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Abstract: In this paper, we study curves in the lightlike cone. First, sihow that any curves in the lightlike cone are spacelike or
lightlike, and then we characterize some curves with speciae curvature function in the 4, 5, and 6-dimensionaltligé cone.
Finally, we consider the relationship between Frenet dureafunctions and cone curvature functions for a spacalikee on the
lightlike cone.
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1 Introduction asymptotic orthonormal frame along a curve and cone
curvature functions for such curve i®@"1. Then he

In Euclidean space, we can consider the behavior of abtained some conformal invariants, and he classified

curve by Frenet orthonormal frame and its Frenetcurves with constant cone curvaturesji andQ?3. Also,

curvatures. For example, if all of the Frenet curvatures ofin @2, Liu established the relation between Frenet

a curve inE" are constant, then this curve is curvature and cone curvature, and he characterized the
cone curvature function for a helix. We also remark that
a(s) =(aisin(as),a coga1s),. .., M. Bektas and M. Kilahci in 4] have obtained a
..., AmSin(ams), amcog ams), bs) characterization of spacelike curves in the 3-dimensional
lightlike cone in terms of some differential equations.
forn=2m+1and In this article, we develop and generalize the results by
i H. Liu [4,5]. The setup of this paper is as follows. After
a(s) =(assin(ays),a; cogass), .., giving some preliminaries in Secti@ywe show in Section
..., AmSIN(amS), dm oY ams)) 3 that any nonstraight line curve i®"! is a spacelike

curve. In Sectior, we characterize curves with constant

for n = 2m, see BJ|. Also, S. Yimaz and M. Turgut cone curvature functions if0*, Q5, andQ®. In Section
in [10] have defined vector products in Minkowski 5 we give some relation between Frenet curvatures and
space-time, and by this way they calculate Frenet framegone curvature functions for a curve @?, and also we
of all spacelike curves. obtain cone curvature functions for a curve(d such that

In the Lorentzian manifold, there are three type of the vectorsr; anda, have constant angle with a constant
curves, namely spacelike, timelike, and lightlike curves,vectorb.
and their Frenet equations are different, se&]|

Besides the Frenet orthonormal frame along a curve
on a lightlike cone, an asymptotic orthonormal frame is
very useful. Asymptotic orthonormal frames are applied2 Preliminaries
in order to consider curves, surfaces, and hypersurfaces in
the lightlike cones.

H. Liu in [4,5] has considered curves in the lightlike LetE" ben-dimensional Euclidean space. For two vectors
cone Q"1 For this consideration, he defined the v=(V},... v"),w= (w,...,w") and an integeq < [0,n],
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we define the bilinear form

(V,W) := ?Zjviwi — i=n§

—o+1

viw.

In[4], H. Liu defined an asymptotic orthonormal frame
field for a given curve in th@"™! as follows. Letx: | —
Q™! c ET™ be a curve. We choose the null vector field
y(s) and the spacelike normal spa¢é&* of the curvex
such that they satisfy

The resulting semi-Riemannian space is called Minkowski

n-space, and = 4 is the simplest example of a relativistic
space-time, se€].

Definition 1. A vector v# 0 in E} is called spacelike,
timelike, or lightlike if(v,v) > 0,(v,v) < 0, or (v,v) =0,
respectively, and ¥ 0 is spacelike.

Definition 2. The set of all lightlike vectors iR} is called
the lightlike cone and denoted Iy

In the lightlike coneQ™! c E}*2, there are two

orthonormal frame fields. One of them is a pseudo-Frenet

orthonormal frame field and the other is an asymptotic
orthonormal frame field, sed]

Definition 3. A frame field {ey,...,en,€n+1,6n:2} ON
]ETr2 is called an asymptotic orthonormal frame field
provided

(€nt1.€nr1) = (Eni2,€n42) =0, (Eny1,6n42) = 1,
(eny1,8) = (eni2,8) =0, (&,8)=gj,i,j=1,...,n.
Definition 4. A frame field {ey,...,en,€n+1,6n:2} ON

E7™2 is called a pseudo-Frenet orthonormal frame field
provided

(ént1,6n11) = — (Eni2,€n12) =1, (Eny1,€042) =0,
<en+173>:<en+2,3> Oa <a7ej>:aj7i7j:17"'an'

Definition 5. A curve x inE}"2 is called a Frenet curve
provided for all te I, the vector fields

X(0), X(t), %(1), ...

are linearly independent and the vector fields
X(t). X(t). (1), ..

are linearly dependent, wheré™X(t)

XV (), XM (1)

X(n+1) (t)

— d%@®
=5

, X2 1)

Definition 6. A curve x: | — E[*2 is called spacelike,
timelike, or lightlike providedk(t) is spacelike, timelike,
or lightlike, respectively for all £ 1.

