternative H1 : F is belongs to RNBUmg f class but not exponential. Let X1,X2, ...,Xn be a random sample from a population
with distribution F , we use ξ (λ ,s) as a measure of departure from exponentiality. The following lemma is needed.
Lemma 2.1 If X is a random variable with distribution function F belonging to RNBUmg f class then,

ξ (λ ,s) =
1

s2λ 2
φ (s)φ (λ )+

[
1

sλ (λ + s)
µ − 1

s2λ 2

]
φ (λ )−

[
1

sλ (λ + s)
µ +

1

s2λ 2

]
φ (s)+

1

s2λ 2
, (2)

where,

φ (s) =

∫ ∞

0
e−sxdF(x), and, φ (λ ) =

∫ ∞

0
eλ xdF(x)

Proof: Since F is RNBUmg f , multiplying Eq.(1) by e−st and integrating both sides from 0 to ∞, then we have,

∫ ∞

0
e−st

∫ ∞

0
eλ x W (x+ t)dxdt ≤

∫ ∞

0
e−st W (t)dt

∫ ∞

0
eλ x W (x)dx

setting,

L.H.S =
∫ ∞

0
e−st

∫ ∞

0
eλ x W (x+ t)dxdt,

=

∫ ∞

0
e−t(λ+s)

[∫ ∞

t
eλ v W (v)dv

]
dt,

=
1

(λ + s)

[∫ ∞

0

(
eλ v − e−sv

)
W (v)dv

]
,

=
1

µ

[
1

λ 2 (λ + s)
φ (λ )− 1

s2 (λ + s)
φ (s)− 1

sλ
µ +

λ − s

s2λ 2

]
. (3)

And,
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R.H.S =

∫ ∞

0
e−st W (t)dt

∫ ∞

0
eλ x W (x)dx,

=
1

sλ µ2

(
1

s
φ (s)+ µ − 1

s

)(
1

λ
φ (λ )− µ − 1

λ

)
,

=
1

µ2

[
1

s2λ 2
φ (s)φ (λ )− 1

s2λ 2
φ (s)− 1

s2λ 2
φ (λ )− 1

s2λ
µφ (s)+

1

λ 2s
µφ (λ )− 1

sλ
µ2 +

λ − s

s2λ 2
µ +

1

s2λ 2

]
. (4)

Hence, from (3) and (4) the result follows.
Note that under H0 : ξ (λ ,s) = 0, while under H1 : ξ (λ ,s)> 0

Corollary 2.1 If we set s = 1 in Eq. (2) then ξ (λ ,1) becomes a measure of departure from exponentiality based on
goodness of fit approach

i.e ξ (λ ,1) =
1

λ 2
E
(
e−x
)

φ (λ )+

[
1

λ (λ + 1)
µ − 1

λ 2

]
φ (λ )−

[
1

λ (λ + 1)
µ +

1

λ 2

]
E
(
e−x
)
+

1

λ 2
. (5)

and hence H0 : ξ (λ ,1) = 0, while under H1 : ξ (λ ,1)> 0.

2.1 Empirical test statistic for RNBUmg f

Let X1,X2, ...,Xn be a random sample from F . Let Fn(x) denote the empirical distribution of the survival function F(x)
where,

Fn(x) =
1

n

n

∑
i=1

I (Xi > x) , dFn(x) =
1

n
.

