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Abstract: In this paper, optimal control theory is applied to a system of ordinary differential equations representing a dysentery
diarrhea epidemic. Optimal control strategies are proposed to reduce the number of infected humans and the cost of interventions.
The Pontryagin’s maximum principle is employed to find the necessary conditions for the existence of the optimal controls. Runge-
Kutta forward-backward sweep numerical approximation method is used to solve the optimal control system. The incremental cost-
effectiveness analysis technique is used to determine the most cost-effective strategy. We observe that the control measure implementing
sanitation and education campaign is the most efficient and cost-effective.
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1 Introduction

Mathematical modeling plays an important role in terms
of understanding of the underlying mechanisms that
influence the spread of the diseases and used as a crucial
instrument for the implement of control strategies. Most
of the existing epidemic models fall into autonomous and
non-autonomous systems. In the first case, intervention
strategies are modeled by a constant parameter and the
aim is to understand how changes in the parameter values
changes the dynamics of the system in the long term.
Usually the aim is to determine the best parameter value
for a given performance measure. In the second case,
intervention strategies vary as a function of time and the
aim is to find the best function for a given performance
measure. Mathematical control theory is a basic principle
which is applicable to solve the latter case [1]. It is
developed to determine a control and a state values for a
dynamical system in a specified period in order to
minimize or maximize a certain goal.

Optimization and optimal control problems have got a
lot of attention from researchers all over the globe. For
instance, Hailay Berhe [2] have solved constrained
optimization problems using penalty function methods
and Blayneh, Kbenesh and Cao, Yanzhao [3] presented an

autonomous ordinary differential equation model with
vector control and treatment model, and a time-dependent
counter part of the model involving an optimal control of
vector-borne diseases with treatment and prevention as
control measures. Furthermore, Makinde and Okosun [4]
presented the impact of chemotherapy on optimal control
strategies on malaria transmission with infective
immigrants. Recently, the authors in [5] applied optimal
control theory on HIV-TB co-infection model and
Okosun and Makinde [6] studied the co-infection model
of malaria and cholera diseases with optimal control.
However, all of these studies failed to include a
cost-effectiveness analysis of the intervention methods
employed.

The present paper aims to develop an optimal control
epidemic model of dysentery diarrhea. More specifically,
the system is formulated as an optimal control problem by
implementing continuous controls treatment,
environmental sanitation and health education for
changes in personal hygienic practices. Pontryagin’s
maximum principle is used to find the necessary
condition for the controls to be optimal. The study
compares different control strategies and recommends the
best control strategy in terms of cost-effectiveness in a
relatively short period.
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This paper is organized as follows. After this
introduction Section 2 presents the system framework,
and further formulated as an optimal control problem.
The numerical method is given in Section 3. In Section 4,
numerical simulation and discussion with given
parameter values are performed. Brief conclusion is
presented in the last Section.

2 Model formulation

In this section, we formulate and analyse a mathematical
model of dysentery diarrhea. The modelled populations
include pathogens and humans. The human population is
subdivided into three classes. The class of individuals
who are susceptible (S), infected humans who can
transmit the disease (I), and the number of individuals
who have recovered (R). The pathogen population
(concentration of shigella dysenteriae) is represented by
B. The formulation of the model is based on the following
assumptions: disease transmission is multiple pathway.
The population is homogeneously mixed. Then rate of
recruitment of the susceptible humans by birth or
immigration isΛ . The incidence in the human to human
interaction is assumed to be standard incidence
(frequency dependent) and environment to human is
logistic. They are represented respectively by

λh =
βhI
N

and λβ =
βBB

K +B
.

K is the shigella concentration that yields 25− 50%
chance of catching dysentery diarrhea [7]. βB and βh
represent rates of ingesting shigella from contaminated
environment and through human to human interaction,
respectively.βh = cq, where c is the contact rate and q is
probability of transmission per contact. Infected humans
contribute to the concentration of shigella at a rate ofε.
The pathogen population is growing at a rate ofσ1 and its
natural death rate isσ2. We assume thatσ2−σ1 = σ > 0
represents the net death rate of the pathogen population in
the environment [8]. Recovered individuals lose
immunity and return to the susceptible class at a rate ofα.
Infected ones are assumed to recover at a rate ofγ, where
γ is the rate of natural recovery. The natural death rate of
all human classes isµ . The disease-induced death rate is
represented byd. All parameters are assumed to be
non-negative.

