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Abstract: In this paper we introduce the notion ®f ¢ —convex functions as generalization of convex functionsn&asic results
under various conditions for the functignare investigated. Moreover, we establish Ostrowski typgualities for twice differentiable
mappings which are— ¢ —convex.
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1 Introduction years, for example, generalized concepts such as
s-convexity (sed]]), h-convexity (see 25,28)),

The Ostrowski's inequality was introduced by Alexander m-convexity (see §,11]), MT- convexity (seel7]) and

Ostrowski in ], and with the passing of the years, others, as well as combinations of these new concepts

generalizations on the same, involving derivatives of thehave been introduced.

function under study, have taken place.

Ostrowski’s InequalityLet f : | C [0,+») — R be a
differentiable function onint(l), such thatf’ € L[a,b],
wherea,b € | with a < b. If |f/(x)] <M for all x € [a,b],
then the inequality:

The role of convex sets, convex functions and their
generalizations are important in applied mathematics
specially in nonlinear programming and optimization
1 (X_%b)zl theory. For example in economics, convexity plays a
__|_ s

2 W fundamental role in equilibrium and duality theory. The
—a

convexity of sets and functions have been the object of
Q) many studies in recent years. But in many new problems
holds for allx € [a,b]. Recently, several generalizations of encountered in applied mathematics, the notion of
the Ostrowski integral inequality are considered by manyconvexity is not enough to reach favorite results and
authors; for instance covering the following concepts: hence it is necessary to extend the notion of convexity to
functions of bounded variation, Lipschitzian, monotonic, the new generalized notions. Recently, several extensions
absolutely continuous andn times differentiable have been considered for the classical convex functions
mappings with error estimates with some special meansuch that some of these new concepts are based on
together with some numerical quadrature rules. For recengxtension of the domain of a convex function (a convex
results and generalizations concerning Ostrowski'sset) to a generalized form and some of them are new
inequality, we refer the reader to the recent pap&r3 8, definitions that there is no generalization on the domain
26,27]. The convex functions play a significant role in but on the form of the definition. Some new generalized
many fields, for example in biological system, economy,concepts in this point of view are pseudo-convex
optimization and so on1{3,24]. And many important functions [L8], quasi-convex functions 4], invex
inequalities are established for these classes of furgtion functions [L4], preinvex functions 20], B-vex functions
Also the evolution of the concept of convexity has had a[16], B-preinvex functions T] and E-convex functions
great impact in the community of investigators. In recent[29].

’f(x)_b—;l/abf(t)dt‘ <M(b—a)
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2 Preliminaries

Definition 3.Let0 < s< 1. A function f: | CR — R is
called s— ¢ —convex with respect to bifunctiop : R x

This section contains definitions and properties of R — R (briefly ¢ —convex), if

generalized convexity. Recall that a real-valued function

f defined in a real interval is said to be convex if for all
x,y € J and for anyt € [0, 1] the inequality
f(tx+ (1—-t)y) <tf(x)+ (1-t)f(y) 2

holds. If inequality (2) is strict when we say thétis
strictly convex, and if inequality (2) is reversed the
function f is said to be concave. Iril§| Hudzik H. and
Maligranda L. introduced the following generalized
concept.

Definition 1.Let0 < s< 1. The function | CR — R is
called a s-convex function in first sense if

ftx+ (1-t)y) <t (x) + (1 -t f(y)
holds forall xy €l andte [0,1].

®3)

Besides in12], Gordji M. E., Delavar M. R., De la Sen
M. introduced the definitio — convex function, where
¢ : R xR — R be a bifunction except for special case.

Definition 2.A function f: 1 ¢ R — R is called convex
with respect tap (briefly ¢ — convex), if

fltx+ (1-t)y) < f(y) +to(f(x), f(y),
forallx,yelandte [0,1].