And let ξ̂ (λ ,s) be the empirical estimate of ξ (λ ,s) where,

ξ̂ (λ ,s) =
1

n2

n

∑
i=1

n

∑
j=1

{
1

s2λ 2
e−sXieλ X j +

[
1

sλ (λ + s)
Xi −

1

s2λ 2

]
eλ X j −

[
1

sλ (λ + s)
Xi +

1

s2λ 2

]
e−sX j +

1

s2λ 2

}
. (6)

To make the test statistic ξ̂ (λ ,s) scale invariant, we set β̂ (λ ,s) = ξ̂ (λ ,s)

X
, then

β̂ (λ ,s) =
1

n2X

n

∑
i=1

n

∑
j=1

φ(Xi,X j). (7)

where,

φ(Xi,X j) =
1

s2λ 2
e−sXieλ X j +

[
1

sλ (λ + s)
Xi −

1

s2λ 2

]
eλ X j −

[
1

sλ (λ + s)
Xi +

1

s2λ 2

]
e−sX j +

1

s2λ 2
. (8)

We define the symmetric kernel as,

Ψ (X1,X2) =
1

2!
∑
R

φ(Xi,X j).

Where the sum is over all arrangements of Xi and X j , this leads to β̂ (λ ,s) which is equivalent to Un statistic given by,

Un =
1(
n

2

)∑
i< j

φ(Xi,X j)

The following theorem summarizes the asymptotic normality of β̂ (λ ,s) .

Theorem 2.1 As n → ∞ ,
√

n

(
β̂ (λ ,s)− ξ (λ ,s)

)
is asymptotically normal with mean 0 and variance

σ2 =Var

[
1

sλ (1−λ )(1+ s)
X − 1−λ

λ 2 (λ + s)(1+ s)
eλ X +

1+ s

s2 (λ + s)(1−λ )
e−sX +

s−λ − 2sλ

s2λ 2 (1+ s)(1−λ )

]
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Under H0, the variance σ2 reduces to

σ2
0 =

2

(1−λ )2 (1+ s)2 (1− 2λ )(1+ 2s)(1+ s−λ )
. (9)

Proof : Let

η1(X1) = E [φ(X1,X2)|X1] =
1

s2λ 2 (1−λ )
e−sX +

1

sλ (1−λ )(1+ s)
X − 1+ sλ

s2λ 2 (1+ s)(1−λ )
,

and,

η2(X2) = E [φ(X1,X2)|X2] =− (1−λ )

λ 2 (1+ s)(λ + s)
eλ X − sλ + s+λ

s2λ 2 (1−λ )
e−sX +

1

s2λ 2
.

Consider,

η(X) =
1

sλ (1−λ )(1+ s)
X − 1−λ

λ 2 (λ + s)(1+ s)
eλ X +

1+ s

s2 (λ + s)(1−λ )
e−sX +

s−λ − 2sλ

s2λ 2 (1+ s)(1−λ )
.

Since,
E (η(X)) = 0, σ2 =Var (η(X)) .

Under H0 the variance reduces to Eq. (9).

Remark: Notice that at s = 1, we obtain the variance

σ2 =Var

[
1

2λ (1−λ )
X − 1−λ

2λ 2 (1+λ )
eλ X +

2

1−λ 2
e−X +

1− 3λ

2λ 2 (1−λ )

]
.

Under H0 we get the variance in the case of goodness of fit approach as,

σ2
0 (1) =

1

6(1−λ )2 (1− 2λ )(2−λ )
.

3 The Pitman Asymptotic Efficiency

To judge on the quality of this procedure,we evaluate the Pitman’s Asymptotic (PAE) for some commonly used
distributions in reliability, which is defined as

PAE(∆(θ )) =
1

σ0

| d

d θ
∆(θ )|

θ→θ0
.

(i) Linear failure rate family, F1(x) = exp(−x−θx2/2), x ≥ 0,θ ≥ 0,
(ii) Makeham family, F2(x) = exp(−x−θ (x+ e−x− 1)), x ≥ 0,θ ≥ 0,
(iii) Weibull family, F3(x) = exp(−xθ ), x ≥ 0,θ ≥ 1,
(iv) Gamma family, F4(x) =

∫ ∞
x e−uuθ−1du/Γ (θ ), x > 0,θ ≥ 0.