The corresponding systems of differential equations
and the description of the parameters are respectively
given in (1) and Table (1).
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































dS
dt = Λ +αR− (λh+λB + µ)S,
dI
dt = (λh +λB)S− (µ + γ + d)I,

dR
dt = γI− (µ +α)R,

dB
dt = εI−σB,

S(0)≥ 0, I(0)≥ 0, R(0)≥ 0, B(0)≥ 0,

(1)

where (S(0), I(0),R(0),B(0)) is the initial value of
individuals in each classes. We introduce the

Table 1: Description of parameters of model (1)

Parameters Interpretation Units

Λ Recruitment rate of
susceptible population

Humans Time−1

µ Natural death rate of humans Time−1

c Average contact rate
between susceptible and
infected humans

Time−1

q Transmission probability
per contact

Dimensionless

γ Natural recovery rate of
diarrhea

Time−1

α Relapse rate of the
recovered ones to
susceptible

Time−1

d Disease induced death rate
of dysentery diarrhea

Time−1

K Concentration of Shigella cells
βh Effective transmission rate

of diarrhea due to human to
human interaction

Time−1

βB Effective transmission rate
of dysentery diarrhea due
to environment to human
interaction

Time−1

ε Pathogen shedding rate Cells Human−1Time−1

σ1 Shigella Pathogen growth
rate

Time−1

σ2 Shigella Pathogen death rate Time−1

σ Net death rate of Shigella
Pathogen

Time−1.

time-dependent controls in the model (1) for the aim of
controlling dysentery diarrhea and study the strategies
that eradicate dysentery epidemic in the community. The
system is formulated as an optimal control problem with
the following assumptions. The control treatment rate of
infected individuals varies with time and denoted byu1.
The control sanitation rate varies with time and is denoted
by u2. We add a third control which is preventive control
(Health education and hygiene) and is denoted byu3. It is
assumed that a fraction of susceptible population are
being infectious at a rate of(1− u3)λ I and the remaining
are still in the susceptible class. Time is specified and is
relatively short and is given byt ∈ [0,T ], T is the terminal
time.

The corresponding state system for the model (1) is
given by:







































dS
dt = Λ +αR−

(

(1− u3)(λh +λB)+ µ
)

S,

dI
dt = (1− u3)(λh +λB)S− (µ + γ + u1+ d)I,

dR
dt =

(

γ + u1
)

I− (µ +α)R,

dB
dt = εI− (σ + u2)B,

S(0)≥ 0, I(0)≥ 0, R(0)≥ 0, B(0)≥ 0.

(2)
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It is also further assumed that there is limitations on the
maximum rate of treatment, sanitation and prevention
controls in a given time period T. Hence, a bounded
Lebesgue measurable control set is represented as

U =
{

u = (u1,u2,u3), 0≤ ui ≤ uimax, i = 1,2,3
}

.

The aim is to minimize the number of infected humans
and pathogen population while minimizing the rate of
interventionsu1, u2 andu3 in that period. Therefore, the
optimal control problem for the model (2) is to minimize
the objective functional:

J(u) :=
∫ T

0
[g(φ ,u)]dt =

∫ T

0
[I+B+

a1u2
1

2
+

a2u2
2

2
+

a3u2
3

2
]dt

(3)
whereφ = (S, I,R,B) solves equation (2) for the specified
control u. In the intervention of controls the solution
φ = (S, I,R,B) depends on the controls.ai ≥ 0 represents

the weights on the benefit and cost.
a1u2

1
2 is minimization

of cost of treatment and treatment rate;
a2u2

2
2 is

minimization of cost of sanitation and sanitation rate and
a3u2

3
2 is minimization of cost of protection and protection

rate [11,12].
The goal is to find an optimal control pair

u∗ = (u∗1,u
∗
2,u
∗
3), such that

J(u∗) = min
U

J(u1,u2,u3). (4)

The basic setup of the optimal control problem is to check
the existence and uniqueness of the optimal controls and
to characterize them.

2.1 Existence of the optimal controls

Theorem 2.1 Given J(u) subject to system (2) with
(S0, I0,R0,B0) ≥ (0,0,0,0), then there exists an optimal
control u∗ and corresponding(S∗, I∗,R∗,B∗), that
minimizes J(u) over U . The proof is based on the
following assumptions given in [9]:

1.The set of controls and corresponding state variables is
nonempty.

2.The measurable control set is convex and closed.
3.Each right hand side of the state system is continuous,

is bounded above by a sum of the bounded control and
the state, and can be written as a linear function ofu
with coefficients depending on time and the state.

4.The integrandg(φ ,u) of the objective functional is
convex.

5.There exist constantsC1,C2 > 0, andβ ∗ > 1 such that
the integrand of the objective functional satisfiesg ≥

C1
(

|u1|
2+ |u2|

2+ |u3|
2
)

β∗
2 −C2.

Proof.

1.U is an nonempty set of measurable functions on
0≤ T with values in real numbers R. The system (2)
has bounded coefficients and hence any solutions are
bounded on [0,T]. The corresponding solutions for the
system (2) exist [10].

