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Abstract: This paper aims to study the dynamic behavior of a stochasticSIS(Susceptible-Infected-Susceptible) epidemic model with
varying population size and constant flow of new members of whom a specified fraction is infective. First, we show that the solution
is stochastically ultimately bounded and permanent. Then,we investigate the persistence in the mean of the variableI(t) (the number
of infected members). Next, we use the Markov semigroups theory to investigate the ergodicity of the solution. Mainly, we show that a
stationary distribution for the solution always exists forall values of the parameters in this model. Finally, Numerical simulations are
carried out to illustrate the theoretical results.
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1 Introduction

Mathematical epidemiology is the science that formulates
the spread of diseases with the aim of identifying factors
that are responsible for their existence. Compartmental
models have longly been a very useful tool for modeling a
communicable disease. To explain the evolution in the
number of infected patients observed in a population
infected by some epidemics like the plague, Kermack and
McKendrick [1] proposed and investigated a classicalSIR
model. Thenceforth, many other authors proposed and
studied various more realistic epidemic models and
developed a mathematically-backed results and
techniques that are still used till now (See, [2,3]).

A SISmodel is an appropriate tool which serves to
modulate a communicable disease, especially a bacterial
disease (e.g. meningitis and pneumococcus) or a
sexually-transmitted disease such as gonorrhea. To study
the effect of the arrival of infected members from the
outside of a population to the dynamics of a disease, F.
Brauer and P. Van Den Driessche [4] have proposed the
following deterministic SIS model that include some

immigration and demographic effects

{

dS= ((1− p)A−βSI−dS+ γI)dt,
dI = (pA+βSI− (d+ γ +α)I)dt,

(1)

Here, S(t) describes the number of members of the
population who are susceptible to an infection at timet,
andI(t) is the number of members infected at timet. Let
N(t) be the total population size at timet. In the SIS
model the disease confers no immunity, which means that
N(t) = S(t) + I(t). The different positive parameters in
the model are described by giving the following
assumptions:
The demographic assumptions:

1.There exist a constant flowA of new individuals into
the population in unit time, where a fractionp,(0 ≤
p≤ 1), of A is infective.

2.There is a constant per capita natural death rate
constantd > 0 in each class.

The epidemiological assumptions:

∗ Corresponding author e-mail:y.elansari4@gmail.com

c© 2018 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/120607


1128 Y. El Ansari et al.: The effect of immigration on The persistence...

3.There exist a fractionγ ≥ 0 of infectives that is
recovered and a fractionα ≥ 0 of infectives that die
from the infection in unit time.

4.β is the contact rate. Each infective producesβN
contacts sufficient to transmit the infection in unit
time.

The infection in this model cannot be eliminated from
the population because of the constant flow of new
infectivespA. Due to this, the free equilibrium state does
not exist. Furthermore, since the number of recovered
infectives γI returns to the class of susceptible, the
disease confers no immunity. The rate of new members
infected considered isβSI, the rate β may likewise
represent the successful contact rate between infected and
susceptible individuals. Forp > 0, Brauer et al. [4] has
proved in the case whereβ > 0, the existence of a unique
positive endemic equilibrium(I∗,N∗), which is globally
and locally asymptotically stable. As a result, forp > 0,
the disease remains endemic. However, the existence of a
thresholdR0 (basic reproduction number) requiresp to
tend to zero. In this case we haveR0 =

β A
d(d+γ+α) , as well

if R0 < 1, thenI∗ tends to zero.
In the real world, the parameters of a mathematical

model are permanently subject to random variability.
There are many types of noise that serve to represent
these variabilities mathematically. However, in our case
(environmental random variability in terrestrial systems)
the white noise is the most appropriate (see, Steele 1985
[5], Vasseur and Yodzis 2004 [6]). Accordingly, and by
using the technique of parameter perturbation (e.g. Zhang
et al. [7], El Ansari et al. [8]), we introduce a Gaussian
white noise disturbance into model (1) by considering the
case where the per capita natural death rate constant
d > 0 is subject to random fluctuations, We replaced by
d+σdB in both equations of (1), whereB(t) is a standard
one-dimensional Brownian motions andσ is its intensity.
We obtain the following stochastic system
{

dS= ((1− p)A−βSI−dS+ γI)dt−σSdB,
dI = (pA+βSI− (d+ γ +α)I)dt−σ IdB,

(2)

The main interest of this paper is to present a
stochastic study of aSIS model (2) with a degenerate
diffusion matrix on one hand. On the other hand, it takes
into consideration a demographic case, which is the
possibility of new arrivals of infected individuals from the
outside of a population. In fact, this is very interesting
because it considers the phenomenon of immigration
(which is constantly increasing across the world) in the
study of the spread of a disease. To validate model (2), we
use the same method as in [9,10] to prove the existence
and uniqueness of the positive solution(S(t), I(t)) with
probability one, if we start from any positive initial value
(S(0), I(0)).

