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Abstract: This paper aims to study the dynamic behavior of a stoch&8¢Susceptible-Infected-Susceptible) epidemic model with
varying population size and constant flow of new members afrwla specified fraction is infective. First, we show that tblkitson

is stochastically ultimately bounded and permanent. Theninvestigate the persistence in the mean of the varigblgthe number

of infected members). Next, we use the Markov semigroupmyh® investigate the ergodicity of the solution. Mainlyg whow that a
stationary distribution for the solution always exists éfirvalues of the parameters in this model. Finally, Numargmulations are
carried out to illustrate the theoretical results.
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1 Introduction immigration and demographic effects

Mathematical epidemiology is the science that formulates{ gls: ((1A_ D)QI—_BdSI— dS+ IVI zj?t’
the spread of diseases with the aim of identifying factors = (PA+p (d+y+a)hdt,
that are responsible for their existence. Compartmental 1)
models have longly been a very useful tool for modeling a i
communicable disease. To explain the evolution in theHere, S(t) describes the number of members of the
number of infected patients observed in a populationPoPulation who are susceptible to an infection at time
infected by some epidemics like the plague, Kermack andnd! (t) is the number of members infected at timé et
McKendrick [1] proposed and investigated a classigaR ~ N(t) be the total population size at tinte In the SIS
model. Thenceforth, many other authors proposed andnodel the disease confer_s no immunity, which means _that
studied various more realistic epidemic models andN(t) = S(t) +1(t). The different positive parameters in
developed a mathematically-backed results anch® model are described by giving the following
techniques that are still used till now (Se23)). assumptions: _

A SISmodel is an appropriate tool which serves to "€ demographic assumptions:

modulate a communicable disease, especially a bacterial 1 There exist a constant flotv of new individuals into

disease (e.g. .menin.gitis and pneumococcus) Of a ihe population in unit time, where a fractiqn (0 <
sexually-transmitted disease such as gonorrhea. To study p < 1), of Ais infective. -

the effect of the arrival of infected members from the > There is a constant per capita natural death rate
outside of a population to the dynamics of a disease, F.  gnstand > 0 in each class.

Brauer and P. Van Den Driesschg have proposed the

following deterministic SIS model that include some The epidemiological assumptions:
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3.There exist a fractiory > 0 of infectives that is different results concerning the integral Markov
recovered and a fractioo > 0 of infectives that die  semigroups. In Section 3, we show the stochastic ultimate
from the infection in unit time. boundedness and the permanence of the solution of model
4.3 is the contact rate. Each infective produggN (2) for any values of its parameters. In Section 4,
contacts sufficient to transmit the infection in unit interesting results concerning the persistence in the mean
time. of the disease are showed. In section 5, we investigate the
ergodicity of the solution of modePR} depending on the
semigroup theory. Finally, in Section 6 we give some
numerical simulations to illustrate our results.

The infection in this model cannot be eliminated from
the population because of the constant flow of new
infectivespA. Due to this, the free equilibrium state does
not exist. Furthermore, since the number of recovered
infectives yl returns to the class of susceptible, the
disease confers no immunity. The rate of new member2 Markov semigroups
infected considered igBSl, the rate 3 may likewise
represent the successful contact rate between infected anthroughout the rest of this paper, we €@, F,P) be a
susceptible individuals. Fop > 0, Brauer et al. 4] has  complete probability space with a filtratiofiF; );=o
proved in the case whefe> 0, the existence of a unique  satisfying the usual conditions (i.e., it is increasing and

positive endemic equilibriunil*,N*), which is globally  rignt continuous whileFy contains allP-null sets), we
and locally asymptotically stable. As a result, for- 0,  z)so denote

the disease remains endemic. However, the existence of a

thresholdZ, (basic reproduction numb%rlz requir@sto R? = {(x,%2)| % >0, i=1,2}
tend to zero. In this case we havw® = T@ryra) S well
if Zo < 1, thenl* tends to zero. In general, consider then dimensional stochastic