Note that the exponential distribution is attained at θ = θ0 = 0 in (i), (ii) , and at θ = θ0 = 1 in (iii),(iv). Since

ξθ (λ ,s) =
1

s2λ 2
φθ (s)φθ (λ )+

[
1

sλ (λ + s)
µθ −

1

s2λ 2

]
φθ (λ )−

[
1

sλ (λ + s)
µθ +

1

s2λ 2

]
φθ (s)+

1

s2λ 2
.

The PAE(ξθ (λ ,s)) can be written as,

PAE (ξθ (λ ,s)) =
1

σ0

∣∣∣∣
1

s2λ 2

[
φ 8

θ (λ )

(∫ ∞

0
e−sxdFθ (x)

)
+

(∫ ∞

0
eλ xdFθ (x)

)
φ 8

θ (s)

]

+

[
1

sλ (λ + s)
µθ −

1

s2λ 2

](∫ ∞

0
eλ xdF 8

θ (x)

)
+

[
1

sλ (λ + s)
µ 8

θ

]
φθ (λ )

−
[

1

sλ (λ + s)

(∫ ∞

0
xdFθ (x)

)
+

1

s2λ 2

]
φ 8

θ (s)−
[

1

sλ (λ + s)
µ 8

θ

]
φθ (s)

∣∣∣∣
θ→θ0

.

c© 2019 NSP

Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 8, No. 3, 229-239 (2019) / www.naturalspublishing.com/Journals.asp 233

In this case, we obtain,

PAE
(
ξθ (λ ,s) ,F1(x)

)
=

1

σ0

∣∣∣∣∣
1

(1+ s)2 (1−λ )2

∣∣∣∣∣ ,

PAE
(
ξθ (λ ,s) ,F2(x)

)
=

1

σ0

∣∣∣∣
1

2(1+ s)(2+ s)(1−λ )(2−λ )

∣∣∣∣ ,

PAE
(
ξθ (λ ,s) ,F3(x)

)
=

1

σ0

∣∣∣∣−
λ log [1+ s]+ s log [1−λ ]

sλ (1+ s)(1−λ )(s+λ )

∣∣∣∣ ,

PAE
(
ξθ (λ ,s) ,F4(x)

)
=

1

σ0

∣∣∣∣
λ 2(1+ s) log [1+ s]+ s(−λ (s+λ )+ s(λ − 1) log [1−λ ])

s2λ 2(1+ s)(λ − 1)(s+λ )

∣∣∣∣ .

The following table includes the asymptotic efficiencies of our proposed test ξθ (λ ,s) at various values of s,λ .

Table 1. The asymptotic efficiencies of ξθ (λ ,s).

Distribution s λ = 0.01 λ = 0.02 λ = 0.03 λ = 0.1 λ = 0.2 λ = 0.3
1 0.86381 0.86151 0.85909 0.83887 0.79549 0.72139
2 0.91130 0.90963 0.90786 0.89197 0.85391 0.78246

LFR 3 0.93419 0.93288 0.93145 0.91793 0.88278 0.81284
4 0.94769 0.94659 0.94538 0.93333 0.90000 0.83103
5 0.95658 0.95563 0.95457 0.94354 0.91144 0.84314

1 0.14325 0.14213 0.14100 0.13245 0.11785 0.09901
2 0.17001 0.16883 0.16763 0.15844 0.14232 0.12082

Makeham 3 0.18590 0.18469 0.18345 0.17392 0.15694 0.13388
4 0.19644 0.19521 0.19396 0.18421 0.16667 0.14258
5 0.20395 0.20271 0.20144 0.19155 0.17361 0.14879

1 0.52815 0.52476 0.52129 0.49480 0.44821 0.38516
2 0.61366 0.61010 0.60646 0.57834 0.52764 0.45695

Weibull 3 0.66729 0.66361 0.65984 0.63054 0.57700 0.50128
4 0.70503 0.70125 0.69738 0.66713 0.61145 0.53204
5 0.73343 0.72957 0.72561 0.69459 0.63719 0.55494

4 Monte Carlo null distribution critical points

In practice, simulated percentiles for small samples are commonly used by statisticians and reliability analysts. We have
simulated the upper percentile values for 90%,95%,98% and 99%. Tables 2, and 3 present these percentile values of the

statistics β̂ (λ ,s) in Eq. (7) and the calculations are based on 10000 simulated samples of sizes n = 5(5)50.