Definition 7. A spacelike or timelike curve:xx — EJ 2 is
said to be parameterized by arc length provided

(X(s),X(s)) = Lor (X(s),X(s)) = —1,
respectively.

Remark. In this article, all of the spacelike or timelike
curves are parameterized by arclength denoted, land

X/(S) . adx(s)

= —ds -

(x(s),y(s)) =1,
(X(s),x(9)) = (¥(8),¥(8)) = (X(8),¥(8)) =0,
Vit = (span {xy,X}) ",
span {x,y,X,V"1} = E}*2

Therefore, by choosing suitable orthonormal vector fields
ax(s),as(s),...,an(s) € V=1, we have the Frenet
formulas

X (s) =au(s)

a1(s) =Ka(S)X(s) —y(s) + 11(s)a2(9)

a5(s) =K2()X(s) — 11(s)a1(s) + T2(s)as(s)

a{ (s) =ki(s)X(s) — Ti-1(9)ati_1(8) + Ti()aira(s) (1)
ap(s) =Kn(S)X(S) — Tn-1(S)an-1(8)
Y(8) = 3 Ki(S)ai(s),

where {x(s),y(s),X(s),a2(s),a3(s),...,an(s)} is an

asymptotic orthonormal frame field, called thgymptotic
orthonormal frameon E}2 along the curvex in Q™.
The functions ki = (a.y), i 1,....,n and
Ti = (af,qi+1),i = 1,...,n—1, are callectone curvature
functionsof the curvex.

Proposition 1(see §)).
spacelike curve and put

Let x: | — Q™! C EI*2 be a

)= —X(9) - 3 (K9xS, ()

Thent; =0,i=1,...,n.

3 Nonstraight Line Curves in the Lightlike
ConeQ"1

In Euclidean space, a regular curve is a curve which has
nonzero velocity vector. In the Minkowski spaEé, any
timelike (lightlike) curve is regular. Also, if a curve | —

]Ef is regular insg, then, by continuityx is also regular in a
neighborhood o$y, see B]. Similarly to this, we can prove
the following.

Proposition 2. Any timelike (lightlike) curve xI — EQ*Z
(with arbitrary parameter) is regular.
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Proof. Assume that the curve is timelike. We write Sincex s timelike, we get
X(t) = (X (t), .- Xns(t), Xns2(t)), 08+ .+ )0+ +% 1) =R X
. . . . 2
wherex; are differentiable functions on In this case, we = X2 (7)

have

(K(),X(1) =X (1) + ... +%5,1(t) =G 2(t) <O.

In particular,x,2(t) # 0, i.e.,x is regular. On the other
hand, if the curve is lightlike, we hawg,»(t) # 0 again
since, on the contrary;(t) = 0 andx(t) = 0. But this
means that the curve is spacelikel

Lemma 1. Letx: | — Q™! c ET*2 be a curve. Then x is
lightlike if and only if x is a straight line.

Proof. Let (x,x) = 0 and(x,x) = 0, so

2 2 2
Xn+2:Xl+"'+Xn+l?

3)
) ) )
Xn+2:X1+...+Xn+1.
Differentiation of the first equation ir8J yields that
Xnr2Xni2 = X1Xg + ... + Xnp 1%n4 1, 4

(Xn+2)2(xn+2)2 = (XaXg + ...+ Xn+1xn+1)2'

By substituting 8) into (4) and after some calculations, we
conclude that

n+1
Z (Xij —Xin)z =0.
i,]=1

Thus,

Finally, we have
%i(s) = Axy(s), i=1,...,n+1,
Xni2(S) = X1 (s \/1+A +. +An+1a

whereA; is some real constant. Thus(s) = Xxl( s) is
a straight line with the real dlfferentlable functiep and

constant lightlike veIOC|ty vectonA On the other hand,
the converse statement is trivialO

If we replace 6) in (7), then we obtain

n+1

. zl(xix’j —%%)% = X 2.
)=

Hencex,.» = 0, and ) yields
xi(s)=0,i=1,....n+1

Sox(s) =

Lemmasl and2 yield the following theorem.