In the real world, the parameters of a mathematicaldifferential equation
model are permanently subject to random variability.
There are many types of noise that serve to represent dX(t) =f(X(t))dt+g(X(t))dB(t), for t >0 3)
these variabilities mathematically. However, in our case
(environmental random variability in terrestrial syst¢ms With initial value X(0) = xo € R". B(t) denotes an
the white noise is the most appropriate (see, Steele 198§-dimensional standard Brownian motion defined on the
[5], Vasseur and Yodzis 2004]). Accordingly, and by ~ complete probability space?, T, {Ft }t>0,P). We denote
using the technique of parameter perturbation (e.g. Zhan§y C**(R" x [to,],R,) the family of all nonnegative
et al. [7], El Ansari et al. B]), we introduce a Gaussian functionsV (X,t) defined onR" x [to,%] such that, they
white noise disturbance into modd)) (by considering the are continuously twice differentiable i and once irt.
case where the per capita natural death rate constardthe differential operator?” is defined in L€. The
d > 0 is subject to random fluctuations, We replacby  diffusion matrix is defined as follows

d+ odBin both equations ofl), whereBi(t) is a standard AX)=g(X)Tg(X). o y
one-dimensional Brownian motions aads its intensity. ~ The following theorem gives a criterion for positive
We obtain the following stochastic system recurrence in terms of Lyapunov functiohi/

dS= ((1— p)A— BSI—dS+yl)dt— oSdB Theorem 1The systen(2) is positive recurrent if there is
{dl = (pA+BSI— (d+y+a)l)dt— oldB, a bounded open subsatof R" with a regular boundary,

@) and the following holds
(i) there exist somé < (0, 1] such that, for all xc A,

The main interest of this paper is to present ag§|&|? < &Tx(x)€ <6 1&|?, foranyé € R",
stochastic study of &ISmodel @) with a degenerate (i) there exist a nonnegative functioff : A® — R such

diffusion matrix on one hand. On the other hand, it takesthat ¥ is twice continuously differentiable and that for
into consideration a demographic case, which is the IS twi inuously di :

possibility of new arrivals of infected individuals fromeh somed >0

outside of a population. In fact, this is very interesting LY < -6, foranyxe A°
because it considers the phenomenon of immigratiorM
(which is constantly increasing across the world) in the
study of the spread of a disease. To validate magjele
use the same method as i@ 10] to prove the existence

oreover, the positive Markov procesgtXhas a unique
ergodic stationary distributionrt. That is, if h is a
function integrable with respect to the measmghen

and uniqueness of the positive soluti¢&t),1(t)) with 1t
probability one, if we start from any positive initial value P (Iim —/ h(X(s))ds= h(x)n(dx)) =1
(S(0),1(0)). et/ =

In Section 2 of this paper, we give the necessary
mathematical background that we use to prove the
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Many authors use Theorem 2.1 in order to check theThe property that a Markov semigroufP(t)}i>o is
existence of a unique ergodic stationary distribution forasymptotically stable or sweeping for a sufficiently large
various models (Seel8 19]). In our model, it is easy to  family of sets is called the Foguel alternative.

see thaA(S 1) is degenerate, thel(S, 1) does not satisfy In this section, we discuss how the solution varies in
the uniform ellipticity condition i.e. the conditiori) Ri.We give first of all the definition of stochastic ultimate
cannot be satisfied. In contrast we can use the theory dboundedness and stochastic permanence.

integral Markov semigroups to analyze the asymptotic

properties. For the convenience of readers, we present

some definitions and results concerning the Markov3 Stochastic ultimate boundedness and

semigroups (more details in1,13] ). In general, let
(E, &, m) be ao-finite measure space. defibethe subset
of L*(m) which contains all densities

D={fel':f>0,f|.=1}.

A linear mapping® : L — L1 is called a Markov operator
if P(D) C D. The Markov operatoP is called an integral
or kernel operator if there exist a measurable function

E x E — [0, ) such that

/E%(x,y)m(dx) =1 VyeE,
Pf(x):/E%(x,y)f(y)m(dx) vf eD.