Table 2. The upper percentile of β̂ (λ ,s) at s = 1

n 90% 95% 98% 99%

5 0.158141 0.214662 0.295260 0.362522
10 0.104143 0.134946 0.178586 0.216829
15 0.082785 0.105432 0.135249 0.156459
20 0.072365 0.089758 0.112053 0.131618
25 0.066243 0.080607 0.099079 0.111748
30 0.059578 0.071791 0.085999 0.098294
35 0.056283 0.067457 0.082178 0.093471
40 0.053088 0.064114 0.077583 0.087248
45 0.050666 0.060518 0.072671 0.081029
50 0.048221 0.057201 0.068969 0.076068

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


234 S. M. El-Arishy et al: Testing Exponentiality Against RNBUmg f based on...

Fig. 1: Relation between critical values, sample size and confidence levels at s = 1, λ = 0.1

Table 3. The upper percentile of β̂ (λ ,s) at s = 5

n 90% 95% 98% 99%

5 0.015482 0.020125 0.025696 0.030143
10 0.010910 0.013516 0.016381 0.018818
15 0.009146 0.011022 0.013339 0.014732
20 0.007969 0.009592 0.011306 0.012668
25 0.007226 0.008744 0.010393 0.011523
30 0.006741 0.008039 0.009696 0.010758
35 0.006266 0.007477 0.008848 0.009649
40 0.005940 0.007064 0.008259 0.009114
45 0.005691 0.006746 0.007887 0.008627
50 0.005427 0.006446 0.007504 0.008229

Fig. 2: Relation between critical values, sample size and confidence levels at s = 5, λ = 0.1

In view of Tables 2, 3, and its Figures (1,2), it is noticed that the critical values increase as the confidence level
increases and the values decrease as the sample size increases.
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4.1 The Power Estimates

In this subsection, we present the power estimates of the test statistic β̂ (λ ,s) at significance level α = 0.05 using LFR,
Weibull and Gamma distribution. The estimates are based on 10000 simulated samples of sizes n = 10,20 and 30 with
parameter θ = 2,3 and 4.

Table 4. Power estimates using α = 0.05 at s = 1

Distribution θ n = 10 n = 20 n = 30

2 1.0000 1.0000 1.0000
LFR 3 1.0000 1.0000 1.0000

4 1.0000 1.0000 1.0000

2 1.0000 1.0000 1.0000
Weibull 3 1.0000 1.0000 1.0000

4 1.0000 1.0000 1.0000

2 0.9715 0.9788 0.9843
Gamma 3 0.9936 0.9955 0.9987

4 0.9991 0.9996 1.0000

Table 5. Power estimates using α = 0.05 at s = 5

Distribution θ n = 10 n = 20 n = 30

2 1.0000 1.0000 1.0000
LFR 3 1.0000 1.0000 1.0000

4 1.0000 1.0000 1.0000

2 1.0000 1.0000 1.0000
Weibull 3 1.0000 1.0000 1.0000

4 1.0000 1.0000 1.0000

2 0.9867 0.9937 0.9952
Gamma 3 0.9985 0.9995 0.9999

4 0.9997 1.0000 0.9999

From Tables 4, 5, it is noted that the power of the test increases by increasing the value of the parameter θ and sample
size n, and it is clear that our test has good powers.

5 Testing Against RNBUmg f class for censored data

The objective of this section is to propose a test statistic to test H0 : F is exponential versus H1 : F belongs to RNBUmg f

with randomly right-censored data. Such censored data is usually the only information available in a life-testing model
or in a clinical study where observations may be lost (censored) before the completion of this study. This experimental
situation can formally be modeled as follows.