0, which is a contradiction. O

Theorem 1. If x : | — Q™! c E*? is a regular curve,
then x is a nonstraight line if and only if x is a spacelike
curve.

Proof. Let x be a nonstraight line curve i@"". Then,

by Lemmal, this curve is not a lightlike curve, and, by
Lemma?2, this curve is not a timelike curve. Therefore, it
is a spacelike curve. Conversely, if the curve is spacelike
and a straight line, thexr(s) = AX(s) such thatx(s) is a

real differentiable function and is a lightlike vector ax
is lightlike, a contradiction. O

Remark. For the rest of this article, we assume that the
curvex is a spacelike curve parameterized by arc length.

4 Curves in the Lightlike ConesQ?, Q®, and

Q6

H. Liu in [4, Theorems 2.3 and 3.1] has classified all
curves with constant cone curvature functions@hand
Q3. These curves are solutions of special differential

equations. Similarly to these two theorems, we obtain
constant cone curvature curves in the lightlike cofés

Q°, andQ®.

Theorem 2. Letx: | — Q* C E3 be a curve in the lightlike
coneQ*. If the cone curvature functions of the curve are
constant, then the curve satisfies the differential equatio

X 4 (12 4+ 13 — 2k1)X”

Lemma 2. Letx: | — ET’Z be a timelike curve. Then x is — (K3+ K3+ 2K3T1Ta+ 2k172)X = 0. (8)
not lying inQ"*1,
Proof. The Frenet formulaslj for this curve are
Proof. Assume thakis in Q"t1. Then
X (s) =0 (s)
Xopo =Xg oo X0, () a1 (s) =K1()X(S) — Y(s) + Ta(s)a=(S)

<o that ab(s) =K2(9)X(8) — Ta(S)a(s) + T2(8)a3(9) )

nt+1 aj(s) =k3(s)X(s) — T

Zmﬁ-’:mzmz- ©) 3(S) =K3(S)X(s) — T2(s)a2(S)

= Y (8) = — Ka(s)au(s) — K2(s)a2(s) — Ka(s)as(s).
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From @), we obtain the other derivatives »fs

X" =TiKoX+ (2K1 — T2)X + K002
+ (K3+ T112)03,

XY = (K2 + K2 4 K3Ty To)X

(10)

+ (2Ky — Tf)X” — (K3l + T1T22)02 + K2T203,
X5 = — Koy TEX 4 (K2 4 K2 + 2K3T1 To + T2T3)X
+ (2k1 — T2)X" — KoT2 0,

— T22(K3—|— T1T2)03. (11)

If we multiply (10) by r22 and add the resulting equation to

(11), then we obtaing). O

Corollary 1. If x: 1 — Q* C EJ is a curve with constant
cone curvature in the lightlike cori@®, then the following
cases hold.

i) Assumexz =T, = 0.
i-i) If ko =0, then

X(s) = a15° + aps+ a3
providedA =0,
a; sinh(v21)s+ apcosi{(v2A )s+ ag
providedA > 0, and
alsin(\/j)sjL azcos(\/j)sjL asz

providedA < 0, whereA := 2k — T2.
i-ii) If k2 # 0, then

X(s) =ay sinh(ps) + a; cosh{ps) + agsin(vs)
+aycoqVvs) +as,

where +£u and +iv are the real and imaginary
roots of the equation

t*— 2k — A2 — k3 =0.
ii) If k3=0and1, # 0, then

X(s) =ay Sinh(ps) + a; cosh{ps) + agsin(vs)
+aycoqVvs) + as,

where+u and+iv are the real and imaginary roots of
the equation

t4 4 (12 + 13 — 2Kkt — (K3 + 2K172) = 0.
iii) Assumexs #~ 0. Consider the equation

t4 4 (12 + 15 — 2K )2

— (K34 K3+ 2K3T1 Ty + 2K175) = 0. (12)

iii-i) If the roots of (12) are +u and+iv, then

X(s) =ag sinh(us) + axcoshus)

+agsin(vs) + a4 cog vs) + as. (13)

iii-if) If the roots of (12) are+u and+tv, then

X(s) =ay sin(us) + axcog Us) + agsin(vs)
(14)
+a4coqVvs) + as.