A family {P(t)}+>0 of Markov operator is called a Markov

semigroup if it satisfies the conditions

(HP(0) = 1d,

(i) P(t+s)=P(t)P(s) forst>0

(iifor each f € L! the functiont — P(t)f is continuous
with respect to thé&! norm.

A Markov semigroup{P(t) };>o is called integral, if for
eacht > 0 the operatorP(t) is an integral Markov
semigroup. A densityf, is called invariant under the
semigroup{P(t) }+>o if P(t)f. = f. vt >0 . The markov
semigroup{P(t) }+>o is called asymptotically stable if
there is an invariant density such that

lim [IP()f ~ .. =0 vfeD.

A Markov semigroup{P(t)};>0 is called sweeping with

permanence

Definition 1.Stochastically ultimate boundednes&0][
The solution Xt) of model(2) is said to be stochastically
ultimately bounded, if for any € (0,1), there is a
positive constanp = p(¢&), such that for any initial value
X(0) = Xo € R?, the solution Xt) of model(2) has the
property that

limsupP{|X(t)| > p} <€
t—+oo

Definition 2.Stochastic permanenc@1,22]. The model
(2) is said to be stochastically permanent if for any
€ € (0,1), there exist a pair of positive constants

p= pge) andx = x(&), such that for any initial value X
€ R+-#, the solution Xt) of model(2) has the property
that

iminf P{IX(t) < p} = 1—¢
and

Im&fﬂ"ﬂx(tﬂ >x}>1-c¢.

Theorem 3The solution of mode(2) is stochastically
ultimate bounded and permanent for any initial value

(So,lo) € R2.
ProofLet X(t) = (S(t),I(t)) andN = S+ 1. We define
V(X(t)) =N(t)+

. Applying Itd formula we have

respectto a seéi € & if for everyg € D. N(t)
lim | P(t)g(x)m(dx) = 0. A—dN—al 2
%, J, POgGImic) V(D) =(A-dN-a) - AT O
The following theorem which can be found iiZ 13 1 2d A al o2
gives a sufficient condition for an integral Markov <—d(N+ N)+W+A_ N2 W—FW
semigroup to be either asymptotically stable or sweeping. 1 2 A e
a+o
Theorem 2let E be a metric space witbi-finite measure <—d(N+ N) N +A— N2 N
and & the o-algebra of Borel sets{P(t)}i>o be a an < V(ST 4C @)
integral Markov semigroup with a continuous kernel <-dv(SH+C,
J(t,xy) fort > 0. We assume that for everyefD, we  , hare
have
o A 2d+a+0?
/ P(t)fdt >0 a.e. (almost everywhere) C= Nse%p {A— N2 T}
0 +
then this semigroup is asymptotically stable or sweeping _ 4N+ (2d+a +0%)?
with respects to compact sets . 4A
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On the other hand, by application of Itd formula addl, (
we get

E(e™V(t)) = E(V(0) + E [/t

A eS(dV(s) + LV(s))ds}

< E(V(O))+CE{/Otedsds]

C (gt
< E(V(O))+a(e -1), )
It follows that
C
—dt c ot
E(V (1) < e “EV(0) + 5 (1-e )
C
< E(V(O))JraHa (6)
let ¢ be a positive constant sufficiently large such that,
% < 1. By Chebyshev’s inequality we get
1 1 1 H
P{N+N >¢} < ¢E(N+ ) 3¢
This implies

1—£§P{N+%§¢}§

P{%SNS(P}

noting thatN? < 2|X|?> < 2N?, then we have

_NW

1
P{m_ﬁ_|><<>|SN(t>g¢}21—e, )

by Definition 1 and Definition 2, the solutions of model
(2) are stochastically ultimately bounded and permahént.