In Section 2 of this paper, we give the necessary
mathematical background that we use to prove the

different results concerning the integral Markov
semigroups. In Section 3, we show the stochastic ultimate
boundedness and the permanence of the solution of model
(2) for any values of its parameters. In Section 4,
interesting results concerning the persistence in the mean
of the disease are showed. In section 5, we investigate the
ergodicity of the solution of model (2) depending on the
semigroup theory. Finally, in Section 6 we give some
numerical simulations to illustrate our results.

2 Markov semigroups

Throughout the rest of this paper, we let(Ω ,F,P) be a
complete probability space with a filtration(Ft)t≥0
satisfying the usual conditions (i.e., it is increasing and
right continuous whileF0 contains allP-null sets), we
also denote .

R
2
+ = {(x1,x2)| xi > 0, i = 1,2}

In general, consider then dimensional stochastic
differential equation

dX(t) = f (X(t))dt+g(X(t))dB(t), for t ≥ 0 (3)

with initial value X(0) = x0 ∈ R
n. B(t) denotes an

d-dimensional standard Brownian motion defined on the
complete probability space(Ω ,F,{Ft}t≥0,P). We denote
by C2,1(Rn × [t0,∞],R+) the family of all nonnegative
functionsV(X, t) defined onRn × [t0,∞] such that, they
are continuously twice differentiable inX and once int.
The differential operatorL is defined in [16]. The
diffusion matrix is defined as follows

A(X) = g(X)Tg(X).
The following theorem gives a criterion for positive
recurrence in terms of Lyapunov function [17]

Theorem 1.The system(2) is positive recurrent if there is
a bounded open subset∆ of Rn with a regular boundary,
and the following holds
(i) there exist someδ ∈ (0,1] such that, for all x∈ ∆ ,

δ |ξ |2 ≤ ξ TΣ(x)ξ ≤ δ−1|ξ |2, for anyξ ∈R
n,

(ii) there exist a nonnegative functionV : ∆c → R such
that V is twice continuously differentiable and that for
someθ > 0

LV ≤−θ , for any x∈ ∆c

Moreover, the positive Markov process X(t) has a unique
ergodic stationary distributionπ . That is, if h is a
function integrable with respect to the measureπ , then

P

(

lim
t→∞

1
t

∫ t

0
h(X(s))ds=

∫

Rn
h(x)π(dx)

)

= 1.
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Many authors use Theorem 2.1 in order to check the
existence of a unique ergodic stationary distribution for
various models (See, [18,19]). In our model, it is easy to
see thatA(S, I) is degenerate, thenA(S, I) does not satisfy
the uniform ellipticity condition i.e. the condition(i)
cannot be satisfied. In contrast we can use the theory of
integral Markov semigroups to analyze the asymptotic
properties. For the convenience of readers, we present
some definitions and results concerning the Markov
semigroups (more details in [11,13] ). In general, let
(E,E ,m) be aσ -finite measure space. defineD the subset
of L1(m) which contains all densities

D =
{

f ∈ L1 : f ≥ 0,‖ f‖L1 = 1
}

.

A linear mappingP : L1 → L1 is called a Markov operator
if P(D) ⊂ D. The Markov operatorP is called an integral
or kernel operator if there exist a measurable functionK :
E×E → [0,∞) such that

∫

E
K (x,y)m(dx) = 1 ∀y∈ E,

P f(x) =
∫

E
K (x,y) f (y)m(dx) ∀ f ∈ D.

A family {P(t)}t≥0 of Markov operator is called a Markov
semigroup if it satisfies the conditions

(i)P(0) = Id,
(ii)P(t + s) = P(t)P(s) f or s, t ≥ 0
(iii)for each f ∈ L1 the functiont → P(t) f is continuous

with respect to theL1 norm.

A Markov semigroup{P(t)}t≥0 is called integral, if for
each t > 0 the operatorP(t) is an integral Markov
semigroup. A densityf∗ is called invariant under the
semigroup{P(t)}t≥0 if P(t) f∗ = f∗ ∀t ≥ 0 . The markov
semigroup{P(t)}t≥0 is called asymptotically stable if
there is an invariant densityf∗ such that

lim
t→∞

‖P(t) f − f∗‖L1 = 0 ∀ f ∈ D.

A Markov semigroup{P(t)}t≥0 is called sweeping with
respect to a setA∈ E if for everyg∈ D.

lim
t→∞

∫

A
P(t)g(x)m(dx) = 0.

The following theorem which can be found in [12,13]
gives a sufficient condition for an integral Markov
semigroup to be either asymptotically stable or sweeping.

Theorem 2.let E be a metric space withσ -finite measure
and E the σ -algebra of Borel sets.{P(t)}t≥0 be a an
integral Markov semigroup with a continuous kernel
K (t,x,y) for t ≥ 0 . We assume that for every f∈ D, we
have

∫ ∞

0
P(t) f dt > 0 a.e. (almost everywhere)

then this semigroup is asymptotically stable or sweeping
with respects to compact sets .

The property that a Markov semigroup{P(t)}t≥0 is
asymptotically stable or sweeping for a sufficiently large
family of sets is called the Foguel alternative.