X(s) =ag sinh(us) + axcoshus)

. 1
+ agsinh(vs) + a4 cosh{vs) + as. (15)

iii-vi) If the roots of (12) are +u +iv, then

X(s) =ag sinh(us) sin(vs)
+apcoshus)sin(vs)
+agsinh(us) coqvs)
+aycoshus) cogvs) + as,

(16)

Here, a € Ef, i € {1,2,3,4,5}, are suitable constant
vectors.

Proof. First, we prove i). If we sekz = 1, = 0 in (9),
thenas is constant, and thugl]| Theorem 3.1] yields the
statement. Next, we prove ii). The discriminant of the
guadratic equation

24 (12 + 15 — 2K)t — (K5 +2K1T3) =0 (17)

is
A )@ 12)2 + 15 + 21212 + K1 T3+ 4K3, K1 >0,
(2k1 — T3)? + 11 + 21212 — K1 T2 + 4K3, K1 <O.

Sincety # 0, we haveA > 0, and thus 17) has two real
roots with different signs. If we set:= X in (8), then we
obtain a differential equation of order 4 with constant
coefficients. After an integration, the statement is proved
Finally, we prove iii). If we setx"= X in (8), then we
obtain a differential equation of order 4 with constant
coefficients. In general, the solution of such differential
equations are ex@s), whereA is a root of (2. If A is
real, then the solution is

a; sinh(As) +axcoshAs),
while if A is imaginary, then the solution is
azsin(iAs) +ascogiAs).
If A = u+ivis acomplex number, then

X(s) =ay sinh(s) sin(vs) + a cosh s) sin(vs)
+ agsinh(us) coqvs) + a4 cosh us) cog vs).

An integration yields that the curve is in the fornis3);
(14), (15, 0r (16). O
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Theorem 3. Letx: | — Q°® C E? be a curve in the lightlike i) If the roots of (23) are A2 and (i +iv)?, then
coneQ?®. If the cone curvature functions of the curve are

constant, then the curve satisfies the differential equatio X(s) =aisinh(ps) sin(vs) + &z coshus) sin(vs)
+ agsinh(us) cog vs) + a4 cosl(us) cog vs)
X® 4 (1 + 15 + 15 — 2k1)x +assinh(As) +-agcoshAs).

— (K5 + K3+ (2ky — T8) (15 + 13) + (K3 + T2 12) )X

: 2 18) i) If the roots of (23) are A2, u?, andv?, then
= (K4T2 + K2T3)°X.

X(s) =ag sinh(us) + acosHus) + agsinh(vs)

Proof. The Frenet formulasl] for this curve are .
! + a4 coshvs) + assinh(As) +agcoshAs).

X(s) =au(s),
iii) If the roots of (23) are A2, (iu)?, and(iv)?, then

a1 (s) =K1(S)X(s) —Y(s) + T1(s)a2(s),
as(s) =kz(s)x(s) — 11(s)a1(s) + T2(S)as(s), X(s) =ag sin(us) + axcog Us) + agsin(vs)
a4(s) —Ks(S)X(S) — Ta(S)ta(9) + Ta(S)au(s),  (19) + 24005 vS) + asSin(AS) + 35COSHAS).
ay(s) =Ka(S)X(s) — T3(s)a13(S), Here, a € K, i € {1,2,3,4,5,6}, are suitable constant
Y (s) = — K1(S)a1(s) — K2(s)az(s) vectors.
— K3(8)as(s) — Ka(5)au(s)- Proof. Denote the left-hand side o2®) by f(t). Then
From (L9), we obtain the other derivatives fis f(0) <0and
X" =T1koX+ (2K1— T{)X + Koz f(t) =3t2+ 2(12 + 12+ 13— 2Kt
+ (K3+ T1T2) 03 + K404, (20) _ (K22+ K2+ (2ky — T2) (12 + 12)
XY =(K2Z + K2 + K + K3T1T2)X + (ks +1112)?),

+ (2K1 — T12)X'/ — (K3T2 + T1T22)02

A =3(3+ 132+ (3 + 3+ 2(2Kk1 — 12))°
+ (K2T2 — K4T3)C¥3 + (K3T3 + T1T2T3)G4, (21)

+12(kZ + K2 + (K3 + T112)?) > 0.