(4)

In fact above definition geometrically says that if a
function is ¢ —convex on |, then it's graph between any
X,y € | is on or under the path starting frofn, f(y)) and
ending at(x, f(y) + ¢ (f(x), f(y))). If f(x) should be the
end point of the path for everyy € I, then we have
¢ (x,y) = x—y and the function reduces to a convex one.
Note that by taking« =y in (4) we gett¢ (f(x), f(x)) >0
for anyx € | andt € [0, 1] which implies that

¢(f(x),f(x)) >0

foranyx e I. Also if we taket = 1 in (4) we get

FO)—F(y) <o (F(x), f(y))

foranyx,y€l.If f :1 — R is a convex function and
¢ :1 x| — Ris an arbitrary bifunction that satisfies

$(xy) =x-y

foranyx,y €1, then
f(tx+ (1 —t)y) < f(y) +t[f(x) -
< fy)+to(f(x),

showing thatf is ¢ —convex.

With this, we introduce the notion of — ¢-convex
functions as a generalization gf-convex functions in
first sense combined with the definiti@n

f(y)]
f(y)),

f(tx+ (1—t)y) < f(y) +t% (f(x), f(y))
forall x,yelandte 0,1].

(®)

Remark 1.
i) If we takes= 1 in (5), then we have the definition of
¢-convex function.
ii) If we take@(x,y) = x—y in (5), then the definition of
s— ¢ —convex function is reduced to the definition ®f
convex function on the first sense.

Example lLet f(x) = x?, then f is convex and%-q&-
convex with¢ (u,v) = 2u+v, indeed

f(tx+ (1—1t)y) = (tx+ (1 —1t)y)?

122

=t 4+ 21(1—t)xy+ (1—1)%?

< Y24t 4 2txy

— 4tz {t%x2+2t%xy}.
On the other hand;
O<t<1=>0<t% <1

122 4 22Xy < X+ 2XY < X4 X+ VP
Hence,
F(tx+ (1—t)y) < Y2 +12 [28+y7]
1
= f(y) +t2¢(f(x), f(y)).

Example et f(x) = x" and 0< s< 1, thenf is convex
and s¢-convex with
A

) (U,V) = z
k=1

n

indeed
f(tx+ (1-t)y) = f(y+t(x—y)) = (y+t(x—y))"

The following results ares— ¢ —convex versions of
some basic theorems and propositions related to
¢ —convex functions.

Definition 4.The functionp is said to be

(i) nonnegatively homogeneousifyx, yy) = y¢ (x,y) for
allx,ye Randally > 0.

(ii) additive if ¢ (x1,y1) + ¢ (X2,y2) = ¢ (X1 + X2, Y1 +Y2)
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for all X1,X2,Y1,Y2 € R.

(iii) nonnegatively linear it satisfies conditions (i) and.(
(iv) nondecreasing in first variable if X y implies that
®(x,2) < P(y,z), forall x,y,ze R.

(v) nonnegatively sublinear in first variable if
d(yx+Vy,2) < vp(x,2) + ¢(y,2), for all x,y,z€ R and
y>0.

The proof of Propositiond, 2 and Theoreml is
straightforward.

Proposition 1Let 0 < s < 1. Consider s- ¢—convex
function f: 1 € R — R such that¢ is nonnegatively
homogeneous. Then for any > 0, the function
yf:l CR— Riss—¢—convex.

Proposition 2Let0 < s < 1. Consider two s- ¢ —convex
functions fg: 1 C R — R such that¢ is additive. Then
f4+9:1 CR— Riss— ¢—convex.

Theorem1let 0 < s < 1. Consider s— ¢—convex
functions f:1 C R — R for i = 1,...,n such that¢ is
nonnegatively linear. Then foy > 0, i = 1,...,n, the
function =35,y fi:1 CR— Ris s— ¢—convex.

The class ofs — ¢ —convex functions with special
conditions are closed under Sup operation.