2.It suffices to writeU =U1×U2×U3. So thatU =U1×
U2×U3 is bounded and convex∀t ∈ [0,T ].

3.By definition, each right hand side of system (2) is
continuous. All variablesS, I,R,B andu are bounded
on [0, T]. To prove the boundedness we use the
method in [13]. To do so we use the fact that the
supersolutions of system (2) given by



























dS̄
dt =Λ +αR̄,

dĪ
dt = (βh +βB)S̄,

dR̄
dt = (γ + u1)Ī,

dB̄
dt = ε Ī.

(5)

are bounded on a finite time interval. System (5) can
be written as

φ =







S′

I′

R′

B′






=







0 0 α 0
(βh +βB) 0 0 0

0 γ + u1 0 0
0 ε 0 0













S̄
Ī
R̄
B̄






+







Λ
0
0
0






.

(6)
The system is linear in finite time with bounded
coefficients, then the supersolutionsS̄, Ī, R̄, andB̄ are
uniformly bounded. Since the solution to each state
equation is bounded, we see that,

∣

∣

∣

∣

∣

f (t,φ ,u)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

∣









0 0 α 0
(βh +βB) 0 0 0

0 γ +u1 0 0
0 ε 0 0

















S̄
Ī
R̄
B̄









∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣









Λ
0
0
0









∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

I









0
0
u1
0









∣

∣

∣

∣

∣

∣

∣

∣

≤ K1|φ |+ I|u1|+K2

whereK1 depends on the coefficients of the system.
Thus, the assumption holds.

4.Let ϖ ∈ [0,1] and v = (v1,v2,v3) ∈ U , and
w = (w1,w2,w3) ∈U , we have
g(φ ,(1−ϖ)v+ϖw)− ((1−ϖ)g(φ ,v)+ϖg(φ ,w))

=
a1

2

(

(1−ϖ)2v2
1+2ϖ(1−ϖ)v1w1+ϖ2w2

1

)

+
a2

2

(

(1−ϖ)2v2
2+2ϖ(1−ϖ)v2w2+ϖ2w2

2

)

+
a3

2

(

(1−ϖ)2v2
3+2ϖ(1−ϖ)v3w3+ϖ2w2

3

)

−
(

(1−ϖ)(
a1

2
v2

1+
a2

2
v2

2++
a3

2
v3

2)
)

− ϖ
(a1

2
w2

1+
a2

2
w2

2++
a3

2
w2

3

)

= (ϖ2−ϖ)
( a1

2
(v1−w1)

2+
a2

2
(v2−w2)

2+
a3

2
(v3−w3)

2
)

=
(ϖ2−ϖ)

2

(

(v−w)2
)

≤ 0.
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Hence
g(φ ,(1−ϖ)v +ϖw) ≤ ((1−ϖ)g(φ ,v)+ϖg(φ ,w)).
Thus, the assumption holds.

5.Finally,

g(φ ,u) = I+B+
a1u2

1

2
+

a2u2
2

2
+

a3u2
3

2

≥
C1

2

(

u2
1+ u2

2+ u2
3

)

−C2

whereC1 = min{a1,a2,a3} , β ∗ = 2, C2 > 0. Thus,
this assumption is justified.�

Therefore, the optimal controlu exists.

2.2 Characterization of the optimal controls

The represntation of the optimal controls relies on
Pontryagin’s maximumum principle [14]. To apply this
we need to convert the optimal control problem into a
problem of minimizing point-wise a Hamiltonian, H, with
respect tou. The Hamiltonian associated to our problem
is:

H(φ ,u,λ ) = I+B+
a1u2

1

2
+

a2u2
2

2
+

a3u2
3

2

+ λ1

(

Λ +αR− ((1− u3)(λh +λB)+ µ)S
)

+ λ2

(

(1− u3)(λh +λB)S− (µ + γ + u1+ d)I
)

+ λ3

(

(

γ + u1
)

I− (µ +α)R
)

+ λ4

(

εI− (σ + u2)B
)

. (7)

Based on [15], if the controlu∗ and the corresponding
stateφ∗ are an optimal couple, necessarily there exists a
non-trivial adjoint vectorλ = (λ1,λ2,λ3,λ4) satisfying the
following equality



















dφ
dt = ∂H(φ ,u,λ )

∂λ ,

dλ
dt =− ∂H(φ ,u,λ )

∂φ ,

∂H(φ ,u,λ )
∂u = 0.

,

which gives after derivation











u∗i = 0, if ∂H
∂ui

< 0,

0≤ u∗i ≤ uimax, if ∂H
∂ui

= 0,

u∗i = uimax, if ∂H
∂ui

> 0.