In this section, we discuss how the solution varies in
R

2
+. We give first of all the definition of stochastic ultimate

boundedness and stochastic permanence.

3 Stochastic ultimate boundedness and
permanence

Definition 1.Stochastically ultimate boundedness [20].
The solution X(t) of model(2) is said to be stochastically
ultimately bounded, if for anyε ∈ (0,1), there is a
positive constantρ = ρ(ε), such that for any initial value
X(0) = X0 ∈ R

2
+, the solution X(t) of model(2) has the

property that

limsup
t→+∞

P{|X(t)|> ρ}< ε

Definition 2.Stochastic permanence [21,22]. The model
(2) is said to be stochastically permanent if for any
ε ∈ (0,1), there exist a pair of positive constants
ρ = ρ(ε) andχ = χ(ε), such that for any initial value X0
∈ R+2, the solution X(t) of model(2) has the property
that

lim inf
t→+∞

P{|X(t)| ≤ ρ} ≥ 1− ε

and

lim inf
t→+∞

P{|X(t)| ≥ χ} ≥ 1− ε.

Theorem 3.The solution of model(2) is stochastically
ultimate bounded and permanent for any initial value
(S0, I0) ∈R

2
+.

Proof.Let X(t) = (S(t), I(t)) and N = S+ I . We define

V(X(t)) = N(t)+
1

N(t)
. Applying Itô formula we have

LV(X(t)) =(A−dN−αI)− A−dN−αI
N2 +

σ2

N

≤−d(N+
1
N
)+

2d
N

+A− A
N2 +

αI
N2 +

σ2

N

≤−d(N+
1
N
)+

2d
N

+A− A
N2 +

α +σ2

N
≤−dV(S, I)+C, (4)

where

C= sup
N∈R+

{

A− A
N2 +

2d+α +σ2

N

}

=
4A2+(2d+α +σ2)2

4A
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On the other hand, by application of Itô formula and (4),
we get

E(edtV(t)) = E(V(0))+E
[

∫ t

0
eds(dV(s)+LV(s)

)

ds
]

≤ E(V(0))+CE
[

∫ t

0
edsds

]

≤ E(V(0))+
C
d

(

edt −1
)

, (5)

It follows that

E(V(t))≤ e−dtE(V(0))+
C
d

(

1−e−dt
)

≤ E(V(0))+
C
d

H, (6)

let ϕ be a positive constant sufficiently large such that,
H
ϕ < 1. By Chebyshev’s inequality we get

P
{

N+
1
N

> ϕ
}

≤ 1
ϕ

E
(

N+
1
N

)

≤ H
ϕ

ε

This implies

1− ε ≤ P
{

N+
1
N

≤ ϕ
}

≤ P
{ 1

ϕ
≤ N ≤ ϕ

}

noting thatN2 ≤ 2|X|2 ≤ 2N2, then we have

P
{ 1√

2ϕ
≤ N(t)√

2
≤ |X(t)| ≤ N(t)≤ ϕ

}

≥ 1− ε, (7)

by Definition 1 andDefinition 2, the solutions of model
(2) are stochastically ultimately bounded and permanent.�

4 Persistence in the mean

The purpose of this section is to investigate the persistence
in the mean of the solution of model (2). To this end, we
first recall the definition of the persistence in the mean,
then we give two important lemmas that we are using to
proveTheorem 4.
For convenience and simplicity, in the next analysis we
define the following notations

Rσ =
βA

d(d+ γ + σ2

2 )

and

〈 f 〉t =
1
t

∫ t

0
f (s)ds

Definition 3.[23] The variable I in (2) is said to be
persistent in the mean if

lim inf
t→+∞

〈I〉t > 0

Lemma 1.Let (S(t), I(t)) be the solution of system(2).
With any initial value(S(0), I(0)) ∈ R

2
+, we have

lim
t→∞

S(t)+ I(t)
t

= 0 a.s. (almost surely)

Proof.Let u(t) = S(t)+ I(t), andw(u) = (1+ u)θ , where
θ > 0 is chosen later. Using Itô’s formula, we get

dw(u(t)) = L w(u)dt+θ (1+u)θ−1(−σudB), (8)

where

Lw(u) =θ (1+u)θ−1[A−du−αI ]

+
θ (θ −1)

2
(1+u)θ−2σ2u2

=θ (1+u)θ−2
{

(1+u)(A−du−αI)

+
(θ −1)

2
σ2u2

}

≤ θ (1+u)θ−2
{

(1+u)(A−du)+
θ −1

2
σ2u2

}

=θ (1+u)θ−2
{

−
[

d− (θ −1)
2

σ2
]

u2

+(A−d)u+A
}

we chooseθ > 0 such thatd− θ −1
2

σ2 := λ > 0, so

L w(u)≤ θ (1+u)θ−2
{

−λu2+(A−d)u+A
}

and

dw(u)≤θ (1+u)θ−2
{

−λu2+(A−d)u+A
}

dt

−θσu(1+u)θ−1dB

for 0< k< θλ , we have

d
(

ektw(u(t))
)

