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Abstract: In this work we introduce a modification of the exponentiattpdified Gaussian distribution. This new distribution is
obtained by combining a logistic distribution with an expatial distribution, and is more flexible than other simidistributions.
We provide a closed expression for the density function drtdin some important properties useful for making infeesnsuch as
moment estimators and maximum likelihood estimators. By @fallustration, and using real data to show the effectagnof the new
model, we compare it with known related models, showing tir@inew model achieves a better fit.
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1 Introduction 1. If fx is the density function oX thenfy (—x) = fx(x)

Logistic (LOG) distribution has been used in various
areas of scientific research, for example bioassay 2. The distribution function of the random variatdes

problems see4], income distribution see5|, survival given byFx (x) = 1_%(
analysis seef]. The properties and applications of LOG ) . , .
distribution are available in Balakrishnar2][ LOG 3. The quantile function of the random variableis

distribution is symmetrical, and it is considered an  given byFy 1(x) =In (ﬁ)
alternative to normal distribution in various practicatas

Below we discuss some basic properties of LOG 4. The moment of order of X is py = E(X") = (2" —
distribution which are very useful in the new distribution, 2)1t|By| if r is even andy = 0 if r is odd. WhereB,
allowing better and clearer notation compared to other is ther-th Bernoulli number given by

models.

1 r=0
o 1/2 r=1
1.1 Logistic distribution B|={ 1/6 r=2.
We say that a random variabl¥ follows a logistic 1/030 : ~ i
distribution if its density function is of the form a
fx(X) = ——, xR, 1) _ :
(1+e9) 1.2 Incorporating parameters of location and
which we denote aX ~ LOG(0,1). scale
1.1.1 Properties LetX ~ LO'G('O, 1) ar.1dY.: o+ BX thgn we can say that
Y has a logistic distribution with location parameteand
LetX ~LOG(0,1) scale parametgs, which we denote by ~ LOG(a, ) if
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its density function o¥ is

f(y;a,B) %)
Y\y,.4u, - 9>
B <1+e<yﬁa)>2

asymmetry and kurtosis of this new distribution. In
Section 3 we make inferences using methods for moment
and maximum likelihood estimation and present a
simulation study. Section 4 contains two applications with
real data. In Section 5 we offer some conclusions.

yaeR,L>0 (2)

2 EMLOG distribution

1.2.1 Properties
In this section we introduce the representation, density
function and basic properties of the EMLOG distribution.
It should be noted that this distribution has applications i

o , , e(%) different areas, by way of example we enunciate some of
1. The distribution function of is Fy(y) = @ them such as in biology: to describe how species behave

1te\ P in competitive environments, in psychology: to describe
2. The quantile function of Y is the learning process, in energy: to study the diffusion and
R l(p) = a+BIn(ﬁ), 0O<p<1

substitution of some primary energy sources by others, in
3. The moment of orderof Y forr =1,2,3,....is y/ =

LetX ~ LOG(0,1) andY ~ LOG(a, B) then

technology: to describe how technologies become popular
and compete with each other, in marketing: to study the

E(Y) =5 o()Bla Ty

wherey; =E (X)) = (2! — 2)|B;| if j is even then

m=EY)=a

W, =E(Y2) = a2+ £ 2

ps=E(Y3) = a4+ m?ap?

py, =E(Y*) = a*+2r?a?p? + Lm*p*

4.Var(Y) = £ g2

5. The coefficients of asymmetry and kurtosisyoére
V/B1 =0 andp, = £ respectively.

diffusion of new products, among others.

2.1 Stochastic representation

The following expression is the representation of the
EMLOG distribution.

Y=2Z+T, @)

whereZ ~ LOG(a,B) andT ~ Exp(3) are independent
random variables. It is denoted by~ EMLOG(a, 3),

making this a very flexible distribution with support in all
real numbers. The same scale parameter was considered
in both distributions (LOG and Exp) to obtain a
parsimonious model. The EMLOG density is the result of

a convolution of an Exp distribution with paramefeand

LOG distribution with parameteis and 3, which are
dependent of each other.