Suppose n objects are put on test, with true life times X1,X2, ...,Xn. Assume that X1,X2, ...,Xn are independent and
identically distributed (i.i.d.) according to a continuous life distribution F . Let Y1,Y2, ...,Yn be (i.i.d.) according to a
continuous life distribution G. and are independent of X ’s.

In the randomly right-censored model, we observe the pairs (Z j,δ j), j = 1, ...,n where Z j = min(X j,Yj) and

δ j =

{
1 i f Z j = X j ( j− th observation is uncensored)
0 i f Z j = Yj ( j− th observation is censored)

.

Let Z(0) = 0 < Z(1) < Z(2) < ... < Z(n) denote the ordered Z’s and δ( j) is the δ j corresponding to Z( j) respectively.

Using the censored data (Z j,δ j), j = 1, ...,n. Kaplan and Meier [20] proposed the product limit estimator.

Fn(X) = 1−Fn(X) = ∏
[ j:Z( j)≤X]

{(n− j)/(n− j+ 1)}δ( j) ,X ∈ [0,Zn] .

Now, for testing H0 : ξ (λ ,s) = 0, against H1 : ξ (λ ,s) > 0, using the randomly right censored data, we propose the
following test statistic:

ξ̂ c (λ ,s) =
1

µ

[
1

sλ
β η +(

1

(λ + s)
µ − 1

sλ
)β − (

1

(λ + s)
µ +

1

sλ
)η +

1

sλ

]
(10)
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Where,

µ =
n

∑
i=1

i−1

∏
m=1

C
δ(m)
m

(
Z(i)−Z(i−1)

)
,

β =
n

∑
j=1

eλ Z( j)

(
j−2

∏
p=1

C
δ(p)
p −

j−1

∏
p=1

C
δ(p)
p

)
,

η =
n

∑
l=1

e−sZ(l)

(
l−2

∏
q=1

C
δ(q)
q −

l−1

∏
q=1

C
δ(q)
q

)
.

And,

Ck =
n− k

n− k+ 1
, dFn(Z( j)) = F

(
Z j−1

)
−F (Z j)

Tables 6, and 7. give the critical values for percentiles of ξ̂ c (λ ,s) test for sample sizes n = 20(5)30(10)81,86.based
on 10000 replications.

Table 6. Critical values for percentiles of ξ̂ c (λ ,s) test at s = 1

n 90% 95% 98% 99%

20 2.51899 3.02423 3.7453 4.20071
25 2.17860 2.64525 3.25387 3.69404
30 2.01479 2.42473 2.96989 3.31103
40 1.68255 2.00613 2.46125 2.74566
50 1.47031 1.76988 2.14072 2.38124
60 1.32854 1.60787 1.95139 2.20053
70 1.21383 1.45453 1.78388 1.98071
81 1.14788 1.36565 1.65734 1.87475
86 1.12950 1.32693 1.59007 1.76178

Fig. 3: Relation between critical values, sample size and confidence levels at s = 1, λ = 0.1
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Table 7. Critical values for percentiles of ξ̂ c (λ ,s) test at s = 5

n 90% 95% 98% 99%

20 0.72371 0.83678 0.96802 1.07043
25 0.64991 0.75973 0.88560 0.96595
30 0.59966 0.69154 0.80373 0.89796
40 0.52835 0.61313 0.69820 0.75932
50 0.48318 0.56127 0.64957 0.71423
60 0.43527 0.50692 0.58389 0.64405
70 0.40763 0.47746 0.56068 0.61346
81 0.38370 0.44472 0.52096 0.57518
86 0.37051 0.42810 0.49136 0.54651

Fig. 4: Relation between critical values, sample size and confidence levels at s = 5, λ = 0.1

In view of Tables 6, 7, and its Fig. (3,4), it is noticed that the critical values increase as the confidence level increases
and they decrease as the sample size increases.