= L
(

ektw(u)
)

dt−θσektu(1+u)θ−1dB

thus

E
(

ektw(u(t))
)

= w(u(0))+E
∫ t

0
L

(

eksw(u(s)
)

ds (9)

where

L
(

ektw(u(t))
)

=kektw
(

u(t)
)

+ekt
L w

(

u(t)
)

≤θekt(1+u)θ−2
{ k

θ
(1+u)2

−λu2+(A−d)u+A
}

=θekt(1+u)θ−2
{

−
(

λ − k
θ

)

u2

+
(

A−d+
2k
θ

)

u+A+
k
θ

}

≤θektH

c© 2018 NSP
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where

H = sup
u∈R+

{

(1+u)θ−2
(

− (λ − k
θ
)u2+(A−d+

2k
θ
)u

+A+
k
θ

)}

therefore, it follows from (9) that

E(ekt(1+u)θ )≤ (1+u(0))θ +
θH
k

ekt

consequently

limsup
t→∞

E((1+u(t))θ )≤ θH
k

=: H0

which together with the continuity ofu implies that there
exist a constantM > 0, such that

E((1+u(t))θ )≤ M, t ≥ 0 (10)

with (10), we can proceed as in [24] to complete the proof.
�

Lemma 2.For any initial value (S(0), I(0)) ∈ R
2
+, the

solution(S(t), I(t)) of system(2) verifies

lim
t→∞

∫ t
0 S(s)dB(s)

t
= 0, and lim

t→∞

∫ t
0 I(s)dB(s)

t
= 0 a.s.

(11)

Proof.We proceed as in Lemma 7 of [8]. �

Theorem 4.For any positive initial value(S(0), I(0)), the
variable I(t) of model(2) is persistent in the mean a.s.,
more precisely,

lim inf
t→+∞

〈I〉t ≥
pA

d+ γ +α

Proof.We have

dI = (pA+βSI− (d+ γ +α)I)dt−σ IdB

then

I(t)− I(0)
t

=pA+β 〈SI〉t − (d+α + γ)〈I〉t

− σ
t

∫ t

0
I(r)dB(r)

≥pA− (d+α + γ)〈I〉t −
σ
t

∫ t

0
I(r)dB(r)

thus

liminf
t→+∞

I(t)− I(0)
t

≥ pA− (d+α + γ) lim inf
t→+∞

〈I〉t

− lim inf
t→+∞

σ
t

∫ t

0
I(r)dB(r) (12)

then byLemma 1andLemma 2we get

0≥ pA− (d+α + γ) lim inf
t→+∞

〈I〉t

therefore

liminf
t→+∞

〈I〉t >
pA

d+α + γ
(13)

This completes the proof.�

Remark.Theorem 4tells us that the number of infected
individuals I(t) tends to a point in time average that is
considered stable in time average.

5 Stochastically asymptotic stability and
stationary distribution

The main result of this section is the following theorem
which gives a sufficient condition for the existence of a
stationary distribution of system (2) and its asymptotic
stability.

Theorem 5.Let (S(t), I(t)) be the solution of system(2),
then for every t> 0 the distribution of(S(t), I(t)) has a
density u(t,x,y), and there exist a unique density u∗(x,y)
such that

lim
t→∞

∫∫

R2
|u(t,x,y)−u∗(x,y)|dxdy= 0.

First, we introduce an integral Markov semigroup
connected with system (2). Consider the space
(R2

+,B(R2
+),m) whereB(R2

+) be theσ -algebra of Borel
subsets ofR2

+, and m be the Lebesgue measure. By
P(t,x0,y0,A) we denote the transition probability
function for the diffusion process (St , It), i.e.
P(t,x0,y0,A) = P

(

(St , It) ∈ A|S0 = x0, I0 = y0
)

. In
Lemma 3 we prove that for each point(x0,y0) ∈ R

2 and
t > 0 the measureP(t,x0,y0, .) is absolutely continuous
with respect to the Lebesgue measure.
Denote byK (t,x,y;x0,y0) the density ofP(t,x0,y0, .).
For anyt ≥ 0 we define the operatorP(t)

P(t) f (x,y) =
∫ ∞

−∞

∫ ∞

−∞
K (t,x,y;u,v) f (u,v)dudv,

for any f ∈ D

Consequently {P(t)}t≥0 is an integral Markov
semigroup. Thus asymptotic stability of the semigroup
{P(t)}t≥0 implies the convergence inL1 of the densities
of the process(St , It) to the invariant density.

The proof of Theorem 5is based on the following
strategy described in [12].

–In Lemma 3, by using the Hörmander condition, we
show that the transition function of the process(St , It)
is absolutely continuous.

c© 2018 NSP
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–In Lemma 4, we use support theorems to prove that
the density of the transition function is positive on a
setΓ .

–In Lemma 5, we demonstrate that the setΓ is an
attractor.