4 Persistence in the mean

Lemma 1Llet (St),1(t)) be the solution of systerf®).
With any initial valug(S(0),1(0)) € R2, we have

i 010

fim =0 a.s. (almost surely)

ProofLet u(t) = S(t) +1(t), andw(u) = (1+u)®, where
6 > 0 is chosen later. Using Itd’s formula, we get

dw(u(t)) = Zw
where

Lw(u) =0(1+u)?{A—du—al]
( 1)

(wdt+6(1+u)®~(—oudB), (8)

)0222

(1+
8(1+u)® 2{ (14 u)(A—du—al)
+(921)02u2}
<01+ u)9*2{(1+ u)(A—du)+e%102u2}
A o B s
+(A—d)u+A}

we choosé > 0 such thatl — 6—10 =A>0,s0

2
2w(u) < 6(1+ u)9—2{ A4 (A d)u+A}
and
dw(u) <6(1+ u)“{ AR+ (A— d)u+A}dt
—6ou(1+u)®tdB

The purpose of this section is to investigate the persistencfor 0 <k < 6A, we have

in the mean of the solution of mode?)( To this end, we
first recall the definition of the persistence in the mean,

d(ew(u(t))) = 2 ('W(u))dt — Botu(1+u)®~1dB

then we give two important lemmas that we are using toy ;s

proveTheorem 4

For convenience and simplicity, in the next analysis we E(ektw( u(t ))) — w(u(0

define the following notations

__BA
dd+y+%)

)t:%/otf(s)ds

Definition 3.[23] The variable | in(2) is said to be
persistent in the mean if

%U:

and

I{Tmom)t >0

)+ E/Otf(eksw(u(s))ds ©)
where
2 (w(u(t))) =ke‘w(u(t)) + e Lw(ut))
<01+ u)e—z{g(H u)?

—)\u2+(A—d)u+A}

=6e(1+u)?2{ — (A - g)uz
+ (A_d+%k)u+A+g}
<BeH

(@© 2018 NSP
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where then byLemma landLemma 2we get
H=sup{(1+u??(~ (A~ K2y (adr 2y 0> pA—(d+a+y)liminf(l):
ueR 4 6 6
k therefore
+A+3)}
6 . pA
. liminf(l); > ——— (13)
therefore, it follows from @) that t—oo d+a+y

E(€(14+u)f) < (1+u(0)% + H ga

k
consequently
limsupE((1+u(t))®) < L Ho
t—o0 k

which together with the continuity af implies that there
exist a constaril > 0, such that

E((1+u)?) <M, t>0 (10)

with (10), we can proceed as i24] to complete the proof.
U

Lemma 2For any initial value (S(0),1(0)) € R2, the
solution(S(t), I (t)) of systen{2) verifies

lim M =0, and lim M =0 as.
t—o0 t t—oo t
(11)
Proof We proceed as in Lemma 7 ][ O

Theorem 4For any positive initial valugS(0),1(0)), the

variable I(t) of model(2) is persistent in the mean a.s.,

more precisely,

L pA
>
iminfihe 2 57 y+a

ProofWe have
dl = (pA+BSI— (d+y+a)l)dt—oldB
then

1(t) —1(0)
t

=pA+B(Sht— (d+a+y)(I)

>pA- @+ a+yiy- [ 1r)as0)
0

thus

o
liminf
t—+oo

w > pA— (d-+a+y)liminf (1)

_Imﬂf%/otl(r)dB(r) (12)

This completes the proofl

RemarkTheorem 4tells us that the number of infected
individuals | (t) tends to a point in time average that is
considered stable in time average.

5 Stochastically asymptotic stability and
stationary distribution

The main result of this section is the following theorem
which gives a sufficient condition for the existence of a
stationary distribution of systen?) and its asymptotic
stability.

Theorem 5Let (S(t),1(t)) be the solution of systel®),
then for every t> O the distribution of(S(t),1(t)) has a
density ut,x,y), and there exist a unique density(x,y)
such that

lim //2 1U(t, X,Y) — U, (x,y)| dxdy= 0.
R

t—ro0

First, we introduce an integral Markov semigroup
connected with system 2). Consider the space
(R2,%(R?),m) whereZ(RR? ) be theg-algebra of Borel
subsets ofIR{i, and m be the Lebesgue measure. By
P(t,%0,Y0,A) we denote the transition probability
function for the diffusion process(S,lt), i.e.
2(t,%0,¥0,A) = P((S,h) € AlS = Xo.lo = Yo). In
Lemma 3 we prove that for each poirfk, yo) € R? and

t > 0 the measure?(t,xo, Yo, .) is absolutely continuous
with respect to the Lebesgue measure.