Theorem2let 0 < s < 1. Suppose that
{fi -1 = R,j € J} is a nonempty collection of
s— ¢ —convex functions such that
(a) there exista € [0,00] and B € [—1,] such that
#(x,y) = ax+ By forallx,y € R,
(b) For each xe I, supje; fj(x) exists inR.
Then the function f: | — R defined
f(X) = supesfj(x) for each xe |, is s— ¢ —convex.
ProofFor anyx,y € | andA € [0, 1], we can drive following
relations
f(tx+(1-t)y) = supes fj(tx+ (1-t)y)

< supea{ fj(y) +t50 (fj(x), fj(y))}

= supea{ fj(y) +t3(a fj () + Bfj(y))}

< (1+Bt%)supea{fj(y)} + at’supea{fj(x)}

= (L4 Bt3)f(y) + at®f(x)

= f(y) +t3(Bf(y) +af(x)

= () +t59(f(x), f(y)).
The proof is complete.
Propositon3let 0 < s< 1. If f: 1 C R —> R is
s— ¢ —convex and attains a local minimun a I, then
¢ (f(x),f(x0)) >0, forany xe I.

ProofSuppose thaf has a local minimun atp € |. For
any x € | we can findt > 0 sufficiently small such that
tx+ (1 —t)xo € Nr (Xo). Therefore we get

f(x0) < f(tx+ (1—1t)x) < f(xo) +t5% (f(x), f(x0))
This implies that

%9 (f(x), f(x0)) =0,
the proof is complete.

by

Proposition 4Let 0 < s < 1. Any s— ¢ —convex function
f : [a,b] — R with respect to a bifunctiofp bounded from
above on {[a,b]) x f([a,b]), has lower and upper bounds.
That s, there are m> 0 and M> 0 such that nx f(x) <
M, for all x € [a,b].

ProofSuppose tha¥ly is upper bound o on f([a, b)) x
f([a,b]). Consider ank =ta+ (1—t)be [a,b] with t €
[0,1]. In fact, we have
f(x) = f(ta+ (1—t)b) < f(b)+t3¢(f(a), f(b))
< max{ f(b), f(b)+¢(f(a), f(b))}
< maxXf(b), f(b)+Mg}.
Now setM = max{ f (b), f (b) + My }. For lower bound of

f consider an arbitrary point in the forﬁfg—b —tin [a,b],
then

)
o
<

a+b

t a+b t
§+T_§)
b

SEER)

IN

IA
—
)
‘+
o
|
N
+
A
<
e

whereK is an upper bound of on [0,1]. Now consider

m= f (a—ert’) — KM, and the statement is proved.

Definition 5.A function f: [a,b] — R is said to satisfy a
Holder condition, or isa-Holder continuous ora, b,
when there are nonnegative real constantsrksuch that

[T0x) — f(y)| < K[x—y|7, (6)
for all x,y € [a,b].

Lemma 1Suppose that f1 — R is an s— ¢ —convex
function and¢ is bounded from above on(lf) x f(I).
Then f satisfies the #lder condition on any closed

interval [a, b] contained in f, the interior of I. Hence, f is
uniformly continuous ofe, b] and continuous on°l

ProofLet My be the upper bound of on f(l) x f(l).
Consider closed intervé, b] in 1° and choose& > 0 such
that [a — €,b + €] belongs tol. Suppose thak,y are
distinct points of [a,b]. Setz =y+ £:(y—x) and
= gm;f‘x‘. So it is not hard to see thate [a— €,b+ €]

andy =tz+ (1—t)x. Then
f(y) = f(tz+(1-t)x)

< fX)+t%(f(2), f(x)

< f(X) +tMy.

