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Abstract: In this work we introduce a modification of the exponentially-modified Gaussian distribution. This new distribution is
obtained by combining a logistic distribution with an exponential distribution, and is more flexible than other similardistributions.
We provide a closed expression for the density function and obtain some important properties useful for making inferences, such as
moment estimators and maximum likelihood estimators. By way of illustration, and using real data to show the effectiveness of the new
model, we compare it with known related models, showing thatthe new model achieves a better fit.
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1 Introduction

Logistic (LOG) distribution has been used in various
areas of scientific research, for example bioassay
problems see [4], income distribution see [5], survival
analysis see [8]. The properties and applications of LOG
distribution are available in Balakrishnan [2]. LOG
distribution is symmetrical, and it is considered an
alternative to normal distribution in various practical uses.
Below we discuss some basic properties of LOG
distribution which are very useful in the new distribution,
allowing better and clearer notation compared to other
models.

1.1 Logistic distribution

We say that a random variableX follows a logistic
distribution if its density function is of the form

fX(x) =
ex

(1+ex)2 , x∈ R, (1)

which we denote asX ∼ LOG(0,1).

1.1.1 Properties

Let X ∼ LOG(0,1)

1. If fX is the density function ofX then fX(−x) = fX(x)

2. The distribution function of the random variableX is
given byFX(x) = ex

1+ex

3. The quantile function of the random variableX is

given byF−1
X (x) = ln

(
p

1−p

)

4. The moment of orderr of X is µr = E(Xr) = (2r −
2)π r |Br | if r is even andµr = 0 if r is odd. WhereBr
is ther-th Bernoulli number given by

|Br |=





1 r = 0
1/2 r = 1
1/6 r = 2
0 r = 3

1/30 r = 4

.

1.2 Incorporating parameters of location and
scale

Let X ∼ LOG(0,1) andY = α +βX then we can say that
Y has a logistic distribution with location parameterα and
scale parameterβ , which we denote byY ∼ LOG(α,β ) if
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its density function ofY is

fY(y;α,β ) =
e

(
y−α

β

)

β
(

1+e

(
y−α

β

))2 , y,α ∈ R,β > 0 (2)

1.2.1 Properties

Let X ∼ LOG(0,1) andY ∼ LOG(α,β ) then

1. The distribution function ofY is FY(y) = e

(
y−α

β

)

1+e

(
y−α

β

) .

2. The quantile function of Y is

F−1
Y (p) = α +β ln

(
p

1−p

)
, 0< p< 1

3. The moment of orderr of Y for r = 1,2,3, .... is µ ′
r =

E(Yr) = ∑r
j=0

(r
j

)
β jα r− j µ j

whereµ j = E
(
X j
)
= (2 j −2)π j |B j | if j is even then

µ ′
1 = E(Y) = α

µ ′
2 = E

(
Y2
)
= α2+ π2

3 β 2

µ ′
3 = E

(
Y3
)
= α3+π2αβ 2

µ ′
4 = E

(
Y4
)
= α4+2π2α2β 2+ 7

15π4β 4

4.Var(Y) = π2

3 β 2

5. The coefficients of asymmetry and kurtosis ofY are√
β1 = 0 andβ2 =

21
5 respectively.

Grushka [6] introduced the exponentially-modified
Gaussian (EMG) distribution, defined as a convolution of
an exponential (Exp) distribution with parameterλ and a
normal distribution with parametersα andβ , which are
independent of each other. The EMG model has been
used in various areas of science such as chromatography
and some classes of phenomena in biology. We say that a
random variableY follows an EMG distribution if its
density function is of the form

fY(y;α,β ,λ ) = λe−
λ
2 (2y−2α−λ β 2)Φ

(
−λ β − α−y

β

)
,

(3)
where Φ(·) is the distribution function of the standard
normal, denoted byY ∼ EMG(α,β ,λ ). For a more
complete review of the EMG model, see [7].

Using the methodology of Grushka, [6], to construct
the EMG model, the principal object of this article is to
change the normal model for the LOG model in the
representation of the EMG model; thus we obtain a model
with greater kurtosis, since the kurtosis of the normal
model is 3 while that of the logistic model is21

5 . This
gives us a new, more flexible distribution that we call the
exponentially-modified logistic (EMLOG) distribution.