Denote by 7 (t,x,Y; %o, Yo) the density ofZ(t,Xo,Yo,.).
For anyt > 0 we define the operatéit)

POfXY = [ [ A txyuyiuvdudy
forany fe D

Consequently {P(t)}i~0 is an integral Markov
semigroup. Thus asymptotic stability of the semigroup
{P(t)}+>0 implies the convergence ib' of the densities
of the proces$S, I;) to the invariant density.

The proof of Theorem 5is based on the following
strategy described irip)].

—In Lemma 3, by using the Hérmander condition, we
show that the transition function of the procéSs ;)
is absolutely continuous.

(@© 2018 NSP
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—In Lemma 4, we use support theorems to prove that and
the density of the transition function is positive on a

setl. & = 0% (—(1— p)Ay+ Bxy*+ Bxy + pAX)
—-In Lemma 5, we demonstrate that the sEtis an
attractor. We deduce that the vectorb(x,y), [a,b](x,y) and

-In Lemma 6, we show that the Markov semigroup [[a,b],b](x,y) span the spac®? for any (x,y) € R2.
satisfies the Foguel alternative, according toBased on the Hormander theorem (See Theorem 8 in
Theorem 2 [11), the measure £(t,x0,Y0,.) has a density

—In Lemma 7, we exclude sweeping by showing that ¢ (t,X,y;Xo,Yo) € ¢ (R, R2 ,R%). 0
there exist a Khasminskii function.

In order to check the positivity of?", we describe a

Lemma 3For every point(xp,Yo) € Ri, the transition  method based on support theore?,[?].
probability function 22(t,x,y;Xo,yYo) has a continuous Denoting X(t) = InS(t) and Y(t) = Inl(t), by Itd’s
density. 7 (t,X,Y; Xo,Yo) € € (R4, R ,R?). formula system?) becomes

ProofLet a(x) andb(x) two vectors fields ifR", then the dX(t) = f1(X.Y)dt — odB
Lie bracket|a, b] is a vector field given by { (t) = L(X,Y)dt - odB,

dY(t) = fo(X,Y)dt — odB,

o (20093
let where
1
(1= p)A—Bxy—dx+yy fu(xy) = —(d+50%) + (1 - p)Ae ™~ Be’+ ye'™
a(x,y) =
PA+Bxy—(d+y+a)y and
and iy 1,
fa(x,y) = pAe Y — (d+y+a+§0 )+ Be~.
—0OX
b(x,y) = Fix a point(xo, Yo) € R? and a functiornp € L?([0,T],R)
—ay and consider the following system
we have Brg(t) = ~00(0) + F(Xp(0) Yo(1)
=—00(t)+ f2(Xe(t),
®
[a.b]= Yo(0) = Yo
—OpA+ aBxy ¢
Let Dy,yo0 be the Fréchet derivative of the function
and Yoi
h  Xpn(T) from L%([0,T|;R) to R2. If for some
0%(1— p)A— 0?Bxy @ € L%([0,T|;R) the derivativeDy, y,.¢ has rank 2, then
[[a,b],b] = (T,%,Y;X0,Yo) > 0 for x = Xo(T) andy = yu(T). The
0°pA+ 0?Bxy derivativeDy, y,:p can be found by means of perturbation
method for ordinary differential equations. Namely, let
Put A(t) = f'(Xe(t),ye(t)) where f’ is the Jacobien of
—0(1— p)A— oBxy —ox f = “2] and letQ(t,tg) for T >t > to > 0 be a matrix
o= ,
_opA+aBxy —ay function such thaQ(to,to) = I, 220} — A()Q(t, o)
and and letV = {:g] , then
0%(1— p)A— 0?Bxy —ox T
&= Dy yoioh = / Q(T,9Vh(s)ds (16)
0%pA+0?Bxy —oy 0
As Finally, we note that
2_
&1 = 0% ((1— p)Ay+ Bxy?+ BxPy — pAX) Bioy)—fuxy) = (1250 + aAZ)(e) eti(z) ete@
@© 2018 NSP
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where where
Z=Y—% 92(%,2) = f2(x, X+ 2) — fa(x, X+ 2),
a(2) =P+ >0, = —(y+a)+ pAe D L Be— (1— p)Ae ™
b(z) — ”Ta L yE>0, + BT e,
o(2)=A(pe?~(1-p)). and