This implies that
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if K = Y% then

(F(y) — 1(x)) < Kly—x® Ka(x.t) —

Also if we change the place afy in above argument we

have f(x) — f(y) < K|y — x]%  Therefore withxe [ab].
[f(x) — f(y)| < K]y — x]°>. Hence f is sHolder . Lo . .
continuous, and as consequenck is uniformly Theorem 3Let f: 1 — R be twice differentiable mapping

continuous orja,b] C I°. Finally since[a,b] is arbitrary ~ O [&b] such that feL(ab])ando<s<1If[f']is
onl°, thenf is continuous on°. s-¢-convex, then the following inequality

T)z if telax

02 if t € (x,b]

i {(b—x)k+l+(—l)k(x—a)k+l:| f“‘)(x)

b
Corollary 1.Suppose that f 1 — R is an s¢-convex /a f(t)dt— ==y
k=0 :

function and¢ is bounded from above on(lf) x f(l),

then f is integrable on(l) x f(1). - (x—a?® /1 f”(a)’ N Ap(X)
- 2 3 s+3
Corollary 2. Any s¢-convex function f, with bifunctiog
bounded on a subsetd R admits a uniformly continuous . (= {1 £ ()| + ZJ( ) 1k Be® |
extention toR, which is Hlder continuous with constant kK+s+1
C and exponendr. The largest such extension is: holds for all x € |ab], where
() = inf (1(y) + Cx—y[}. a0 = e(|f@l |l and
ye " "
Be(x) = (|10, |1 (b)]).

Prooflt's inmediate since als— ¢ —convex function is a i i
Holder contiuous function. ProofFrom Lemma2, properties of modulus, making the

changes of variables= (1—t)a+tx in the first integral
The next result establishes an Ostrowski typeandu= (1—t)x+tbinthe second integral we have that,
inequality fors— ¢ —convex functions. b 2 kL ke g kL
a & (k+1)!

Corollary 3.Suppose that f: [ab] — R is an

s— ¢—convex function. Then for all& [a, b] we have the X (U— b (b—u)2
inequality = /a u)‘du+/x 2
b —a) 1,
‘f(x)_bi/ f(t)dt‘ _ K 5 ) /0t2 ’f ((1—t)a+tx)’dt
—a
: (b—x)3 1 2 e
K (/b=x\5 /x—a\* + /(1—t) (-t th)]at.
<—\ = + | (b—a)>. 2 Jo
s+1\\b—-a b—a

Since|f"| is s<-convex, (5) gives

Prooflt's inmediate since als— ¢ —convex function is a b 2 kL 1)K(y kL
/ f(t)dt— 2 |:(b X) +( 1) (X a) :| f(k) (X)
a k=0

Holder contiuous function and by theorem 3 Q.

(k+1)!
(X_a)3 1 2 " S " "
. < — | t°(|f (9)+t f (@)],|f (x dt
3 Main Results 2 /0 (’ ( )’ 4’(' @17 ”))
(b—X)3 l _ 2 " s " "
In this section, we give some integral approximation of T /0 (-1 <’f (X)’H ¢ <|f LIt (b)|))dt
f € C%([a,b]) such thatf" ¢ L([a,b]) using the following ~ (x—a)3 /1 o Ay (X)
lemma as the main tool (se€]]. 2 3 (a)’+ s+3
Lemma 2Let f: [a,b] — R be a differentiable mapping (b—x)* {1 £ () + ZJ( ) ik _Ba(x)
such that f is absolutely continuous da, b]. Then for all S+k+ L
X € [a,b] we have the identity which is the desired result. The proof is completed.
(b— X)k+1+( 1) (Xx— a)k+1 ® Remark 2. If in Theorem3 we choose = %b then
/ f(t [ ki) } (%) we have
+/a Ko(x.)f" (t)dt, e (3 Al 3 (502 (2 _pyel2)]
S HUGIE s+3 3 ( ) Z( ) " ksl

where the kernel K: [a,b]?> — R is given by
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Corollary 4.Let f: 1 — R be twice differentiable mapping Proof.Fr_om Lemma, properties of modulus, and Holder’s
on [a,b] such that f € L([a,b]) and0 <s< 1. 1f |f'|is  inequality, we have
s-convex in the first sense, we have the following estimate