The article is organized as follows: In Section 2 we
show the representation, density function, distribution
function, hazard function, moments, and coefficients of

asymmetry and kurtosis of this new distribution. In
Section 3 we make inferences using methods for moment
and maximum likelihood estimation and present a
simulation study. Section 4 contains two applications with
real data. In Section 5 we offer some conclusions.

2 EMLOG distribution

In this section we introduce the representation, density
function and basic properties of the EMLOG distribution.
It should be noted that this distribution has applications in
different areas, by way of example we enunciate some of
them such as in biology: to describe how species behave
in competitive environments, in psychology: to describe
the learning process, in energy: to study the diffusion and
substitution of some primary energy sources by others, in
technology: to describe how technologies become popular
and compete with each other, in marketing: to study the
diffusion of new products, among others.

2.1 Stochastic representation

The following expression is the representation of the
EMLOG distribution.

Y = Z+T, (4)

whereZ ∼ LOG(α,β ) andT ∼ Exp(β ) are independent
random variables. It is denoted byY ∼ EMLOG(α,β ),
making this a very flexible distribution with support in all
real numbers. The same scale parameter was considered
in both distributions (LOG and Exp) to obtain a
parsimonious model. The EMLOG density is the result of
a convolution of an Exp distribution with parameterβ and
a LOG distribution with parametersα andβ , which are
independent of each other.

2.2 Density function

Proposition 1. Let Y ∼ EMLOG(α,β ) then the density
function of Y is

fY(y;α,β ) =
1

β (ex+1)

[
(e−x+1) log(ex+1)−1

]
, (5)

where−∞ < y< ∞, x= y−α
β , α ∈ R andβ > 0.

Proof. Using the stochastic representation in (4), we have

Z ∼ LOG(α,β ) ⇒ fZ(z) =
e

(
z−α

β

)

β
(

1+e

(
z−α

β

))2 ,

where−∞ < z< ∞,

T ∼ Exp(β ) ⇒ fT(t) =
1
β

e
− 1

β t
, t > 0
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by convolution, it follows that:

fY,W(y,w) = fZ,T(y−w,w)

fY,W(y,w) = fZ(y−w) fT(w) , −∞ < y< ∞ , w> 0.

=
e

(
y−w−α

β

)

β
(

1+e

(
y−w−α

β

))2

1
β

e
− 1

β w

Marginalizing with respect to the variableW, we have

fY(y;α,β ) =
1

β 2e
y−α

β

∫ ∞

0
e
− 2w

β

[
1+e

y−w−α
β

]−2

dw,

where−∞ < y < ∞. Making the change of variableu =

1+e
y−α

β e
−w
β we obtain the result.�

We note that the parametersα andβ , have control on
the model the location and the scale respectively.

Figure1, shows the form of the density function for some
values of the parameterβ .
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Fig. 1: EMLOG pdf for different values ofβ

Proposition 2.Let Y∼ EMLOG(α,β ), whereα ∈ R and
β > 0. Then, the distribution function of Y is given by

FY(t) = 1−e
− t−α

β log(e
t−α

β +1). (6)

Proof. Let x= y−α
β , then we have that

FY(t) =
∫ t

−∞
fY(y)dy

=
1
β

∫ t

−∞

1
ex+1

[(e−x+1) log(ex+1)−1]dy

=
1
β

∫ t

−∞

1
ex+1

[e−x(ex+1) log(ex+1)−1]dy

=
1
β

∫ t

−∞

[
e−x log(ex+1)−

1
ex+1

]
dy.

Making the change of variableu= ex+1 we obtain

FY(t) =
∫ et+1

1

[
logu

(u−1)2 −
1

u(u−1)

]
du.

By calculating this improper integral we obtain the result.
�

Corollary 1. The hazard rate function for the random
variable Y∼ EMLOG(α,β ) is given by

h(t) =
fY(t)

1−FY(t)
=

1
β

[
1−

e
t−α

β

(e
t−α

β +1) log(e
t−α

β +1)

]
.

(7)

Figure 2, shows the form of the hazard function for
some values of the parameterβ .
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Fig. 2: Hazard rate function ofEMLOG(α = 0,β ) model and
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2.3 Moments

The following proposition shows the moments for the
EMLOG distribution. Essentially, these moments depend
on the moments of the logistic distribution and the
exponential distribution.