Now we apply the necessary conditions to the Hamilton
function, H.

Theorem 2.2.Given an optimal controlu∗ and a solution
to the corresponding state (2), φ∗, then there exist an

adjoint vectorλ and this satisfies the following adjoint
equation:










































































dλ1
dt =

(

(1− u3) f1+ µ
)

λ1−
(

(1− u3) f1
)

λ2,

dλ2
dt =−1+

(

(1− u3) f2S
)

λ1

−
(

(1− u3) f2S− (µ + d+ γ + u1)
)

λ2−
(

γ + u1
)

λ3− ελ4,

dλ3
dt =−αλ1+

(

µ +α
)

λ3,

dλ4
dt =−1+(1− u3)S f3λ1− (1− u3)S f3λ2+(σ + u2)λ4,

where

f1 =
(λh+λB)N−λhS

N , f2 =
βh−λh

N , f3 =
βBK

(K+B)2
,

λi(T ) = 0, i = 1, · · · ,4.
(8)

λi(T ) = 0 is the transvelsality condition. Moreover, the
optimal controlu∗ is given by

u∗1 = min

{

max

{

(λ2−λ1)I
a1

,0

}

,u1max

}

,

u∗2 = min

{

max

{

λ4B
a2

,0

}

,u2max

}

,

u∗3 = min

{

max

{

S(λh +λB)(λ2−λ1)

a3
,0

}

,u3max

}

.

(9)

Proof. The adjoint equation (refadjoint:eq) is found by
differentiating the Hamiltonian (7) with respect to
φ = (S, I,R,B). That is dλ

dt =− ∂H(φ ,u,λ )
∂φ .

Assuming that the final statesS(T ), I(T ),R(T ),B(T )
are free we get the transversality conditionsλ (T ) = 0.
The optimal controlsu are found from the optimality
conditions and using the property of the control space U.
The optimality condition of the Hamiltonian gives
∂H
∂u = 0. That is

∂H
∂u1

= a1u1+λ1I−λ2I = 0⇒ u∗1 =
(λ2−λ1)I

a1
.

∂H
∂u2

= a2u2−λ4B = 0⇒ u∗2 =
λ4B
a2

.

∂H
∂u3

= a3u3+λ1λ S−λ2λ S = 0⇒ u∗3 =
(λ2−λ1)(λh +λB)S

a3
.

And using the property of the control space U, the controls
are given as

u∗1 =











0, if (λ2−λ1) I < 0,
u∗1, if 0 ≤ (λ2−λ1) I ≤ a1u1max,

u1max, if (λ2−λ1) I > a1u1max.

u∗2 =











0, if λ4B < 0,
u∗2, if 0 ≤ λ4B≤ a2u2max,

u2max, if λ4B > a2u2max.
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and

u∗3 =











0, if (λ2−λ1)(λh +λB)S < 0,
u∗3, if 0 ≤ (λ2−λ1)(λh +λB)S≤ a3u3max,

u3max, if (λ2−λ1)(λh +λB)S > a3u3max.

This can be rewritten in compact notation as equation (9).
�

Next, we check the optimal control and we find that it
is indeed a minimum one by checking the condition∂ 2H

∂u2 >

0. The second derivative of the Hamiltonian is:

∂ 2H
∂u2 =





2 0 0
0 2 0
0 0 2



.

Since this matrix is positive definite the optimal control is
a minimizer.

2.3 The optimality system

The optimality system consists of the state system (6)
with its initial conditions coupled with the adjoint system
(8) with its transversality conditions together with the
characterization of the optimal controls. It is presented as
follows.














































































































dS
dt = Λ +αR− ((1− u3)(λh +λB)+ µ)S,
dI
dt = (1− u3)(λh +λB)S− (µ + γ + u1+ d)I,
dR
dt =

(

γ + u1
)

I− (µ +α)R,
dB
dt = εI− (σ + u2)B,
S(0)≥ 0, I(0)≥ 0, R(0)≥ 0, B(0)≥ 0
dλ1
dt =

(

(1− u3) f1+ µ
)

λ1−
(

(1− u3) f1
)

λ2,
dλ2
dt =−1+

(

(1− u3) f2S
)

λ1

−
(

(1− u3) f2S− (µ + d+ γ + u1)
)

λ2

−
(

γ + u1
)

λ3− ελ4,

dλ3
dt =−αλ1+

(

µ +α
)

λ3,
dλ4
dt =−1+(1− u3)S f3λ1− (1− u3)S f3λ2+(σ + u2)λ4,

where

f1 =
(λh+λB)N−λhS

N , f2 =
βh−λh

N , f3 =
βBK

(K+B)2
,

λi(T ) = 0, i = 1, · · · ,4
(10)

2.4 Uniqueness of the optimality system

In order to successively discuss uniqueness of the
optimality system we notice that the adjoint system (8) is
also linear in λi for i = 1, 2, 3, 4 with bounded
coefficients. Thus, there exists aM > 0 such that
|λi(t)|< M for i = 1, 2,3, 4 on [0,T].