–In Lemma 6, we show that the Markov semigroup
satisfies the Foguel alternative, according to
Theorem 2.

–In Lemma 7, we exclude sweeping by showing that
there exist a Khasminskii function.

Lemma 3.For every point(x0,y0) ∈ R
2
+, the transition

probability function P(t,x,y;x0,y0) has a continuous
densityK (t,x,y;x0,y0) ∈ C ∞(R+,R

2
+,R

2
+).

Proof.Let a(x) andb(x) two vectors fields inRn, then the
Lie bracket[a,b] is a vector field given by

[a,b] j(x) =
n

∑
i=1

(

ai
∂b j

∂xi
−bi

∂a j

∂xi

)

, j = 1, . . . ,n

let

a(x,y) =





(1− p)A−βxy−dx+ γy

pA+βxy− (d+ γ +α)y





and

b(x,y) =





−σx

−σy





we have

[a,b] =





−σ(1− p)A−σβxy

−σ pA+σβxy





and

[

[a,b],b
]

=





σ2(1− p)A−σ2βxy

σ2pA+σ2βxy





Put

δ1 =

∣

∣

∣

∣

∣

∣

−σ(1− p)A−σβxy−σx

−σ pA+σβxy −σy

∣

∣

∣

∣

∣

∣

and

δ2 =

∣

∣

∣

∣

∣

∣

σ2(1− p)A−σ2βxy−σx

σ2pA+σ2βxy −σy

∣

∣

∣

∣

∣

∣

As

δ1 = σ2((1− p)Ay+βxy2+βx2y− pAx
)

and

δ2 = σ3(−(1− p)Ay+βxy2+βx2y+ pAx
)

We deduce that the vectorsb(x,y), [a,b](x,y) and
[

[a,b],b
]

(x,y) span the spaceR2 for any (x,y) ∈ R
2
+.

Based on the Hörmander theorem (See Theorem 8 in
[11]), the measure P(t,x0,y0, .) has a density
K (t,x,y;x0,y0) ∈ C ∞(R+,R

2
+,R

2
+). �

In order to check the positivity ofK , we describe a
method based on support theorem [25,?].
Denoting X(t) = lnS(t) and Y(t) = ln I(t), by Itô’s
formula system (2) becomes







dX(t) = f1(X,Y)dt−σdB,

dY(t) = f2(X,Y)dt−σdB,
(14)

where

f1(x,y) =−(d+
1
2

σ2)+ (1− p)Ae−x−βey+ γey−x

and

f2(x,y) = pAe−y− (d+ γ +α +
1
2

σ2)+βex.

Fix a point(x0,y0) ∈ R
2
+ and a functionφ ∈ L2([0,T],R)

and consider the following system











dxφ (t) =−σφ(t)+ f1(xφ (t),yφ (t))
dyφ (t) =−σφ(t)+ f2(xφ (t),yφ (t))
xφ (0) = x0
yφ (0) = y0

(15)

Let Dx0,y0;φ be the Fréchet derivative of the function
h 7→ xφ+h(T) from L2([0,T];R) to R

2. If for some
φ ∈ L2([0,T];R) the derivativeDx0,y0;φ has rank 2, then
K (T,x,y;x0,y0) > 0 for x = xφ (T) andy = yφ (T). The
derivativeDx0,y0;φ can be found by means of perturbation
method for ordinary differential equations. Namely, let
Λ(t) = f ′(xφ (t),yφ (t)) where f ′ is the Jacobien of

f =

[

f1
f2

]

and letQ(t, t0) for T ≥ t ≥ t0 ≥ 0 be a matrix

function such thatQ(t0, t0) = I2, ∂Q(t,t0)
∂ t = Λ(t)Q(t, t0)

and letV =

[

−σ
−σ

]

, then

Dx0,y0;φ h=

∫ T

0
Q(T,s)Vh(s)ds. (16)

Finally, we note that

f2(x,y)− f1(x,y)=−(
γ +α

2
)+

a(z)(ex)2−b(z)ex+ c(z)
ex ,
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where

z= y− x,

a(z) = βez+β > 0,

b(z) =
γ +α

2
+ γez> 0,

c(z) = A
(

pe−z− (1− p)
)

.

If c(z)< 0 (i.e. x+ log( p
1−p)< y), there existx∗ such that

f2(x
∗,y)− f1(x

∗,y)≤−(
γ +α

2
) (17)

So, let

Γ (C) = {(x,y) ∈ R
2
+,x+C< y} andΓ = Γ (C0),

where C0 is the largest number that verifies
f2(x,y)− f1(x,y)≥ 0 for all (x,y) /∈ Γ (C).

Lemma 4.For each (x0,y0) ∈ Γ and for almost every
(x,y) ∈ Γ , there exist T > 0 such that
K (T,x,y;x0,y0)> 0.