Proposition 3. Let Y ∼ EMLOG(α,β ). Hence, for
r = 1,2,3, . . . we have

µr = E(Yr) =
r

∑
j=0

(
r
j

)
(2 j −2)π j |Bk|β r− jΓ (r − j +1).

Proof. From (3), sinceZ ∼ LOG(α,β ) andT ∼ Exp(β )
are independent, we have

µr = E(Yr) = E(Z+T)r = E

(
r

∑
j=0

(
r
j

)
Z jT r− j

)

=
r

∑
j=0

(
r
j

)
E
(
Z j)

E
(
Tr− j) ,

where E
(
Z j
)

are the jth moments of the logistic
distribution andE

(
T r− j

)
= β r− jΓ (r − j + 1) are the

(r − j +1)th moments of the exponential distribution.�

Corollary 2. Let Y∼ EMLOG(α,β ) then

µ1 = E(Y) = α +β

µ2 = E
(
Y2)= (α +β )2+

(
1+

π2

3

)
β 2

µ3 = E
(
Y3)= (α +β )3+(π2+5)β 3+(3+π2)αβ 2

µ4 = E
(
Y4)= (α +β )4+

(
7π4

15
+4π2+23

)
β 4

+4(π2+5)αβ 3+2(π2+3)α2β 2

Var(Y) =

(
1+

π2

3

)
β 2.

Corollary 3. Let Y∼ EMLOG(α,β ), then the asymmetry
coefficient and the kurtosis coefficient of Y are given by

γ1 =
2

(1+ π2

3 )3/2
= 0.2251

and

γ2 =
7π4

15 +2π2+9

(1+ π2

3 )2
= 4.0318

respectively.

Proof. By definition of the asymmetry coefficient we have

γ1 =
E [Y−E(Y)]3

[var(Y)]3/2
=

µ3−3µ2µ1+2µ3
1[

(µ2− µ2
1)
]3/2

,

for the kurtosis coefficient we have

γ2 =
E [Y−E(Y)]4

[var(Y)]2
=

µ4−4µ1µ3+6µ2
1µ2−3µ4

1

(µ2− µ2
1)

2
. �

3 Inference

In this section, we study the parameter estimation of the
new model using the maximum likelihood and moments
approach.

3.1 Method of moments estimation

The following proposition shows explicitly the moments
estimatorsα andβ .

Proposition 4. Let Y1, . . . ,Yn be a random sample of a
distribution of the random variable Y∼ EMLOG(α,β ),
then the moments estimators ofθθθ = (α,β ) are

α̂M =Y−

√√√√3
(
Y2−Y

2
)

3+π2 and β̂M =

√√√√3
(
Y2−Y

2
)

3+π2 ,

whereY is the mean of the sample, andY2 is the mean of
the sample of the observations squared.

Proof. Using Corollary 2 we have that

E(Y) = α +β and E(Y2) = (α +β )2+β 2
(

1+
π2

3

)
,

(8)
and then substitutingE(Y) for Y andE(Y2) for Y2 in (8)
we obtain a two-by-two system of equations. Solving this
system, we obtain the moments estimators(α̂M , β̂M) of
(α,β ). �

3.2 Maximum likelihood estimators

Given an observed sampleY1, . . . ,Yn from the
EMLOG(α,β ) distribution, the log-likelihood function
for the parametersα andβ , giveny = (y1, ...,yn)

⊤, can be
written as

l(α,β ) =−nlog(β )−
n

∑
i=1

log

(
e

yi−α
β +1

)
(9)

+
n

∑
i=1

log

[(
e
−

yi−α
β +1

)
log

(
e

yi−α
β +1

)
−1

]
.

The maximum likelihood equations are given by

n

∑
i=1

e
yi−α

β

e
yi−α

β +1

+
n

∑
i=1

e
−

yi−α
β log

(
e

yi−α
β +1

)
−1

(
e
−

yi−α
β +1

)
log

(
e

yi−α
β +1

)
−1

= 0, (10)

n

∑
i=1

(yi −α)e
yi−α

β

e
yi−α

β +1

+
n

∑
i=1

(yi −α)

(
e
−

yi−α
β log

(
e

yi−α
β +1

)
−1

)

(
e
−

yi−α
β +1

)
log

(
e

yi−α
β +1

)
−1

= nβ . (11)