5.1 The power estimates for ξ̂ c (λ ,s)

We present an estimation of the power for testing exponentiality Versus RNBUmg f . Using significance level α = 0.05
with suitable parameter values of θ at n = 10,20 and 30, and for commonly used distributions in reliability such as LFR,
Weibull and Gamma family alternatives at value of s = 1,5 which is included in Tables 8, 9.

Table 8. Power estimates for ξ̂ c (λ ,s) test at s = 1

Distribution θ n = 10 n = 20 n = 30

2 0.9945 0.9961 0.9943

LFR 3 0.9927 0.9939 0.9922

4 0.9896 0.9913 0.9866

2 0.9998 0.9997 0.9996

Weibull 3 1.0000 0.9999 0.9996

4 1.0000 1.0000 0.9997
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Table 9. Power estimates for ξ̂ c (λ ,s) test at s = 5

Distribution θ n = 10 n = 20 n = 30

2 0.9999 0.9999 0.9999

LFR 3 1.0000 1.0000 1.0000

4 1.0000 1.0000 1.0000

2 1.0000 1.0000 0.9998

Weibull 3 1.0000 1.0000 0.9992

4 1.0000 1.0000 0.9990

6 Applications

In this section, we apply our test to some real data sets in the case of non censored and censored data at 95% confidence
level.

6.1 Non censored data

Data-set #1. Consider the data set in Abouammoh et al. [3], these data represent a set of 40 patients suffering from blood

cancer (leukemia) from one of ministry of health hospitals in Saudi Arabia. In this case, we get β̂ (λ ,s) = 0.746827, at

s = 1, λ = 0.1, β̂ (λ ,s) = 0.0567528, at s = 5, λ = 0.1, and these values exceed the tabulated critical value in Tables 2, 3
in the two cases, it is evident that at the significant level 0.05 this data set has RNBUmg f property.

Data-set #2. Consider the data set given in Grubbs [19], This data set gives the times between arrivals of 25 customers at

a facility. It is easy to show that β̂ (λ ,s) = 1.2696, at s = 1, λ = 0.1, β̂ (λ ,s) = 0.0897996, at s = 5, λ = 0.1, which are
greater than the critical values of Tables 2, 3. Then we accept H1 which states that the data set has RNBUmg f property.

Data-set #3. Consider the data set which represents failure times in hours, for a specific type of electrical insulation in an
experiment in which the insulation has been subjected to a continuously increasing voltage stress (Lawless [23], p.138).

We can see that the value of test statistic β̂ (λ ,s) = 0.0500617, at s = 1, λ = 0.1, β̂ (λ ,s) = 0.0081738, at s = 5, λ = 0.1,
and these values are less than the tabulated critical values in Tables 2, 3. This means that the set of data has exponential
property.

6.2 Censored data

Data-set #4. Consider the data from Susarla and Vanryzin [28], which represents 81 survival times (in months) of patients
melanoma. Out of these 46 represents non-censored data. Now, taking into account the whole set of survival data (both

censored and uncensored). It is found that the value of test statistic for the data set is given by ξ̂ c (λ ,s) = 128626., at

s = 1, λ = 0.1, ξ̂ c (λ ,s) = 27742.8, at s = 5, λ = 0.1, and these values are greater than the tabulated critical value in
Tables 6, 7.in two cases This means that the data set has RNBUmg f property.

Data-set #5. On the basis of right censored data for lung cancer patients from Pena [27]. These data consist of 86 survival
times (in month) with 22 right censored. Now account the whole set of survival data (both censored and uncensored),

and computing the test statistic given by formula (10). It is found that at s = 1, λ = 0.1, ξ̂ c (λ ,s) = 3.19506, at s = 5,

λ = 0.1, ξ̂ c (λ ,s) = 0.692301, which exceeds the tabulated values in Tables 6, 7 in two cases This means that the data set
has RNBUmg f property.
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