[0 e~ {b N+ (Y (X“”O"”} 19

b X)k+1+( 1)k(x_a)k+l
(k+1)! Ve, { (k+1)! Mk)(x)
: K M ' b (b—u?
° \f’<a>\+(b X7, \z( )k+sl)+1+ S/a 2 ””””*/x 7
(x—a)® 1,
x—a)3+ (b—x)3 (1_ i (2) (—1)k ) = T/O t2 ‘f ((1—t)a+tx)‘dt
2s+3) - 2 \3 G\K/ktstl (b-x)? /1(1-t)2 | (1-tx+ th)
ProofTaking ¢ (u,v) = u—vin Theoreng. 2 , 0 . - .
— " P " " q q
Corollary 5.Let f: 1 — R be twice differentiable mapping = u za) (/0 tZPdt) (/o ‘f ((1—t)a+tx)‘ dt)
on[a,b] such that f € L([a,b]). If |f"| is ¢-convex, then (b_x3 [ 1 - g\
S (/0 (1—t)2pdt) (/ ‘f”((l—t)x—i—tb)’ dt)

f”(u)’ du

[ X)l-

the foIIowing inequality

- § [

+

(
(X_a)3 N ) (/k+1)-/ _Z(Zpﬁ(/ ‘f (1- ta+tx‘ dt)
S (5 f/(a)“ﬂ<|f/(a>|7|f,(x>\)) +(b7</ ‘f (1— t)x+tb)’ dt> .
Gl . x)* {1””( )|+132¢ (\f”(x)\?\f”(b”)} 2(2p+1)°

holds for all xe [a,b]. Since|f"|9is s-¢-convex, we deduce

ProofTakings= 1 in Theorens.

b 2 okt kg Akl
e

=0

Corollary 6.Let f: 1 — R be twice differentiable mapping
on[a,b] such that f € L([a,b]). If |f"| is convex, we have

the following estimate < % </01 (\f”(a)\q 159 (\f”(a)|f4,|f”(x)\<4)) dt) ’
/bf(t)dt_i {(b—x)k+l+(—1)k(X—a)k+l} £09 () (bp+ ; . .
a &o (k+1)! TGl (/ (11" 019+t (\f”(x)|q,|f”(b)\q))dt)q
< 2 (=)t @]+ (b—x7I " (o) e
2 _ (e @)t o (1F @I )
8((x—a)3+(b—x)3)|f”(x)|. 2(s+1)d(2p+1)
(b—x)3 . . , !
. 1 A I f a f af (b9 .
ProofTakings= 1 in Corollary4. 2ot ) 2pr ) <(S+ ) X +¢<| ) [f (b)] ))

Theorem 4Let f: | — R be twice differentiable mapping

on [a,b] such that f e L([ab]),0<s<1landletq> 1 Remark 3. If in Theorem4 we choose = %), then

with %)+ % = 1. If |f"|%is s-¢-convex, then the following we have
mequallty
b a+b\ (b-a)?d,, /a+b
Dt { (b—x)k+L 4+ (—1) (X_a)k+1} (0 ‘/a f(t)dh(b—a)f(T)— Pl (T)’
& ) o b
P 1 32(s+1)4(2p+1)P
< —(X, U (st DI @I A . b "
2As+1)5(2p+1)p {(<s+1>f”<a>|‘1+A¢<a§>) e ) }
—x)3 " 1
b ()6 014 By )
2(s+1)a(2p+1)»
holds for all X € [ab], where
Ap(X) _ ¢ ( f”(a) a9 f”(x)‘q) and Corollary 7.Let f:1 — R be twice differentiable mapping
Loa g ’ on|a,b] such that f € L([a,b]), 0 <s<1andletg>1
By(x) =¢ ( () | (b)’ ) with 5+ 3 = L. If |f"|9is s-convex in the first sense, then

(@© 2018 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1122 %N S\ Y. Rangel-Oliveros, M. Vivas-Cortez.: Ostrowski type inetjties for functions...

the following inequality holds ProofFrom Lemma2, properties of modulus, and power
mean inequality, we have

b 2 k1 _1\K(y _ a\k+1
/af(t)dt_ﬂ(b X) ?L(+11))!(X a) }fm(x)

k=0

<b7x>k+1+<71>k<xfa>k“] 9

N 2
/abm)dt*k;{ (k+1)!