91(X,2) = f1(x,x+2),

1
v+a :—(d+502)+(1—p)Ae*X—Be?‘+Z+yez.
=) (7)

Step 2

So, let Fix zg # 7z such that mifzy,z;) > Co. We prove that

B P B there existp, T and a solutior(xy, z,) of system 18) and

F(C)={(xy) eRY,x+C<y}andl =T (Co), a constantx* such thatz,(0) = 7,z,(T) = z and

where Cp is the largest number that verifies )C(:(peg)e:l)z(; -< ,
f —f > 0 for all r(c. 1
2(xy) — fa(xy) = 0forall (x.y) ¢ I'(C) We have, for alk € [zp,z;] andx € R
Lemma 4 For each (Xo,yo) € ' and for almost every
(x,y) € I, there exist T > 0 such that 02(X,2) > —(y+a)+Be— (1— p)Ae *—yer  (19)
(T, X¥;%0,Yo) > 0.

If c(2) < 0 (i.e. x+log(5) <), there exisk* such that

f2(x",y) = (X", y) < —(

Letx* be sufficiently large such that

ProofStep 1 —(y+a)+Be —(1-pAeX —yr >0  (20)
First, we check that the rank @k .o is 2. Lete € (0, T)

andh=1r_ 1. and letz(t) solution of

Since

Q(T,s) =l —A(T)(T —s)+0(T —9)

from (16) we obtain 20) =2,
. - 1,
Dygyo:oh = €V — %82/\ (T)V+o0(e?) in the maximal intervalO, 7). Let ¢(t) = Egl(x ,Z(1)),
_ then(Xe), Zw) ) is solution of (L8).
Since There existr; > 0 such that
-0 o((1-p)A+ye™) 21
v andA(T)V — () >z orz(n) <z. (21)
-0 —ope+apAe” If not, z(t) is bouneded and = «, so by (L9) and Q0) we
have
thenV andA (T)V are linearly independent for arfy, y) €
R2\U, where 2(t) > —(y+a) +Be“ — (1—p)Ae X —ye >0
U={(xy) eR? det(V,A(T)V)=0}. then limz(t) = o which contradict(t) is bounded.

Note thatm(U) = 0, andDy,y,.¢ has rank 2 for almost ~Since @1), then there exist € (0, 7) such thagy(T) = z;.
every(x,y) € R2. Case2if z1 < 79
’ Since (L7), then there exist* such that

The next steps are to prove that for any two points (y+a)

(X0,¥0) € I and(xy,y1) € I there exist a control function 02(X",2) < i, foranyze [z, )
@ andT > 0 such that the solution of systerh5] satisfies 2
Xp(T) =x1 andyy(T) = yi. Using a similar argument in case 1, we get the desired
Using the substitutios, = y, — Xy, then (L5 becomes conclusion.
, Note that, in this step, there exist an infinity of values of
Xp = —0P(t) +91(Xpt): Zp(t) ) X,
Step 3
2y = B2 (Xg(t): Zp(t) ) FiX Xg # X1 € R.

(18) Case tif xg < x1

(@© 2018 NSP
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Let L > 0 be sufficiently large such that < xg + % and
let Ag, A1 > Ag ande > 0.