X5 =(K4TyToT3 — Ko T1T3)X
2. 20 k2. 12021 0 v Thus, @3) has at least one positive root. The other roots
+(Kz+ K3+ K3+ 10T + 2K3TaT2) are one of the following. In i) both ar&u +iv)2. In i),
+ (2ky — THX" + (K4T2T3 — KoT3) 02 both of them are positive, i.e., they azné and v2é In iii),
B 2 3 2 2 both of them are negative, i.e., théy)< and(iv)<. Thus,
(KsTo + 1T —; KaT3 + 1113013 the curves in i), ii), and iii) are satisfyindg). O
+ (K2T213 — K413 )04, .
© ( 23) y Corollary 3. Letx: | — Q° C ES be a curve with constant
X?) =(2K2KaToT3 — Ty(K + K3 + K3T1T2) cone curvature in the lightlike cor@®. Assume
— T5(K5 + KZ + KaT1T2) )X

KaTz + KoT3 = 0.
+ (K34 K3 + K3 + T2T2 + 2K311 T2)X”

Consider the equation

+ (21— XY + (15 + 1) (KaTo + TaT5) 12
+ (15 + 13) (KaTa — K2T2) Q3 24 (12 + 15+ T3 — 2Kt
— (13 + 15) (KaT3 + T1T2T3) la. (22)  — (K3 +Ki+ (ki —TE) (5 +T3) + (K3 + TuT2)?) = 0.

. - . (24)
If we multiply (21) by (15 + 15) and add the resulting

equation to 22), then we obtaini8). O i) If the roots of (24) are u > 0andv < 0, then

Corollary 2. Letx: | — Q°® c ES be a curve with constant , ,
. S X(s) =az sinh +apcos +agsin(sy—v
cone curvature in the lightlike cor@®. Assume (8) =& (V) +82coshisy/h) + 2 ( )
+a4c0s(v/—Vs) + ass+ as.

KaTy + K213 75 0.

. . ii) If at least one of the roots of24) is zero, then
Consider the equation ) of24)

X(s) = a1 + aS+ & 25
B (17 + 12+ 15— 2kt _ () = s +as+as (23)
— (K3 + K2+ (2k1 — T) (13 + T5) + (K3 + T T2) )t providedA =0,
— (KaT2 + Ko13)> = 0. (23) X(s) = alsinh(sv 2)\) +a cosh(sv 2)\) +a3 (26)
(@© 2018 NSP
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providedA > 0, and

X(s) = azsin (SM) +ap cos(s\/ﬁ) +ag

(27)

providedA < 0, whereA := 2k; — 12,

Here, a € ES, i € {1,2,3,4,5,6}, are suitable constant
vectors.

Proof. The discriminant of24) is
A = (T5+ 13+ 2Kk, — T9)?
+ 4K3 + 4KZ + (K3 + T1T2)? > 0.
First, assumed > 0. If the roots of 24) areu > 0 and
v < 0, then, as in Corollar{, we may prove i). If one of
the roots of 4) is zero, thenZ4) yields

K3+ K3+ (2ky — 12) (T3 + 13) + (K3 + T112)? = 0,

Ko = Kg = K3+ T1Tp = (2K1 - Tf)('l'zz + Tg) =0,
from which together withZ0), we have
X" = (2k1 — 2)X.

The solution of this equation in the different case<25) (

(26), and @7). In the cas&\ = 0, we conclude that any two

roots of 4) are zero, and the curve is the2b). O

Theorem 4. Letx: | — Q8 c ]EZ be a curve in the lightlike

coneQ?®. If the cone curvature functions of the curve are
constant, then the curve satisfies the differential equatio

X7+ AX® +BX® +CX =0, (28)
where A, B, and C are constant coefficients.