X (u—a)z " b (bfu)2 "
x_a)3 , , 1 < [F52 ] wour [T 25 | o
< %(S\f (@)% +|f (X)Iq)q x_a)? [, |
2(s+1)a(2p+1)» =5 /tz [ (1-ta+t at
b_ 3 " " ; ‘
b O (1 o)) M 0 Py 7 I a-vxsnf
2(s+1)d(2p+1)» 2 1
< ! 3( 2dt> ( tz ’f (1- ta+tx)’ dt)
. v 1 1
ProofTaking ¢ (u,v) = u—vin Theoremg. N 3( 1 tzdt>1 q( (112 ’f (1 t)x+tb)’ dt)q
3x—a (1, a4
Corollary 8.Let f: | — R be twice differentiable mapping =~ & (/ e [f(@-va+w| d‘)
on[a,b] such that f € L([a,b]), 0 < s<1andletg>1 3t (b—x? / i 0 \&
with %4— 1 _1.1f |f"|9is s-convex in the first sense, then © 6 (/ 107 |f" (- x| dt) '

the following inequality holds. Since| fff|q is s-¢-convex, we deduce

/: f(t)dt — Iﬁo {(b_x)kﬂ (L a)kﬂ (%)

(k+1)!

b 2 (b—X)k+l+(—l)k(X—a)k+1 ® . .
f(t)dt — f Lo : : L
/a e kgo{ (k+1)! } ® < L(aa)s ( f”(a)‘q/ltzdt+A¢(x)/lt2+Sdt>
- 3 " "
PRECLL L (sI" @)1+t (1) b x)? ) A\
2(s+1)3(2p+1)7 +T(f ‘/ 1-t) dt+B¢()/ S(1-1) dt)
—x)3 " " 1 L
b BT (6111 b)) B al (1. @ A2
2s+1)i(2p+1) e R Ry
(b—x)3 (1., a 2 /2\ (—1k g
ProofTaking¢ (u,v) = u—vin Theoremd, we obtain (7). N 6 <_ (X)’ +B¢(X)kzo(k) k+s+1>

Then using the following algebraic inequality for alb > ]
0, and 0< a < 1 we have(a+b)? < a® +b?, we getthe ~ The proofis completed.

desired result. )
Remark 4. If in Theorem5 we choosex = %), then we

have
Theorem 5Let f: | — R be twice differentiable mapping ’/ ot (b2 (J) -
on[a,b] such that f € L([a,b]), 0 < s< 1and let g> 1. 2
If | |9 is s-¢-convex, then the following inequality [(1 f,,(a)‘q+A¢< : >> i . (E
s+3 3

2 48
1
e (i) ]

Corollary 9.Let f: 1 — R be twice differentiable mapping
on [a,b] such that f € L([a,b]),and let o> 1. If |f"|%is

<a+b>‘§ 3d(b-a)®

3 (X6 a)* <% N(a)’q+A¢(>2>é ¢-convex, then the following inequality
= s+
é b B 2 (b—x)k+1+(—1)k(x—a)k+1 ®
(b6_x)3 (; f”(x)‘q+B (x)éo(i) Si—kljfl) ’ /f‘ f(t)d: kzo{ (k+1)! }f 1(X)
< Sxa @ '@+ 30 (F@|" f”(x)\q))q
holds for all X € Ja,b], where b - . o
mx = o(|r@ el and ¢+ <f”(x)] (RG] )) ,
By (X) = ¢ ( f' (X)’qa f"(b)‘q)- holds for all xe [a, b].
(@© 2018 NSP
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Corollary 10.Let f: 1 — R be twice differentiable
mapping ona, b] such that f € L([a,h]), 0 < s< 1 and

let q> 1. If |f"|9 is s-convex in the first sense, then the

following inequality

b 2
/a f(t)dt—kzo{

(b_x)k+1 + (—l)k(X— a)k+l
(k+1)!