Theorem 2.3.([16]) For T sufficiently small the solution
to the optimality system (2) is unique.

Solving equation (10) analytically is not practical.
Consequently, we have to use numerical algorithm to find
the optimal control pairsφ∗ andu∗.

3 Numerical methods

To solve the optimal controls and states, we use the
Runge-Kutta numerical method using MATLAB
program. It needs to solve four-state equations and four
adjoint equations. For that, first we solve system (2) with
a guess for the controls forward in time and then using the
transversality conditions as initial values; the adjoint
system (8) is solved backward in time using the current
iteration solution of the state system. The controls are
updated by using a convex combination of the previous
controls and the values from (9). The process continues
until the solution of the state equations at the present is
very close to the previous iteration values. The algorithm
based on [17,5] is used in this paper.

Algorithm :
Result: The optimal solutionφ∗ that solves (2).
Initialization: Set N the number of subdivisions, h the
step size,t = [0,T ], toleranceδ , φold=φ0, λold = λ = 0,

u = uold , err = ||φ k−φ k−1||
||φ k ||

.

while (err < δ ) do
φold ←− φ ; uold ←−u; λold ←− λ ;
for i← 1 to N do

Solveφ forward in time (using a 4th-order
Runge-Kutta scheme) for (2) ;
Using the transversality conditionλ = 0 and the
stored values foru, φ , solveλ backward in time
(using a 4th order Runge-Kutta scheme) for (8) ;

end
Updateφ ←− φold ; uold+u

2 ←− u; λ ←− λold .
end

4 Numerical simulations

In this section, we first present the numerical simulation
of the autonomous system (1). Next, the sensitivity of the
reproduction numberR0 to the assumed system parameters
is analyzed. Finally, an optimal control strategy is designed
and presented using different control strategies.

4.1 Numerical simulation of the autonomous
system

Numerical simulations of the model (1) show that the
disease-free equilibrium is globally stable for some
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parameter values. In particular, Figure (1) shows all
solution trajectories converge to the disease-free
equilibrium E0 = (20468,0,0,0) as time goes to infinity
for R0 = 0.9928. On the other hand, the endemic
equilibrium E∗ = (1.7122,0.0083,0.0440,0.0013)× 108

is globally stable forR0 = 768.1821> 1 (Figure2).
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Fig. 1: Disease free solution trajectories.
(S0, I0,R0,B0) = (93803000, I(0),2323000,14000), Λ =
325, βh = 0.08233, βB = 0.02710, K = 196.41519, γ =
5.10986, d = 0.53777, µ = 0.01587, ε = 0.00511, α =
0.94871, σ = 0.03319, andI(0) = 100000 : 1000000 : 8000000.
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Fig. 2: Endemic solution trajectories.
(S0, I0,R0,B0) = (93803000, I(0),2323000,14000), Λ =
3.25×106

, βh = 0.08233, βB = 0.02710, K = 196.41519, γ =
5.10986, d = 0.53777, µ = 0.01587, ε = 0.00511, α =
0.94871, σ = 0.03319, andI(0) = 100000 : 1000000 : 8000000.

4.2 Sensitivity analysis of R0

In determining how best to reduce mortality and
morbidity due to the diseases, it is necessary to know the

relative importance of the different factors responsible for
the transmission and prevalence. The sensitivity of the
reproduction number to the given parameters is used to
determine the robustness of system predictions to
parameter values (since there are usually errors in data
collection and presumed parameter values) [18]. Hence,
studying its sensitivity is important in system dynamics.
A highly sensitive parameter should be carefully
estimated, because a small variation in that parameter will
lead to large quantitative changes. Less sensitive
parameter does not require as much effort to estimate
since a small change in that parameter does not result in a
big influence in the disease dynamics.

The sensitivity of a variable with respect to system
parameters is usually measured by sensitivity index.
Definition 3.1. ([1,18]) The normalized forward

sensitivity index of a variable Π that depends
differentiably on a parameterθ is defined by

γΠ
θ =

∂Π
∂θ

θ
|Π |

.

Notice thatγΠ
θ has a maximum value of magnitude 1.

γΠ
θ = 1 implies an increase (decrease) ofθ by y%

increases (decreases)Π by y%. On the other hand,
γΠ

θ = −1 indicates an increase (decrease) ofθ by y%
decreases (increases)Π by y%.