The solution for the system of equations given in
equations (10) - (11) can be obtained using the
Newton-Raphson numerical method. The maximum
likelihood estimator (MLE) can also be obtained by
maximizing directly the log-likelihood function given in
(9), and various existing software programmes can be
used, such as the R software [9].
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3.2.1 Simulation study

By using the quantile function to generate random
numbers of a random logistic variable and the
representation given in (4), it is possible to generate
random numbers for the EMLOG(α,β ) distribution,
which leads to the following algorithm

1. GenerateVi ∼Uni f orm(0,1), i = 1,2, ...,n.
2. ComputeSi = α +β ln

(
V

1−V

)
, i = 1,2, ...,n.

3. GenerateTi ∼ Exp(β ), i = 1,2, ...,n.
4. ComputeYi = Si +Ti, i = 1,2, ...,n.

It then follows thatYi ∼ EMLOG(α,β ), i = 1,2, ...,n.

Table 1: Empirical means and SD for the MLE estimators ofα
andβ .

n= 50 n= 100

α β α̂ (SD) β̂ (SD) α̂ (SD) β̂ (SD)
1 1 1.0128(0.2931) 0.9821(0.1147) 1.0080(0.1982) 0.9901(0.0827)

2 1.0199(0.5420) 1.9700(0.2207) 1.0019(0.4256) 1.9918(0.1706)
3 1.1523(0.7735) 2.9546(0.3272) 1.0583(0.5735) 2.9706(0.2309)

2 1 1.9996(0.2998) 0.9884(0.1152) 1.0583(0.5735) 2.9706(0.2309)
2 2.0601(0.5956) 1.9639(0.2305) 2.0110(0.2010) 0.9899(0.0793)
3 2.0634(0.6592) 2.9594(0.3485) 2.0081(0.6056) 2.9832(0.2585)

3 1 3.0059(0.2829) 0.9901(0.1150) 3.0038(0.2024) 0.993904(0.0828)
2 3.0342(0.5755) 1.9849(0.2299) 2.9885(0.4082) 1.9944(0.1659)
3 3.0217(0.8668) 2.9714(0.3426) 3.0373(0.6177) 2.9724(0.2475)

n= 150 n= 200

α β α̂ (SD) β̂ (SD) α̂ (SD) β̂ (SD)
1 1 1.0031(0.1655) 0.9950(0.0672) 1.0090(0.1530) 0.9966(0.0591)

2 1.0087(0.3430) 1.9901(0.1487) 1.0025(0.2952) 1.9977(0.1269)
3 1.0200(0.4716) 2.9964(0.1986) 1.0151(0.4311) 2.9797(0.1776)

2 1 2.0090(0.1490) 0.9956(0.0591) 2.0090(0.1490) 0.9956(0.0591)
2 1.9961(0.3374) 1.9869(0.1355) 1.9993(0.2934) 1.9839(0.1175)
3 2.0453(0.4869) 2.9761(0.1937) 2.0040(0.4279) 2.9981(0.1806)

3 1 3.0010(0.1710) 0.9953(0.050) 3.0020(0.1471) 0.9963(0.0583)
2 3.0267(0.3489) 1.9959(0.1273) 3.0144(0.2860) 1.9889(0.1127)
3 3.0043(0.5204) 2.9935(0.1964) 3.0136(0.4629) 2.9942(0.1768)

Table 1 shows the results of simulations studies
illustrating the behavior of the MLEs for 1,000 generated
samples of sizes 50, 100, 150 and 200 from a population
EMLOG(α,β ) distribution. For each sample generated,
MLEs are computed numerically using a
Newton-Raphson procedure. Means and standard
deviations (SD) are reported. It is observed that the bias
becomes smaller as the sample sizen increases, as one
would expect.

4 Applications

In this Section we present two applications to real data
sets. In the first we compare the new model with the EMG
model which serves as the inspiration for the construction
of the EMLOG model, and in the second we compare it to
various models widely used in statistical literature.