} £ (x)

: , L 3i(b—x)3
- Z(ii:s)?% H R =
(; ')+ [0 = | 0] ki(i) k(+_s1f1>q’

holds for all xe [a,b].

ProofTaking¢ (u,v) = u—vin Theorenb.

Since| f'|%is s<¢-convex, we deduce
(b— X)k+l+( 1) (X_a)k+l ®
dt— { K1) } Y (x)
(x—a)3 /|,
< ( f(
(b—x)3 (

2

 (x—a®/ 1
2 2q+1

(b—x)3 1
2 20+1

a)’q/ t2th+A¢(x)/ltZ‘H‘Sdt)c1I

’/ (1— t2th+B¢()/ S(1— t)2th>q

Fafts 20
B¢(X)>q-

20+s+1
Remark 5. If in Theorem6 we choosex = a+b , then

+

, 2q )k
rof'+ 3 (%) erens

Which in the desired result.

+

Theorem 6Let f: | — R be twice differentiable mapping we have

on|a,b] such that f € L([a,b]),0<s< 1and let g> 1.
If |"|%is s-p-convex, then the following inequality

2 {(b—x)“l—i—(—l)k(x—a)k*l} f(k)(x)

/:f(t)dt—z

Zo (k+1)!
(X—a)s 1 " q A¢(X) é
= 2 (2q+1 f (a)‘ 2q+s+1>
(b=x3( 1 |, qa 2 /2q\ (-1 i
T ( f (X)‘ +k§0< k ) krs+1X |
holds for all X € [ab], where
" q " q
rpx) = o([f@| o)) and
n q " q
Bs () =9 (|1"00[ |7 0)]).

Proof From Lemma2, properties of modulus, and power

mean inequality, we have

2 {(b—x)k+1+(

/:f(t)dt—z

k=0

Ky _ g)k+1
(k+l)) — } o

g/:@ N(u)’du—i—/x (b _2“) /()| du
- M/ltz ’f”((l t)a—i—tx)’dt
(1— t)x—i—tb)’d

IN

3( ) < t2q ‘f ((1—t)a+tx)‘th>é

x)? ) < (1- t)?lq‘f”((l-t)xﬂb)]%lt)é

( 1
)
2 (0

OJ

((1- ta+tx)’ dt)uI
1

(A)

(1- t2q

(1- t)x—i—tb)’ dt) .
0

e (1) ()

1
- (b—af( 1 A«»(%"))q

(a)|*+

16 2q+1 29+s+1

1
,(ath\[0 2 2q) (-1k a+b)\?
f( 2 ) +th) k) kis+1\ 2 '

Corollary 11.Let f: 1 — R be twice differentiable
mapping ona,b] such that f € L([a,b]), and let g> 1. If
|f"|%is ¢-convex, then the following inequality

b B (b— X)k+1+( ) (x— a)k+l ®
/a f(t)dt kzo[ ®i D) } fH(x)
)

x—a)p® [/ 1
2 20+1

=2 (sl
holds for all X €
p0 = e(|@f ]
8o =9 (||| "))
Corollary 12.Let f : 1 — R be twice differentiable

mapping ona, b] such that f € L([a,b]), 0 < s< 1 and

let q> 1. If |f"|9 is s-convex in the first sense, then the
following inequality

B (b—x 4 (=D (x—a)*1T
[rom- 3 (OO JRAC

(b-a® [ 1
16 2q+1

f”(a)‘qu o

<

m+n>

" ‘q

Bs (X) a
+am+mm+m)’
[a,b], where
X) }q) and

NN N
x—a3( 1 (. qa |f (X)’ —|f (a)‘
< —|f (a)‘ +
2 20+1 20+s+1
(b-=x3/ 1 (., a a
+ 2 (m f (X)‘ +Cf,s,q) 5