The normalized sensitivity of the reproduction number
with respect to the assumed parameters is given in Table
(2).

Table 2: Sensitivity indices ofR0

Parameter Sensitivity indices ofR0

Λ ϕR0
Λ = 0.8692

βh ϕR0
βh

= 0.1308

βB ϕR0
βB

= 0.8692

K ϕR0
K =−0.4996

µ ϕR0
µ =−0.8692

γ ϕR0
γ =−0.9712

d ϕR0
d =−0.0102

ε ϕR0
ε = 0.8692

σ ϕR0
σ =−0.4996

4.3 Numerical simulation of the optimal control
problem

Next we discuss numerical results of system (2) to show
the effect of various control strategies on the spread of
dysentery diarrhea. We assume the following conditions:
(S(0), I(0),R(0),B(0))=(93803000,448000,2323000,14000),
a1=a2=a3=500, andu1max=u2max=u3max=1.
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4.3.1 Strategy one: Implementing treatment (u1),
sanitation (u2) and education campaign (u3).

There is a pronounced difference in the number of
infectious with and without controls (Figure3). More
precisely, the total number of infectious group with
controls and without controls at the end of the period is
9530 and 502030 respectively. To achieve this, the control
profilesu2 andu3 are implemented at a maximum rate for
the whole period. The controlu1 is at a maximum level
for 6.5 years and declines afterwards to zero (Figure4).
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Fig. 3: Time series of infectious.
(S0, I0,R0,B0) = (93803000,448000,2323000,14000), Λ =
3246384.83297, βh = 0.08233, βB = 0.02710, K =
196.41519, γ = 5.10986, d = 0.53777, µ = 0.01587, ε =
0.00511, α = 0.94871, σ = 0.03319, a1 = 500, a2 = 500, a3 =
500, u1max= u2max= u3max= 1.
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Fig. 4: Control profilesu1, u2, u3.
(S0, I0,R0,B0) = (93803000,448000,2323000,14000), Λ =
3246384.83297, βh = 0.08233, βB = 0.02710, K =
196.41519, γ = 5.10986, d = 0.53777, µ = 0.01587, ε =
0.00511, α = 0.94871, σ = 0.03319, a1 = 500, a2 = 500, a3 =
500, u1max= u2max= u3max= 1.

4.3.2 Strategy two: Implementing treatment (u1),
sanitation (u2).

The number of infectious individuals at the end of the
period is 429220 (Figure5). There appears a marginal
difference on the implementation of both controls. The
implementation of both controls is decreased by 8%
(Figure6).
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Fig. 5: Time series of infectious.
(S0, I0,R0,B0) = (93803000,448000,2323000,14000), Λ =
3246384.83297, βh = 0.08233, βB = 0.02710, K =
196.41519, γ = 5.10986, d = 0.53777, µ = 0.01587, ε =
0.00511, α = 0.94871, σ = 0.03319, a1 = 500, a2 = 500, a3 =
500, u1max= u2max= u3max= 1.
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Fig. 6: Control profile whenu3 = 0. In this case the initial value
is (S0, I0,R0,B0) = (93803000,448000,2323000,14000), Λ =
3246384.83297, βh = 0.08233, βB = 0.02710, K =
196.41519, γ = 5.10986, d = 0.53777, µ = 0.01587, ε =
0.00511, α = 0.94871, σ = 0.03319, a1 = 500, a2 = 500, a3 =
500, u1max= u2max= u3max= 1.
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4.3.3 Strategy three: Implementing treatment (u1) and
education campaign (u3).

The number of infectious individuals at the end of the
period is decreased to 111390 (7). However, the
implementation of u1 is increased to the maximum
capacity between 6.5 years and the end of the period
(Figure8).
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Fig. 7: Time series of infectious.
(S0, I0,R0,B0) = (93803000,448000,2323000,14000), Λ =
3246384.83297, βh = 0.08233, βB = 0.02710, K =
196.41519, γ = 5.10986, d = 0.53777, µ = 0.01587, ε =
0.00511, α = 0.94871, σ = 0.03319, a1 = 500, a2 = 500, a3 =
500, u1max= u2max= u3max= 1.
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Fig. 8: Time series of infectious. Control profile whenu2 = 0.
(S0, I0,R0,B0) = (93803000,448000,2323000,14000), Λ =
3246384.83297, βh = 0.08233, βB = 0.02710, K =
196.41519, γ = 5.10986, d = 0.53777, µ = 0.01587, ε =
0.00511, α = 0.94871, σ = 0.03319, a1 = 500, a2 = 500, a3 =
500, u1max= u2max= u3max= 1.