4.1 Application 1

We consider data for the concentration of Zirconium in 86
soil samples obtained by the Mines Department of
Universidad de Atacama, Chile. Table2 shows the
descriptive statistics, where we use the notationb1 andb2
to represent sample asymmetry and kurtosis coefficients
respectively. From the results in Section 3.1, the moments
estimates for the parameters of the EMLOG model are
α̂M =147.288 and̂βM=26.573. These estimates are useful
as starting values required to implement estimation via
maximum likelihood using a numerical method. Table3
shows the MLEs for the parameters of the EMLOG and
EMG models. The standard errors of the maximum
likelihood estimates are calculated using the Hessian
matrix corresponding to each model.

Table 2: Summary statistics for a data set of Zirconium
concentrations.

n Y SY b1 b2
86 173.860 55.361 1.2925 8.6525

We compare the EMLOG distribution with the EMG
model. We calculate the Akaike information criterion AIC
(see Akaike, 1974) and the Bayesian information criterion
BIC (see Schwarz, 1978). For these data, the values in the
table indicate that the EMLOG distribution leads to a
better fit than the EMG distribution.

Table 3: : Summary statistics for Zirconium concentrations in
a data set of 86 samples: Model, ML estimates, AIC and BIC
values.

Model MLEs AIC BIC
α̂(SD), β̂ (SD), λ̂ (SD)

EMLOG 145.780 , 25.004 , - 927.166 932.015
(5.400) , (2.134) , -

EMG 107.032 , 10.502 , 1.529 936.684 944.047
(4.921) , (2.083) , (0.090)

Figure3 presents the histogram for the data with the
fitted densities and Figure4 shows the qq-plots of the two
fitted densities.

4.2 Application 2

This data set consists of several variables recorded in 202
Australian athletes, reported in [3]. In particular we
analyse measurements of body mass index (BMI). Table4
presents basic descriptive statistics for the data set. From
the results in Section 3.1, the moments estimates for the
parameters of the EMLOG model arêαM =21.573 and
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Fig. 4: SThis represents the qq-plots for the Zirconium
concentration data set: EMLOG model (a) and EMG model (b)

.

β̂M=1.383. These estimates are useful as the starting
values required to implement estimation via maximum
likelihood using a numerical method. Table5 shows the
MLEs for the parameters of the EMLOG, LOG,
WEIBULL, GAMMA and GUMBEL models. The
standard errors of the maximum likelihood estimates are
calculated using the Hessian matrix corresponding to each
model. Table5 shows the corresponding AIC and BIC for
each model. For these data, the values in the table indicate

that the EMLOG distribution leads to a better fit than the
LOG, WEIBULL, GAMMA and GUMBEL distributions.

Table 4: Summary statistics for data set of the body mass index
of 202 Australian athletes.

n Y SY b1 b2
202 22.926 2.866 0.940 5.132

Table 5: Summary statistics for data set of the body mass index
of 202 Australian athletes: Model, ML estimates, AIC and BIC
values.

Model MLEs AIC BIC
α̂(SD) , β̂ (SD)

EMLOG(α ,β ) 21.523 (0.073), 1.332 (0.071) 983.475 990.091
LOG(α ,β ) 22.787 (0.186), 1.529 (0.090) 986.924 993.540

WEIBULL(α ,β ) 7.281 (0.340), 24.259 (0.249) 1053.042 1059.658
GAMMA( α ,β ) 67.729 (0.6.723), 2.950 (0.294) 989.453 996.069
GUMBEL(α ,β ) 21.636 (0.182), 2.442 (0.127) 987.132 993.748

Figure 5 shows the histogram for the data with the
fitted densities and the qq-plots of the EMLOG
distribution. Figures6 and 7 show the qq-plots for the
LOG, WEIBULL, GAMMA and Gumbel models, which
are calculated with the estimates of the parameters in each
model.
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Fig. 5: Histogram for the body mass index data set with fitted
densities and qq-plot for the EMLOG model (a)
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Fig. 6: Shows the qq-plots: LOG model (b), WEIBULL model
(c)
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Fig. 7: Shows the qq-plots: GAMMA model (d), GUMBEL
model (e)

5 Conclusions

The main focus of this work is to study a modification of
the EMG model, both to change normal distribution to
logistic distribution and to reduce the number of
parameters. This model involves two parameters and is an
alternative to other models with the same number of
parameters. Maximum likelihood estimation methods are
used to estimate the parameters; the results of a

simulation study indicate that this model has good
properties for small and moderate sample sizes. We
compare the models using the AIC and BIC criteria; two
applications using real data indicate that this model can
produce a better fit than other distributions.
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