(@© 2018 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1124 %N S

Y. Rangel-Oliveros, M. Vivas-Cortez.: Ostrowski type inetjties for functions...

holds for all X € J[ab, where
2 —1)k " q " q
Cf,sq:zﬁo< kq) k(+514)rl< f (b)‘ —|f (X)‘ )

ProofTaking ¢ (u,v) = u—vin Theoreng.

4 Applications for some particular mappings

In this section we give some applications for the special

case where the functiogi(f(x), f(y)) = f(x) — f(y), in
this case we have thdtis s-convex in the first sense.

Example 3.et s € (0,1) and p,q,r € R, we define the
functionf : [0, +w) — R as

p if t=0
f(t) = :
gts+r if t>0

we have that iff > 0 andr < p, thenf is s-convex in the
first sense (sedp)). fwe do ¢ (f(x), f(y)) = f(x)—f(y),
thenf is s-¢-convex, but is nop-convex becausé is not
convex.

Example 4n the previous example §= % p=1q9=2
andr = 1 we have thaf : [0,+ o) — R, f(t) = 2% +1is
$-¢-convex. Then if we defing: [0, +w) — R,

gt) = &t2 + £, we have tog’(t) = 2t2 + 1 is
$-¢-convex in[0, +-o0) with ¢ (f(x), f(y)) = f(x) — f(y).
Using Theorem3, for a,b € [0,4+) with a < b and
X € [a,b], we get

— 16-35yx +35 21

Z ez 1-n -'3"-| Lt

Fig. 1: Graphical representation of the inequality of example 4.

Example 5f we defineg(t) = t1—42 we have thay”(t) is 3-
¢- convex with¢ (u,v) = 2u+v (see exampld) and by
TheorenB, for a,b € R with a < b andx € [a,b], we have
that
b°—a® (b—a) b? —2x(b—a) —a? (b—x)%+(x—a)®

60 12 Xt[ 3 ]Xt{ 6 ]XZ

< (x—a)® [xzf gaz] +(b-x)? [Zl—ﬁ)xz+ %sz] .

Moreover, if choose = 22, we obtain byRemark 2 that

b°—a® (b—a)(a+b)* (b—a)3(a+b)?
60 192 96
(b—a)® [&? N 922 + 2ab+b? . (a+b)? N 8a? -+ 16ab-+ 24b?
16 |3 14 12 105
Then

<

b—a)®

‘(a—b)5’ < (47722 + 194ab+ 161b2).

Therefore

47722 + 194ab+ 1612
- )

(a—h)? <

Example 6Considerg: R — R, g(t) = €. Then we choose
s=1and¢(u,v) = u—vin Corollary4, we have

2 b—x)k+1+(—1)k(x—a)k+1
e [( ]é
i
57 3 13 2 2.3 3 —x)3
‘lG(bz 7a2)+35(a —b®)y/x+35(b? — a?)x2 +21(a— b)x? < ;_CZ_'_ (b 24X) o [(x—a)3—|— (b—x)3] %
35 37@ z 3
< 5 (1ravB)b-xe- 3 (2“/6_”6@) @ Choosinga= 0 andb = 1, we have for alk € [0, 1]
2 kL K(y gkl
o1 {(b X (D ]ex‘
Remark 6. In particular if we choosa= 0 andb =1, we k=0 (k+1)!
have forx € [0, 1], we get a graphic representation of the _ 1 . (1_X)3e+ [x3+ a x)3] &
Example 4 Y >4 g
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