Put
m= max X,z —+ X,Z
[XoaXo+L]x[AO,A1]{|gl( )|+ 192( )|}
and
—1 . _ _30_18_1mL
To=em to=— — ——

4
choosee such that
L AL —Ag
£< —ande < ——
<2 ST
then we have

3e~ImL

—M< |0 —[91(Xp, Zp)| < — 0@+ Ga(Xp, Zp),

which implies that

- 3L ¢ L
=4

€], the solution of system

To(—0 @+ 091(Xp, Zp)) >3

thus, for everyy € [A+€,A; —

(18) with x4(0) = X0 and z,(0) = zy has the following
propertieszy(t) € (20— €,20+ €] fort < 19
andxy(To) € (Xo+ 5, %0 +L).

So, for 7z € [Ap + 2¢,A1 — 2¢] there exist
o€ lzn—¢zn+¢ andT € (0,19) such thaty(T) = x;

andzy(T) = z.

Case 2if x3 < Xp

LetL > 0 be sufficiently large such thag —
The same proofin case 1 works fare (xg —
Step 4

Now, we claim that for anyxp, yo) and(x,y1) € I, there
exist a control functiorp andT > 0 such thaky(0) = o,

Yo(0) = Yo. Xp(T) = X1, andyy(T) = y1.

Let € > 0 sufficiently small such that

L
§<Xl.

5.%0).

(X07y0_8) er and(xlayl_g) € ,_7

let z =y — X, i = 1,2. Without loss of generality, we
assume thaty < z;.
From step 2, there exist, T; > 0, and¢, such that

2 (0) = 20— £,2, (T1) = z1+ € andXxg, (t) = X".

Note that we can choosé # xg andx* # X;.
From step 3, there exigh € (20— 5,20+ 5), T > 0, and
¢ such that

Xy (0) = X0, X, (T2) = X", 2,(0) =

(22)

20 andzg, (T) = 7,
(23)

By using the similar argument in step 3, there exist

verifies
%4,(0) = x1,%5,(Ta) = X, 25 (0) = z1 andz; (T3) = Z,
let Xg,(t) = X5 (Ts —t) and zy,(t) = 75 (T3 —t), then

(Xgs (1), Zgs (1)) i |s the solution of {8) that verlfles

X‘PS(O) =X 7X(P3(T3) = Xl,Z(pz(O) = f andZ(pz(T:.;) =12.
(24)
In view of
& & £ €
%e(@-5n+5)andZ € (a-5.a+3)

we assume thar) = z, (11) and z* = 7, (12), where
11, T2 € (0, Ty). Without loss of generality, we assume that
71 < To.

Let
(1),
qol(t - T2+ T1)7
@(t—To— T2+ T11),

0<t<Ty,
To<t<To+T1—1q,
THO4+—T<t<T,

Pt) =

whereT = T, + 1o — 11 + T3. By (22), (23) and @4) we
have

Xp(0) = X0,29(0) =

From step 1 it follows that? (T, Xo, Yo, X1, Y1) > 0, which
completes the proof]

20,%X(T) = X1 andzy(T) = z.

The following Lemma can be proved by using the same
method as in Lemma 3 ofLlP]. We hence omit the proof
here.

Lemma 5For every density f we have

fim [ P

Remarkin Theorem She support of the invariant density
u. is the set".

f(x,y)dxdy= 1.

By the support of a measurable functibme simply mean
the set
={(xy) € R-Zi- :

supi ) f(xy) #0}.

Lemma 6The semigroup{P(t)}i>o is asymptotically
stable or is sweeping with respect to compact sets.

Proof According to Lemma 3,{P(t) }i>0 is an integral
Markov semigroup with a continuous kernel
J(t,X,Y;%0,Y0), and fromLemma 4for every densityf,
we have

/0 “P)fdt>0 ae (25)

(z1—§,21+ %), Tz andgs such that the solution of system
“ — golt JyR— From Lemma5 we know that it is sufficient to
0 TOH) — GulXp(0), 75(1)), demonstrate the restriction of the semigrdigt) }+>o to
the space.'(I"). From @5), the Foguel alternative also
Z; = =925 Z5)): follows. OJ
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Lemma 7The semigroup{P(t)}i>0 is asymptotically
stable.