Proof. Proceeding as in the proofs of Theorethand3,
we obtain the other derivatives nfis
X" =T1KoX+ (2K1 — T2)X + K200
+ (K34 T1T2) 03+ K404+ KsQs, (29)
X4 = (K2 + K2+ KZ + K2+ KaT1T2)X+ (21 — TH)X'
— (KaT2 + T1T3) 02 + (K2T2 — KaT3)Ol3
+ (K3T3+ T1T2T3 — K5T4) 04 + KaT40s,
5 =(K4T1ToT3 — KoT1 T2)X
+ (K3 + K3 + K2 + K&+ T2T5 + 2K3T1 T2)X.
+ (21 — TOX" + (K4To T3 — KoT3) 2
— ((K3+ T1T2) (T3 + T5) — K5T3T4) O3
+ (KaToTs — KaT5 — K4T4) 04
+ (K3T3T4 + T1T2T3T4 — KsT4 )OS, (30)

X(® = (2KoKaToT3 + 2K3KsTaTa — T2(K3 + K3 + K3T1T2)

X

— T5(K5 + K§ + KaTaT2) — T3 (K + KE)

+ KsT1ToT3T4)X
+ (K2 + K3+ K& + K2 + T7T5 4 2k3T1 )X
+ (2ky — 12)X%
+ (15 + 13) (KaT2 + TaT5) — K5T2T3Ta) A7
+ (13 + 13) (KaTs — KoT2) + KaTaT3 ) Of3
— (13 +13)(K3Ta + T1T2T3)
+ T2(K3T3 — KsTg + T1T2T3)) Q4
+ (K2T2TaT4 — K4T2T4 — K4T3)0s,
X7 =((12 + 13 + 12) (K21 T2 — KaT1T2T3) — KaT1 TS T2 )X
+ (2K2K4To T3 + 2K3K5TaTa — 2K3T1 T2(T5 + T5)
— K313 — K5(13 + 15) — K3 (15 + 15)
+ KsT1ToT3T4 — KETZ
— T815(12 + 15) + KsT2T3T4) X
+ (KZ+ K3+ K2 + KE+ 1215
— 2K3T1 Tp(T5 + T3) + 2K3T1 T2) X"
+ (2ky — 12)x5)
+ ((T5 + T3+ 12) (K2T5 — KaT2T3) — K2T3T4) Otz
+ (B +13) (K2 + 11T3) — KsTaTa((T2 + T3 + 12)
+ (K3 + TuT2) T275) a3
+ ((KaTZ + KaTZ — KoToT3) (T3 + T3 + 15)
— K4TZTZ) 04
— (13 + 15+ 13) (KaTaTa + T1 T2 T3 Ta — KsT2)
+ KsT3T2) . (31)
If we multiply (30) by (12 + 12 + 12), multiply (29) by
1212, and then add the resulting equations 3d)( then

we obtain £8), whereA, B, andC are suitable constant
coefficients. O

Theorem 5. Let x: | — Q"1 be a curve with constant

cone curvature inQ™ 1. Assume that the lightlike vector
field y(s) is as in(2).

i) If K =0foralli e {2,...,n},then
X(s) = a18° + @S+ a3

providedk; = 0,

X(s)=a sinh(s 2K1) +ap cosh(s 2K1) +az
providedks > 0, and

X(s) = a1 sin (S\/TK;L) +ap cos(s\/TKl) +ag

providedk; < O.
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ii) If one of thek; £ 0fori € {2,...,n}, then By (1), for Q%, we have

X(s) =ag sinh(us) + axcosh{us)

1
. o] = Z(Kix—y+101),
+agsin(vs) +ascogqvs), K( =y 2)

K2 =12 — 2K;.

Xl ~

(32) N = )

where a€ E}™2, i € {1,2,3}, are suitable vectors and
+u and +iv are the real and imaginary roots of the Thus, the first Frenet curvature of the curve is constant. By
equation (33) and @34), we have

n
t4— 2Kt — 5 k2 = 0. 1K K
! i; ! le—ﬂ—l—TBlz—KT—F?ZX—I—%Uz,

35
Proof. First, we prove ). By Propositioh all of thet; =0, T2 = (2)2’ B1 = £(TX+ a>), (39)
and because af; = 0 for alli € {2,...,n}, by the Frenet K
formulas ), we conclude that wheree = +1. Thus,T is constant. Now by35) and the
X"(S) — 2k1X (5) = O third equation of 83), we have
which has its solutions in the stated forms. Finally, we By = —~TN+0B; = €KX,

prove ii). By Propositiori, all of ther; = 0, thus, by the

Frenet formulasi), we conclude that so thatB] is lightlike, and as a result of orthonormality, we

have ) , , ,

n T2-02=0,T° =0,

X (s) — 2k1xX"(s) — ZKiZX(S) =0, o
i= and hencé& is constant.