4.3.4 Strategy four: Implementing sanitation (u2) and
education campaign (u3).

The number of infectious individuals at the end of the
period dramatically dropped to 11660 (Figure9). There
appears no pronounced difference on the implementation
of both controls as compared to Strategy three (Figure
10).
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Fig. 9: Time series of infectious.
(S0, I0,R0,B0) = (93803000,448000,2323000,14000), Λ =
3246384.83297, βh = 0.08233, βB = 0.02710, K =
196.41519, γ = 5.10986, d = 0.53777, µ = 0.01587, ε =
0.00511, α = 0.94871, σ = 0.03319, a1 = 500, a2 = 500, a3 =
500, u1max= u2max= u3max= 1.
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Fig. 10: Control profile whenu1 = 0.
(S0, I0,R0,B0) = (93803000,448000,2323000,14000), Λ =
3246384.83297, βh = 0.08233, βB = 0.02710, K =
196.41519, γ = 5.10986, d = 0.53777, µ = 0.01587, ε =
0.00511, α = 0.94871, σ = 0.03319, a1 = 500, a2 = 500, a3 =
500, u1max= u2max= u3max= 1.
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Fig. 11: Cost function with all controls.
(S0, I0,R0,B0) = (93803000,448000,2323000,14000), Λ =
3246384.83297, βh = 0.08233, βB = 0.02710, K =
196.41519, γ = 5.10986, d = 0.53777, µ = 0.01587, ε =
0.00511, α = 0.94871, σ = 0.03319, a1 = 500, a2 = 500, a3 =
500, u1max= u2max= u3max= 1.
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Fig. 12: Cost function whenu3 = 0.
(S0, I0,R0,B0) = (93803000,448000,2323000,14000), Λ =
3246384.83297, βh = 0.08233, βB = 0.02710, K =
196.41519, γ = 5.10986, d = 0.53777, µ = 0.01587, ε =
0.00511, α = 0.94871, σ = 0.03319, a1 = 500, a2 = 500, a3 =
500, u1max= u2max= u3max= 1.

4.3.5 Strategy five: the effect of other cost functional.

We see the effect of using other cost functional in the
optimal control problem. We target minimization of the
dysentery diarrhea infectious only equation (11). The
objective functional considered is given as:

C(u1,u2,u3) =

∫ T

0
[I +

a1u2
1

2
+

a2u2
2

2
+

a3u2
3

2
]dt. (11)

The number of dysentery diarrhea infectious humans
when we consider equation (5) and (11) are 9500 and
9530 respectively. Thus, the objective functional in
equation (5) relatively reduces the number of infected
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Fig. 13: Cost function whenu2 = 0.
(S0, I0,R0,B0) = (93803000,448000,2323000,14000), Λ =
3246384.83297, βh = 0.08233, βB = 0.02710, K =
196.41519, γ = 5.10986, d = 0.53777, µ = 0.01587, ε =
0.00511, α = 0.94871, σ = 0.03319, a1 = 500, a2 = 500, a3 =
500, u1max= u2max= u3max= 1.
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Fig. 14: Cost function whenu1 = 0.
(S0, I0,R0,B0) = (93803000,448000,2323000,14000), Λ =
3246384.83297, βh = 0.08233, βB = 0.02710, K =
196.41519, γ = 5.10986, d = 0.53777, µ = 0.01587, ε =
0.00511, α = 0.94871, σ = 0.03319, a1 = 500, a2 = 500, a3 =
500, u1max= u2max= u3max= 1.

humans as compared to (11). For it is plainly
demonstrable from (Figures16,17,18) there is no
significant difference on the implementation of the
controls.

5 Cost-effectiveness analysis

Cost-effectiveness analysis is a method used to compare
the cost benefits of implementing the control strategies
implemented in Subsection (4.3). The total cost
implemented during the entire period is:
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Fig. 15: Time series of infectious.(S(0), I(0),R(0),B(0)) =
(93803000,448000,2323000,14000), Λ =
3246384.83297, cβh = 0.08233, βB = 0.02710, K =
196.41519, γ = 5.10986, d = 0.53777, µ = 0.01587, ε =
0.00511, α = 0.94871, σ = 0.03319, a1 = 500, a2 = 500, a3 =
500.
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Fig. 16: Control profileu1. (S(0), I(0),R(0),B(0)) =
(93803000,448000,2323000,14000), Λ =
3246384.83297, cβh = 0.08233, βB = 0.02710, K =
196.41519, γ = 5.10986, d = 0.53777, µ = 0.01587, ε =
0.00511, α = 0.94871, σ = 0.03319, a1 = 500, a2 = 500, a3 =
500.

C(u) :=
∫ T

0
[C(φ ,u)]dt =

∫ T

0
[
a1u2

1

2
+

a2u2
2

2
+

a3u2
3

2
]dt.

