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1 Introduction and Preliminaries

In recent years, much attention has been given to
convexity theory, which plays an important and crucial
role in the development of various fields of pure and
applied sciences. Several new generalizations and
extensions of classical convexity theory have been
proposed using novel and innovative ideas, see [1,2,4,5,
6,7,8]. Iscan [9] introduced the harmonic convex
functions and derived some integral inequalities of
Hermite-Hadamard type.

Definition 1([9]). A function f : I ⊂ R \ {0}→ R is said
to be harmonic convex function, if

f

(

xy
tx+(1− t)y

)

≤ (1− t) f (x)+ t f (y),

∀x,y ∈ I, t ∈ [0,1].

It is worth to mention here that harmonicity plays a vital
role in different fields of pure and applied sciences. For
example, in [3] authors have discussed the significance of
harmonic mean in Asian options of stock. See also [10]. It
is worth mentioning that harmonic means have
applications in electrical circuits theory. To be more
precise, the total resistance of a set of parallel resistorsis
just half of harmonic means of the total resistors. For
example, ifR1 andR2 are the resistances of two parallel

resistors, then the total resistance is computed by the
formula: RT = 1

2H (R1,R2), which is half the harmonic
mean. Harmonic means also play crucial role in the
development of parallel algorithms for solving non-linear
problems. Noor [11] used the harmonic means and
harmonic convex functions to suggest some iterative
methods for solving linear and nonlinear system of
equations. Another significant and interesting application
of harmonic means is in the field of numerical analysis, as
one can obtain variants of iterative methods for solving
nonlinear equations using harmonic means. For more
details, see [13,14].
Recently Noor et al. [12] extended the concept of
harmonic convexity to two-dimensions.

Definition 2([12]). Consider the rectangle
∆ = [a,b]× [c,d] ⊂ R

2
+. A function f : ∆ → R is said to

be harmonic convex function on ∆ , if

f
(

xy
(1−λ )x+λ y ,

uw
(1−λ )u+λ w

)

≤ λ f (x,u)+ (1−λ ) f (y,w),

whenever x,y ∈ [a,b], x,w ∈ [c,d] and λ ,r ∈ [0,1].

Zhang et al. [15] introduced the class of harmonic quasi
convex functions.

Definition 3([15]). A function f : I ⊂R\{0}→R is said
to be harmonic quasi convex function, if

f

(

xy
tx+(1− t)y

)

≤ max{ f (x), f (y)},
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∀x,y ∈ I, t ∈ [0,1].

For more details and interesting results pertaining to
harmonic convexity of the functions, see [1,2,10,13].
Hermite-Hadamard’s integral inequality has attracted
several researchers due to its simplicity. It is one of the
most intensively-studied result of classical convexity. It
provides a necessary and sufficient condition for a
function to be convex. This result reads as:
Let f : I = [a,b]⊂ R→ R be convex function, then

f

(

a+ b
2

)

≤
1

b− a

b
∫

a

f (x)dx ≤
f (a)+ f (b)

2
.

Iscan [9] extended this result for harmonic convex
function.
Let f : I = [a,b] ⊂ R \ {0} → R be an harmonic convex
function, then

f

(

2ab
a+ b

)

≤
ab

b− a

b
∫

a

f (x)dx ≤
f (a)+ f (b)

2
.

For more details on Hermite-Hadamard like inequalities,
see [6,7,8].
Motivated by the research going on, we introduce
two-dimensional harmonic quasi convex functions. We
also derive some new integral inequalities of
Hermite-Hadamard type via this new class of harmonic
convexity. First of all, we define the class of
two-dimensional harmonic quasi convex functions.

Definition 4. Consider the rectangle ∆ = [a,b]× [c,d] ⊂
R

2
+. A function f : ∆ → R is said to be two-dimensional

harmonic quasi convex function on ∆ , if

f

(

xz
(1− r)x+ rz

,
yw

(1− r)y+ rw

)

≤ max{ f (x,y), f (z,w)},

whenever (x,y),(z,w) ∈ ∆ and r ∈ [0,1].

The following auxiliary result plays an important part in
obtaining our main results.