Case 2. LeBq, B; be spacelike antll be timelike. In

which has its solutions in the forn3). O this case, we have the Frenet formulas

_ 4 T\ 0k 0 O T

5 Some Results for Spacelike Curves i N|] [gkoTo]|[N
, . . . Bi|] (0T 00O B1

In this section, we follow the relationship between Frenet B, 00-00 B,

curvatures and cone curvature functions@hin special
cases. J. Walrave irf] has classified all spacelike curves Similarly as in Case 1, this results in the Frenet curvatures
in E7, and we consider such constant cone curvatureyejng constant. In this case, we hatfe= 2k; — 12.

curves. By Corollaryi, the only nonstraightline curves in Case 3. LeN, B, be spacelike anB; be timelike. We
Q" are spacelike curves, thus we will not study the have the Frenet equations
other types. .

M. P. TorgaSev and ESucurovit in B, Remarks 3.2 T\’ 0KOO T
and 3.3] have proved that ¥: | — Q3 C E{ is a curve N _KO0TO N
in the lightlike coneQ® with constant Frenet curvatures Bi|] | 0oTom By (36)
and the principal vectoN or the binormal vectoB; is B, 0 0goO B,

timelike, thent? = @2. In the following theorems, in the _ S
cases whetB, or N is timelike, we independently prove This case is similar to Cases 1 and 2 as well, and by an
this, and next we will show that B; is timelike orBy, B, elementary calculation, we conclude thet = 12 — 2k,

are lightlike, therk, =T=0=0. andk, =T =0 = 0 are constant (se&[Remark 3.2 and
L Theorem 3.7]).

Remark.In the sequel, we will write, ko, andr forcone " ca56 4, LeN be spacelike anBy, B, be lightlike. In

;:er:\ézgur{: functions, ank, T, andd for Frenet curvatures ;g case, we have

N LT _ _ _
Theorem 6. Letx: | — Q3 C E4 be acurve inthe lightiike ~ B1 =N +TT, (B1,B2) =1, (Br,B1) = (B2,B2) =0,
coneQ?. If the cone curvature functions of the curve are and the Frenet formulas are

constant, then its Frenet curvatures are constant.

. . T\ 0 KOO T
Proof. Case 1. LetN andB; be spacelike. Thus; is N e g 70 N
timelike. In this case, we have the Frenet formulas B, =| 0o 0w o0 B,
T\’ 0 KOO\ /T B2 0 -T0-0/ \B
N -K0TO N
B,| =| o —tow | |8 | (33)  This case is similar to Case 3. We conclude #fat 12 —
B, 0 0G0 B, 21 andk, =T =0 = 0 are constant. O
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Corollary 4. Let x: | — Q3 C Ef be the curve in Cases
3 or 4 of Theoren®. If its Frenet curvatures are constant,
then itis a planar curve.

Proof. By Theorem6, in Cases 3 or 4, we havwe = 0.
Thus, by B, Theorem 3.1], the curve is planard

Theorem 7. Letx: | — Q3 C E{ be a curve in the lightlike

coneQ? with constant Frenet curvatures. Then its cone

curvature functions satisfy the relations
K2 =T1%—2Kq, Ko+ T = £TK.

Moreover, in Cases 3 and 4 of Theor&nmif K +# 0, then
T=0=0.