ProofWe search a positive functidfh such that

sup  ZV(S1)< -1, forsomep >0
(S1)eRZ\4,

where

1 .
LetV = §+C(I +9S) —logl, wherec > 1 is chosen later.

We have

(1-pA

NED) =gt 4

d
TsTg"s
+c(pA—(S+1)d— a|)—p|—A—/35

Bl
s

O-2
+dtyta+—

. . 1o 1
using the mequaht)g < g + s for somes > 0, we have

(1-pA-c(c®+d) (y—ep)
NS <— = — =
ifea -2y s ps-PA

d+o? o’
e +d+y+a+7

+

%;fLA) andc > —P— we get

Ch [ ,
00s€e < min ( ica

y
B?

lim V(SI) = I|m V(SI))

|—0t

and

lim V(§1)= I|m V(SI)

| =00

consequently, fop large enough we have

sup  ZV(SI) < -
(S1ER2\A,

We find a positive Khasminskii functiovi which allows to
exclude the sweeping ¢P(t) }1>0, according td.emma 6
the semigroug P(t) };>o is asymptotically stablgl

Example IWe choose the parameters in systedjsand
(2) as follows:p=0.001,A=1,3=001,d=15y=
0.9,a =0.5, ando = 0.35.

— =05
a=03
— 0=02

Density
20 40 a0
1

10

0.05 010 015 020

— =05
a=03
— 0=02

Density

Fig. 1: Computer simulation of the density function of the
invariant stationary distribution of syster®) for different values
of o, and parameters &xample 1and(S(0),1(0)) = (0.5,0.4).

6 Discussions and Numerical Simulations

In this section, some numerical simulations are carried out
to illustrate the different theoretical results obtaingde

use Milstein’s higher-order metho@7,28] to derive the
corresponding discretization equations of mo@! (

Example 20We choose the parameters in systedsand
(2) as follows:p=0.8,A=10,8=3,d=15,y=0.2,
o =0.5.
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o T T T

50 100 150 200

Time(t)

(a: the Deterministic System)

o T T T

50 100 150 200

Time(t)
(b: the Stochastic System)

Fig. 2: Computer simulation of the pati$(t),I(t) for the
models ()(a) and )(b) , using parameters dxample 2 and

(S(0),1(0)) = (0.5,0.7).

We choose the parameters dixample 1 arbitrary,
numerical simulations irfig.1 affirm (asTheorem 5 the
existence of a stationary distribution for mode).(
Simulations are run under the different values of
(o0 =0.5 orog = 0.3 or g = 0.2). The smoothed curves

when we increase the value. In other words, the
distribution is closer to a standard distribution when
becomes gradually smaller. Using the above parameters
we haveZ, = 0.0027<< 1, andp is very small. We
notice that the level of the disease becomes gradually
smaller in long timefig.2 (b)illustrates this situation (the
number of infected casdst), represented by the green
line, tends to a small value). We leave the proof of this
result for a future investigation.

7 Perspective

The added value of this paper lies in the fact that it
presents a stochastic study for a SIS model that describes
the dynamics of a communicable disease into a
population with positive flow of infectivepA In this
case, it is impossible to have a disease-free equilibrium.
We have proved that regardless of the values of its
parameters, the solution of mode?) (is stochastically
ultimately-bounded and permanent. Then we have proved
that the number of infected individualgt) is always
persistent in the mean. The diffusion matrix of mod3| (

is degenerate, and the use of the semigroup theory
described in 1,1213,14,15 is appropriate to
investigate the existence of a stationary distribution. We
have proved that the semigroup?(t)}i>o connected
with system ) is asymptotically stable regardless of the
values of the parameters of this system, which guarantees
regularly the existence of a unique stationary distributio

A numerical simulation explains how the intensity of
fluctuations can change the deviation of this distribution.
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