Lemma 1([12]). Let f : ∆ → R be partial differentiable
function on ∆ = [a,b]× [c,d] in R

2
+ with a < b and c < d.

If ∂ 2 f
∂λ ∂ r ∈ L1(∆), then

Ξ(a,b,c,d,x,y;∆)

=
ab(b− a)cd(d− c)

4

×

1
∫

0

1
∫

0

( 1−2λ
(λ b+(1−λ )a)2

)( 1−2r
(rd+(1− r)c)2

)

×
∂ 2 f

∂ r∂λ

( ab
λ b+(1−λ )a

,
cd

rd +(1− r)c

)

drdλ ,

where

Ξ(a,b,c,d,x,y;∆)

=
f (a,c)+ f (b,c)+ f (a,d)+ f (b,d)

4

−
1
2

[

ab
b− a

{ b
∫

a

f (x,c)
x2 dx+

b
∫

a

f (x,d)
x2 dx

}

+
cd

d− c

{ d
∫

c

f (a,y)
y2 dy+

d
∫

c

f (b,y)
y2 dy

}]

+
abcd

(b− a)(d− c)

b
∫

a

d
∫

c

f (x,y)
x2y2 dx.

2 Integral Inequalities

In this section, we derive some new Hermite-Hadamard
type integral inequalities essentially using Lemma1 for
two-dimensional harmonic quasi convex functions.

Theorem 1. Let f : ∆ → R be partial differentiable
function on ∆ = [a,b]× [c,d] in R

2
+ with a < b and c < d

and ∂ 2 f
∂λ ∂ r ∈ L1(∆). If

∣

∣

∣

∂ 2 f
∂ r∂λ

∣

∣

∣
is two-dimensional harmonic

quasi convex function on ∆ , then
∣

∣

∣
Ξ(a,b,c,d,x,y;∆)

∣

∣

∣

≤
ab(b− a)cd(d− c)

4

×

{(

1
ab

−
2

(b− a)2 ln
( (a+ b)2

4ab

)

)

×

(

1
cd

−
2

(d − c)2 ln
((c+ d)2

4cd

)

}

×max

{∣

∣

∣

∣

∣

∂ 2 f
∂ r∂λ

(a,b)

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∂ 2 f
∂ r∂λ

(c,d)

∣

∣

∣

∣

∣

}

.

Proof. Using Lemma 1 and the fact that
∣

∣

∣

∂ 2 f
∂ r∂λ

∣

∣

∣
is

two-dimensional harmonic quasi convex function, we
have
∣

∣

∣
Ξ(a,b,c,d,x,y;∆)

∣

∣

∣

=

∣

∣

∣

∣

∣

ab(b− a)cd(d− c)
4

×

1
∫

0

1
∫

0

( 1−2λ
(λ b+(1−λ )a)2

)( 1−2r
(rd +(1− r)c)2

)

×
∂ 2 f

∂ r∂λ

( ab
λ b+(1−λ )a

,
cd

rd +(1− r)c

)

drdλ

∣

∣

∣

∣

∣
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Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.12, No. 6, 1203-1207 (2018) /www.naturalspublishing.com/Journals.asp 1205

≤
ab(b− a)cd(d− c)

4

×

1
∫

0

1
∫

0

( |1−2λ |
(λ b+(1−λ )a)2

)( |1−2r|
(rd +(1− r)c)2

)

×

∣

∣

∣

∣

∣

∂ 2 f
∂ r∂λ

( ab
λ b+(1−λ )a

,
cd

rd +(1− r)c

)

∣

∣

∣

∣

∣

drdλ

≤
ab(b− a)cd(d− c)

4

×

1
∫

0

1
∫

0

( |1−2λ |
(λ b+(1−λ )a)2

)( |1−2r|
(rd +(1− r)c)2

)

×max

{∣

∣

∣

∣

∣

∂ 2 f
∂ r∂λ

(a,b)

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∂ 2 f
∂ r∂λ

(c,d)

∣

∣

∣

∣

∣

}

drdλ

=
ab(b− a)cd(d− c)

4

×

{(

1
ab

−
2

(b− a)2 ln
((a+ b)2

4ab

)

)

×

(

1
cd

−
2

(d− c)2 ln
( (c+ d)2

4cd

)

}

×max

{
∣

∣

∣

∣

∣

∂ 2 f
∂ r∂λ

(a,b)

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∂ 2 f
∂ r∂λ

(c,d)

∣

∣

∣

∣

∣

}

.