Proof. In all of the cases, by the second equationl (
we have

o] = KiX— Y+ Taz, K> = T2 — 2Kj.
In Case 1, by the Frenet equati@8), we have
N = —KT+TBy = %(—?Zx’+ KiX+ T/ 0rp+ TKoX+ Kot ).
SinceB; is spacelike, we get
(TR = (ko + T')2.
Again, by the Frenet equatio3), we have
B, =—-TN+0B;
:% ((KZ+2T'Kp + TK) + K{ )X
+(TK2+ K1 — TKo— TT)X + (K5 + T") Az},

and sincert’ — kj = K, + 17 = 0 andk} = 11" + 12, we
conclude that

—TN+ 0By = (TK)x.
Szincexzis lightlike, N is spacelike an®, is timelike, thus
T°=0"
Case 2 is similar.
In Case 3, by the Frenet equati@6), we have

1
N = —KT+TB; = ?(—?X’—FKiX—i— T'0+ TKoX+ Ko0).

SinceB; is timelike, we have
—(TK)? = (K2 +T')%.
Sincek # 0, we obtaint =0. O

Corollary 5. Letx:1 — Q3 c E{ be a curve in the lightlike

coneQ3. Assume that the lightlike vector field y is defined Thus,
in (2). Then the cone curvature functions of the curve are

constant if and only if its Frenet curvatures are constant.

Proof. In this case, from{N,N) = 1, we have

72 = —2K1.

Thus the first cone curvature function is constant if and
only if the first Frenet curvature function is constant. In
Case 1 of Theorer§, we conclude

Ko\ 2
T2 = (:2) :
K
Hence the second cone curvature function is constant if

and only if the second (third) Frenet curvature is constant.
O

H. Liu in [4] proved that ifx : | — Q? is a helix such
that its velocity vector field has constant angle with a
constant vector, then its cone curvature function satisfies

K(s) = c1(s+Cp) 2,

wherec; # 0 andc, are constant. Now, we prove a similar
result as follows.

Theorem 8. Let x: | — Q3 be a curve such that; and
o, have constant angle with the constant vector b. Then its
cone curvature functior; andk, satisfy

Kil + Kol = cp(54¢) 2,
where(a,b) =1, {(az,b) = I, and ¢, c; are real constants.
Proof. From{a1,b) =1, we have
(x,by =Is+1g
and
0= (aj,b) = (Kix—y— Tap,b) = ky (x,b) — (y,b) + 1l
Thus,

Ki(Is+1o) + 2k4l + (k2 + T') = 0. (37)
Similarly, (a,b) =1 yields
(a5,b) = Ka(Is+1p) — 71 = 0.
By differentiation, we have
I
T = K3S+ Ko+ Kél—o. (38)

From 38) and @37), we get
(K41 + K50 (IS + o) + 2(kal + Kb = 0,

so that ~
Kl + K5l I
K1|—|—K2|~_ Is+1o°
Hence the solutions of this differential equation are

K1l 4 Kol = c(Is+1g) 2.

K1l + K2r= ci(s+ Cz)_z,
completing the proof. O
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Theorem 9. Let x: | — Q3 be a spacelike curve such that [7] Barrett O'Neill, Semi-Riemannian geometryolume 103

the position vector ¢s) has constant inner product with a of Pure and Applied MathematicsAcademic Press, Inc.
constant vector b. If the lightlike vector fieldsy is [Harcourt Brace Jovanovich, Publishers], New York, 1983.
defined as ir{2), then the cone curvature functiors and With applications to relativity. 5
Ko satisfy [8] Miroslava Petrovic-Torga$ev and Emilij@ucurovic, W-
K\ curves in Minkowski space-timeNovi Sad J. Math.\ol.
Ko = — (K—2> (39) 32, No. 2, pp. 55-65 (2002).

[9] Johan Walrave,Curves and surfaces in Minkowski space
ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.)—

Proof. Let (x,b) =1 such that is a constant. Then Katholieke Universiteit Leuven (Belgium).

<x’ b> -0 [10] Suha Yilmaz and Melih Turgut, On the differential gedrge
’ ' of the curves in Minkowski space-time. Int. J. Contemp.
By the Frenet equationd), we have Math. Sci, Vol. 3, No. 25-28, pp. 1343-1349 (2008).
<y7 b> = Kll .

Nemat Abazari was
born in Ardabil, Iran, in 1972.
He received the BS degree
b=1K1($)X(S) +1y(s) +A(s)a2()- from the University of Tab?iz,

Thus,b’ =0 and Iran, in 1994, the MS degree
from the Valiasr University
(Ik1(S) + A (S)K2(9))X(s) + (A'(s) — lK2(s)) 02(S) = 0. of Rafsanjan, Rafsanjan, Iran,
) 2001, and the PhD degree
' in Geometry from Ankara
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