Proof.Step 1
First, we check that the rank ofDx0,y0;φ is 2. Letε ∈ (0,T)
andh= 1[T−ε,T].
Since

Q(T,s) = I2−Λ(T)(T − s)+o(T− s)

from (16) we obtain

Dx0,y0;φ h= εV − 1
2

ε2Λ(T)V +o(ε2)

Since

V =





−σ

−σ



 andΛ(T)V =





σ((1− p)A+ γey−x)

−σβex+σ pAe−y





thenV andΛ(T)V are linearly independent for any(x,y)∈
R

2\U, where

U = {(x,y) ∈ R
2, det

(

V,Λ(T)V
)

= 0}.

Note thatm(U) = 0, andDx0,y0;φ has rank 2 for almost
every(x,y) ∈ R

2.

The next steps are to prove that for any two points
(x0,y0) ∈ Γ and(x1,y1) ∈ Γ there exist a control function
φ andT > 0 such that the solution of system (15) satisfies
xφ (T) = x1 andyφ (T) = y1.
Using the substitutionzφ = yφ − xφ , then (15) becomes






x′φ =−σφ(t)+g1(xφ(t),zφ(t)),

z′φ = g2(xφ(t),zφ(t)),

(18)

where

g2(x,z) = f2(x,x+ z)− f1(x,x+ z),

=−(γ +α)+ pAe−(x+z)+βex− (1− p)Ae−x

+βex+z− γez,

and

g1(x,z) = f1(x,x+ z),

=−(d+
1
2

σ2)+ (1− p)Ae−x−βex+z+ γez.

Step 2
Fix z0 6= z1 such that min(z0,z1) > C0. We prove that
there existφ ,T and a solution(xφ ,zφ ) of system (18) and
a constantx∗ such that zφ (0) = z0,zφ (T) = z1 and
xφ (t) = x∗.
Case 1: z0 < z1
We have, for allz∈ [z0,z1] andx∈ R

g2(x,z)>−(γ +α)+βex− (1− p)Ae−x− γez1 (19)

Let x∗ be sufficiently large such that

−(γ +α)+βex∗ − (1− p)Ae−x∗ − γez1 > 0 (20)

and letz(t) solution of






ż(t) = g2(x∗,z(t)),

z(0) = z0,

in the maximal interval[0,τ). Let φ(t) =
1
σ

g1(x
∗,z(t)),

then(xφ(t),zφ(t)) is solution of (18).
There existτ1 > 0 such that

z(τ1)> z1 or z(τ1)< z0. (21)

If not, z(t) is bouneded andτ = ∞, so by (19) and (20) we
have

ż(t)≥−(γ +α)+βex∗− (1− p)Ae−x∗ − γez1 > 0

then lim
t→∞

z(t) = ∞ which contradictz(t) is bounded.

Since (21), then there existT ∈ (0,τ) such thatzφ (T) = z1.
Case 2: if z1 < z0
Since (17), then there existx∗ such that

g2(x
∗,z)≤ −(γ +α)

2
, for anyz∈ [z1,z0]

Using a similar argument in case 1, we get the desired
conclusion.
Note that, in this step, there exist an infinity of values of
x∗.
Step 3
Fix x0 6= x1 ∈R.
Case 1: if x0 < x1
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Let L > 0 be sufficiently large such thatx1 < x0 +
L
2 and

let A0, A1 > A0 andε > 0.
Put

m= max
[x0,x0+L]×[A0,A1]

{

|g1(x,z)|+ |g2(x,z)|
}

and

τ0 = εm−1,φ ≡ −3σ−1ε−1mL
4

,

chooseε such that

ε <
L
4

andε <
A1−A0

4
,

then we have

3ε−1mL
4

−m≤ |σφ |− |g1(xφ ,zφ )| ≤ −σφ +g1(xφ ,zφ ),

which implies that

τ0(−σφ +g1(xφ ,zφ ))≥
3L
4

− ε ≥ L
2
,

thus, for everyz0 ∈ [A+ ε,A1− ε], the solution of system
(18) with xφ (0) = x0 and zφ (0) = z0 has the following
properties,zφ (t) ∈ [z0− ε,z0+ ε] for t ≤ τ0

andxφ (τ0) ∈ (x0+
L
2 ,x0+L).

So, for z1 ∈ [A0 + 2ε,A1 − 2ε] there exist
z0 ∈ [z1 − ε,z1 + ε] andT ∈ (0,τ0) such thatxφ (T) = x1
andzφ (T) = z1.
Case 2: if x1 < x0
Let L > 0 be sufficiently large such thatx0− L

2 < x1.
The same proof in case 1 works forx1 ∈ (x0− L

2 ,x0).
Step 4
Now, we claim that for any(x0,y0) and(x1,y1) ∈ Γ , there
exist a control functionφ andT > 0 such thatxφ (0) = x0,
yφ (0) = y0, xφ (T) = x1, andyφ (T) = y1.
Let ε > 0 sufficiently small such that

(x0,y0− ε) ∈ Γ and(x1,y1− ε) ∈ Γ ,

let zi = yi − xi , i = 1,2. Without loss of generality, we
assume thatz0 ≤ z1.
From step 2, there existx∗, T1 > 0, andφ1 such that

zφ1(0) = z0− ε,zφ1(T1) = z1+ ε andxφ1(t) = x∗. (22)