To calculate the cost-efectiveness analysis, we follow
the method applied in [19]. It relies on calculating the
incremental cost-effectiveness ratio(ICER). This is
defined by the difference in cost between two possible
interventions divided by the difference in their outcome,
given that they compete for the same resource. Its
economic interpretation is the average incremental cost
associated with one additional unit of health outcome.
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Fig. 17: Control profileu2.
(S(0), I(0),R(0),B(0))=(93803000,448000,2323000,14000), Λ =
3246384.83297, cβh = 0.08233, βB = 0.02710, K =
196.41519, γ = 5.10986, d = 0.53777, µ = 0.01587, ε =
0.00511, α = 0.94871, σ = 0.03319, a1 = 500, a2 = 500, a3 =
500.
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Fig. 18: Control profileu3. (S(0), I(0),R(0),B(0)) =
(93803000,448000,2323000,14000), Λ =
3246384.83297, cβh = 0.08233, βB = 0.02710, K =
196.41519, γ = 5.10986, d = 0.53777, µ = 0.01587, ε =
0.00511, α = 0.94871, σ = 0.03319, a1 = 500, a2 = 500, a3 =
500.

Mathematically

ICER=
Difference in costs in strategies i and j

Difference in infected averted in strategies i and j
.

The ICER numerator includes the differences in the costs
of disease averted or cases prevented, the costs of
intervention(s), and the costs of averting productivity
losses among others. The denominator on the other hand
is the differences in health outcomes which may include
the total number of infections averted in this case.

To implement this, we simulate the model using four
intervention strategies. Using these simulation results,the
control strategies are ranked in increasing order of
effectiveness in terms of the number of infection averted.
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The number of infection averted in Strategy two, three,
four, and one in an increasing order is given in Table (3).

Table 3: Total infection averted, total cost and ICER.

Strategies Total infection averted Total cost ICER

Strategy two 72810 38281 0.526
Strategy three 390,640 48450 0.032
Strategy four 490410 48450 0
Strategy one 492500 71395 10.98.

ICER(two)=
38281
72810

= 0.526,

ICER(one)=
71395−48450

492500−490410
= 10.98,

ICER(four)=
48450−48450

490410−390640
= 0,

ICER(three)=
48450−38281

390,640−72810
= 0.032.

The comparison between strategies one and two
shows a cost saving of 0.526 for strategy two over
Strategy one. The lower ICER for Strategy two indicates
that Strategy one is strongly dominated. That is, Strategy
one is more costly and less effective than Strategy two.
Strategy one has to be excluded from the set of
alternatives since it consumes limited resources Table (4).

Table 4: ICER in increasing order of total infection averted.

Strategies Total infection averted Total cost ICER

Strategy two 72810 38281 0.526
Strategy three 390,640 48450 0.032
Strategy four 490410 48450 0.

The comparison between strategies three and two
shows a cost saving of 0.032 for Strategy three over
Strategy two. Strategy two is strongly dominated by
Strategy three. That is, Strategy two is more costly and
less effective than Strategy three. Therefore, Strategy two
is excluded from the set of alternatives so it does not
consume limited resources Table (5).

Table 5: ICER in increasing order of total infection averted.

Strategies Total infection averted Total cost ICER

Strategy three 390,640 48450 0.032
Strategy four 490410 48450 0.

With this result, we conclude that Strategy four
implementing sanitation (u2) and education campaign
(u3) has the least ICER and is more cost-effective than
Strategy three and the rest strategies.

6 conclusion

We have developed a deterministic model to study the
effects of implementing continuous controls on dysentery
epidemic model. In this process, we have designed an
optimal control problem that minimizes the cost for
implementation of the controls while also minimizing the
total infected individuals over the intervention interval.
First, we have demonstrated that optimal control exists
and that it can be portrayed in terms of the solution to the
optimality system. We additionally establish the idea that
the answer for the optimality system is unique for a
sufficiently small time. Next, we have solved the system
numerically in an attempt to understand how to eliminate
dysentery diarrhea from the community more effectively
in a cost-effective way.

Pontryagin’s maximum principle is used to find the
necessary conditions for the optimal values of the
controls that minimize the spread of the disease and cost
of implementing controls. The findings from the optimal
control problem suggest that the disease may be
eradicated by implementing continuous controls in a short
period of time. This result shows that the optimal control
measure is effective in human and environment and
finally we may have disease-free population. In particular,
the strategy implementing sanitation of the environment
and education campaign is found to be the most
cost-effective. However, control policies implementing
either of the strategies presented in this paper can reduce
the number of infectious in a community.

For future work, it would be interesting to investigate
the effect of different objective functionals and variation of
the weighting constants in the cost-effectiveness analysis.
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