This completes the proof.⊓⊔

Theorem 2. Let f : ∆ → R be partial differentiable
function on ∆ = [a,b]× [c,d] in R

2
+ with a < b and c < d

and ∂ 2 f
∂λ ∂ r ∈ L1(∆). If

∣

∣

∣

∂ 2 f
∂ r∂λ

∣

∣

∣

q
is two-dimensional

harmonic quasi convex function, where 1
p +

1
q = 1, q > 1,

then
∣

∣

∣
Ξ(a,b,c,d,x,y;∆)

∣

∣

∣

≤
ab(b− a)cd(d− c)

4(p+1)
2
p

×

((

b1−2q − a1−2q

(b− a)(1−2q)

)

×

(

d1−2q − c1−2q

(d − c)(1−2q)

)

×

[

max

{∣

∣

∣

∣

∣

∂ 2 f
∂ r∂λ

(a,b)

∣

∣

∣

∣

∣

q

,

∣

∣

∣

∣

∣

∂ 2 f
∂ r∂λ

(c,d)

∣

∣

∣

∣

∣

q}]) 1
q

.

Proof. Using Lemma1, Hölder’s inequality and the fact

that
∣

∣

∣

∂ 2 f
∂ r∂λ

∣

∣

∣

q
is two-dimensional harmonic quasi convex

function, we have
∣

∣

∣
Ξ(a,b,c,d,x,y;∆)

∣

∣

∣

=

∣

∣

∣

∣

∣

ab(b− a)cd(d− c)
4

times

1
∫

0

1
∫

0

( 1−2λ
(λ b+(1−λ )a)2

)( 1−2r
(rd +(1− r)c)2

)

×
∂ 2 f

∂ r∂λ

( ab
λ b+(1−λ )a

,
cd

rd +(1− r)c

)

drdλ

∣

∣

∣

∣

∣

≤
ab(b− a)cd(d− c)

4

( 1
∫

0

1
∫

0

|(1−2λ )(1−2r)|pdrdλ

)
1
p

×

( 1
∫

0

1
∫

0

1
(λ b+(1−λ )a)2q

1
(rd+(1− r)c)2q

×

∣

∣

∣

∣

∣

∂ 2 f
∂ r∂λ

( ab
λ b+(1−λ )a

,
cd

rd +(1− r)c

)

∣

∣

∣

∣

∣

q

drdλ

)
1
q

≤
ab(b− a)cd(d− c)

4(p+1)
2
p

×

( 1
∫

0

1
∫

0

( 1
(λ b+(1−λ )a)2q

)( 1
(rd +(1− r)c)2q

)

×

[

max

{
∣

∣

∣

∣

∣

∂ 2 f
∂ r∂λ

(a,b)

∣

∣

∣

∣

∣

q

,

∣

∣

∣

∣

∣

∂ 2 f
∂ r∂λ

(c,d)

∣

∣

∣

∣

∣

q}]

drdλ

)
1
q

≤
ab(b− a)cd(d− c)

4(p+1)
2
p

×

((

b1−2q − a1−2q

(b− a)(1−2q)

)

×

(

d1−2q − c1−2q

(d− c)(1−2q)

)

×

[

max

{∣

∣

∣

∣

∣

∂ 2 f
∂ r∂λ

(a,b)

∣

∣

∣

∣

∣

q

,

∣

∣

∣

∣

∣

∂ 2 f
∂ r∂λ

(c,d)

∣

∣

∣

∣

∣

q}]) 1
q

.

This completes the proof.⊓⊔

3 Conclusion

In this paper, we have introduced and studied a new class
of two dimensional harmonic quasi convex functions. We
have derived some new integral inequalities of
Hermite-Hadamard type involving two-dimensional
harmonically quasi convex functions.
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