Note that we can choosex∗ 6= x0 andx∗ 6= x1.
From step 3, there existz∗0 ∈ (z0− ε

2,z0 +
ε
2), T2 > 0, and

φ2 such that

xφ2(0) = x0,xφ2(T2) = x∗,zφ2(0) = z0 andzφ2(T2) = z∗0.
(23)

By using the similar argument in step 3, there existz∗ ∈
(z1− ε

2,z1+
ε
2), T3 andφ̃3 such that the solution of system







x′φ̃ = σφ̃ (t)−g1(xφ̃ (t),zφ̃ (t)),

z′φ̃ =−g2(xφ̃(t),zφ̃ (t)),

verifies

xφ̃3
(0) = x1,xφ̃3

(T3) = x∗,zφ̃3
(0) = z1 andzφ̃3

(T3) = z∗,

let xφ3(t) = xφ̃3
(T3 − t) and zφ3(t) = zφ̃3

(T3 − t), then
(xφ3(t),zφ3(t)) is the solution of (18) that verifies

xφ3(0) = x∗,xφ3(T3) = x1,zφ2(0) = z∗ andzφ2(T3) = z1.
(24)

In view of

z∗0 ∈ (z0−
ε
2
,z0+

ε
2
) andz∗ ∈ (z1−

ε
2
,z1+

ε
2
)

we assume thatz∗0 = zφ1(τ1) and z∗ = zφ1(τ2), where
τ1,τ2 ∈ (0,T1). Without loss of generality, we assume that
τ1 ≤ τ2.
Let

φ(t) =







φ2(t), 0≤ t ≤ T2,
φ1(t −T2+ τ1), T2 < t ≤ T2+ τ2− τ1,
φ3(t −T2− τ2+ τ1), T2+ τ2− τ1 < t ≤ T,

whereT = T2 + τ2 − τ1 +T3. By (22), (23) and (24) we
have

xφ (0) = x0,zφ (0) = z0,xφ (T) = x1 andzφ (T) = z1.

From step 1 it follows thatK (T,x0,y0,x1,y1) > 0, which
completes the proof.�

The following Lemma can be proved by using the same
method as in Lemma 3 of [12]. We hence omit the proof
here.

Lemma 5.For every density f we have

lim
t→∞

∫∫

Γ
P(t) f (x,y)dxdy= 1.

Remark.In Theorem 5the support of the invariant density
u∗ is the setΓ .

By the support of a measurable functionf we simply mean
the set

supp( f ) = {(x,y) ∈R
2
+ : f (x,y) 6= 0}.

Lemma 6.The semigroup{P(t)}t≥0 is asymptotically
stable or is sweeping with respect to compact sets.

Proof.According to Lemma 3 ,{P(t)}t≥0 is an integral
Markov semigroup with a continuous kernel
K (t,x,y;x0,y0), and fromLemma 4for every densityf ,
we have

∫ ∞

0
P(t) f dt > 0 a.e. (25)

From Lemma 5, we know that it is sufficient to
demonstrate the restriction of the semigroup{P(t)}t≥0 to
the spaceL1(Γ ). From (25), the Foguel alternative also
follows.�
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Lemma 7.The semigroup{P(t)}t≥0 is asymptotically
stable.

Proof.We search a positive functionV such that

sup
(S,I)∈R2

+\∆ρ

LV(S, I)≤−1, for someρ > 0

where

∆ρ = (
1
ρ
,ρ)× (

1
ρ
,ρ).

Let V =
1
S
+ c(I +S)− logI , wherec> 1 is chosen later.

We have

LV(S, I) =− (1− p)A
S2 +

β I
S

+
d
S
− γI

S2 +
σ2

S

+ c(pA− (S+ I)d−αI)− pA
I

−βS

+d+ γ +α +
σ2

2

using the inequality
1
S
≤ ε

S2 +
1
4ε

, for someε > 0, we have

LV(S, I)≤− (1− p)A− ε(σ2+d)
S2 − (γ − εβ )I

S2

− I(cα − β
4ε

)−d(S+ I)−βS− pA
I

+
d+σ2

4ε
+d+ γ +α +

σ2

2

Chooseε < min
( γ

β
,
(1− p)A
σ2+d

)

andc>
β

4εα
, we get

lim
I→0+

V(S, I) = lim
S→0+

V(S, I)) =−∞

and

lim
I→+∞

V(S, I) = lim
S→+∞

V(S, I) =−∞

consequently, forρ large enough we have

sup
(S,I)∈R2

+\∆ρ

LV(S, I)≤−1.

We find a positive Khasminskii functionV which allows to
exclude the sweeping of{P(t)}t≥0, according toLemma 6
the semigroup{P(t)}t≥0 is asymptotically stable.�

Example 1.We choose the parameters in systems (1) and
(2) as follows:p= 0.001,A = 1, β = 0.01, d = 1.5, γ =
0.9, α = 0.5, andσ = 0.35.

Fig. 1: Computer simulation of the density function of the
invariant stationary distribution of system (2) for different values
of σ , and parameters ofExample 1, and(S(0), I(0)) = (0.5,0.4).

6 Discussions and Numerical Simulations

In this section, some numerical simulations are carried out
to illustrate the different theoretical results obtained.We
use Milstein’s higher-order method [27,28] to derive the
corresponding discretization equations of model (2).

Example 2.We choose the parameters in systems (1) and
(2) as follows:p= 0.8, A= 10, β = 3, d = 1.5, γ = 0.2,
α = 0.5.
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(a: the Deterministic System)

(b: the Stochastic System)

Fig. 2: Computer simulation of the pathS(t), I(t) for the
models (1)(a) and (2)(b) , using parameters ofExample 2, and
(S(0), I(0)) = (0.5,0.7).

We choose the parameters ofExample 1 arbitrary,
numerical simulations infig.1 affirm (asTheorem 5) the
existence of a stationary distribution for model (2).
Simulations are run under the different values ofσ
(σ = 0.5 or σ = 0.3 or σ = 0.2). The smoothed curves
represented infig.1 are the probability densities functions
of S(t) and I(t). The distributions represented infig.1
reflect that the stationary distribution has a big change

when we increase the valueσ . In other words, the
distribution is closer to a standard distribution whenσ
becomes gradually smaller. Using the above parameters
we haveRσ = 0.0027<< 1, and p is very small. We
notice that the level of the disease becomes gradually
smaller in long time.fig.2 (b) illustrates this situation (the
number of infected casesI(t), represented by the green
line, tends to a small value). We leave the proof of this
result for a future investigation.

7 Perspective

The added value of this paper lies in the fact that it
presents a stochastic study for a SIS model that describes
the dynamics of a communicable disease into a
population with positive flow of infectivespA. In this
case, it is impossible to have a disease-free equilibrium.
We have proved that regardless of the values of its
parameters, the solution of model (2) is stochastically
ultimately-bounded and permanent. Then we have proved
that the number of infected individualsI(t) is always
persistent in the mean. The diffusion matrix of model (2)
is degenerate, and the use of the semigroup theory
described in [11,12,13,14,15] is appropriate to
investigate the existence of a stationary distribution. We
have proved that the semigroup{P(t)}t≥0 connected
with system (2) is asymptotically stable regardless of the
values of the parameters of this system, which guarantees
regularly the existence of a unique stationary distribution.
A numerical simulation explains how the intensityσ of
fluctuations can change the deviation of this distribution.
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perturbation on prey-predator systems, Math Biosci., Vol.
206, pp. 108-119 (2007).

[14] W. Gua, Y. Cai, Q. Zhang and W. Wang, Stochastic
persistence and stationary distribution in an SIS epidemic
model with media coverage, Physica A, Vol. 492, pp. 2220-
2236 (2018).

[15] Y. Ma and Q. Zhang, Stationary distribution and extinction
of a three-species food chain stochastic model, Transactions
of A. Razmadze Mathematical Institute, Vol. 172, pp. 251-
264 (2018).

[16] X. Mao, Stochastic Differential Equations and Applications,
Horwood. Chichester (1997).

[17] C. Zhu and G. Yin, Asymptotic properties of hybrid
diffusion systems, SIAM, J. Control optim., Vol. 49, No. 4,
pp. 1155-1179 (2007).

[18] Q. Liu and D. Jiang, Stationary distribution of a
stochastic SIS epidemic model with double diseases and the
Beddington-DeAngelis incidence, Chaos, Vol. 27, 083126
(2017).

[19] Y. Cai, Y. Kang and W. Wang, A stochastic SIRS epidemic
model with nonlinear incidence rate, Applied Mathematics
and Computation, Vol. 305, pp. 221-240 (2017).

[20] B. Arifah and X. Mao, Stochastic delay Lotka-Volterra
model, J. Math. Anal. Appl., Vol. 292, No. 2, pp. 364-380
(2004).

[21] D. Jiang, N. Shi and X. Li, Global stability and stochastic
permanence of a non-autonomous logistic equation with
random perturbation, J. Math. Anal. Appl., Vol. 340, No. 1,
pp. 588-597 (2008).

[22] X. Li and X. Mao, Population dynamical behavior of non-
autonomous Lotka Volterra competitive system with random
perturbation, Discret. Contin. Dyn. Syst., Vol. 24, No. 2, pp.
523-593 (2009).

[23] L. Chen and J. Chen, Nonlinear Biological Dynamical
System, Science Press, Beijing (1993).

[24] Y. Zhao and D. Jiang, The threshold of a stochastic SIS
epidemic model with vaccination, Applied Mathematics and
Computation, Vol. 243, pp. 718-727 (2014).

[25] S. Aido, S. Kusuoka and D.W. Strook, On the support of
Wiener functionals, Kyoto University, Research Institutefor
Mathematical Sciences (1991).
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