Grushka 6] introduced the exponentially-modified
Gaussian (EMG) distribution, defined as a convolution of
an exponential (Exp) distribution with paramefeand a
normal distribution with parameters and 3, which are
independent of each other. The EMG model has bee
used in various areas of science such as Chromatograprm
and some classes of phenomena in biology. We say that a
random variableY follows an EMG distribution if its

density function is of the form 2.2 Density function

A oo o2 2 _ Proposition 1. Let Y ~ EMLOG(a, 3) then the density
fr(yia,B.A) =Ae 2@ 202 e (_)‘B - %) ) function of Y is
3)
where @(-) is the distribution function of the standard
normal, denoted by ~ EMG(a,B,A). For a more
complete review of the EMG model, seg.|

Using the methodology of Grushkag]] to construct

the EMG model, the principal object of this article is to

fy(y;a,B) = [(e*+1)log(e*+1)-1], (5)

1
B(e+1)

where—o <y < 00, X = % acRandB >0.

change the normal model for the LOG model in the proof. Using the stochastic representationd, (ve have
representation of the EMG model; thus we obtain a model v
with greater kurtosis, since the kurtosis of the normal e(T)
model is 3 while that of the logistic model #&. This Z~LOG(a,p) = fz(2) = ————.
gives us a new, more flexible distribution that we call the B (1+ e(B))
exponentially-modified logistic (EMLOG) distribution.

The article is organized as follows: In Section 2 we wWhere— oo < z < o,
show the representation, density function, distribution 1 1
function, hazgrd function, momer>1lts, and coefficients of T~ExpB) = fr(t) = g° P, t>0
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by convolution, it follows that: Proof. Letx= % then we have that
t
frw(y,w) = fz7(y—ww) Fe(t) = / fy (y)dy
frw(y,w) = fz(y—w)fr(w), —o <y < oo, w>0. 1*°°t 1
L5 1y, ~p Laaale a1y
e P =L exe s Dlog(er+ 1) - 1)dy
Bll+e BJ)we+1
— e X 1
Marginalizing with respect to the variablé, we have n _/ { log(e+1)— e+1 dy.
v o o a2 Making the change of variable= €+ 1 we obtain
fy(y;a,B) = ﬁe 3 / e r [1+e p ] dw,
0
é+1
. R = / ogu 1 1y,
where —o Sy<e Making the change of variable = 1 (u-12 u(u—-1)

y—a -
l+ePe T we obtain the result] ) o ) )
By calculating this improper integral we obtain the result.

We note that the parametaxrsand 3, have control on

the model the location and the scale respectively. Corollary 1. The hazard rate function for the random
, , ) variable Y~ EMLOG(a, ) is given by
Figurel, shows the form of the density function for some
values of the parameté. t-a
hity— W __ Lo
1-K(@) B (e

Figure 2, shows the form of the hazard function for
some values of the paramefer
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Fig. 1: EMLOG pdf for different values of8

Proposition 2.Let Y ~ EMLOG(a, 3), wherea € R and

B > 0. Then, the distribution function of Y is given by Fig. 2: Hazard rate function oEMLOG(a = 0,3) model and
different values foi3.

R) =1—e 7 loge P +1). 6)
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2.3 Moments

3 Inference

The following proposition shows the moments for the In this section,_ we study the parameter estimation of the
EMLOG distribution. Essentially, these moments dependnew model using the maximum likelihood and moments
on the moments of the logistic distribution and the approach.

exponential distribution.

Proposition 3. Let Y ~ EMLOG(a, ). Hence, for
r=1,2,3,...we have
Lo L - i :
t=E(Y") = Z)(J.)(ZJ —2)1 BB M (r—j+1).
=

Proof. From @), sinceZ ~ LOG(a,B) andT ~ Exp(B)
are independent, we have

p=E(Y)=E@Z+T)' =E (Zo (DZJTH>
)

where E(Z!) are the jth moments of the logistic
distribution andE (T"")) = g™ /r(r — j+ 1) are the
(r — j + 1)th moments of the exponential distributian.
Corollary 2. LetY ~ EMLOGa,B) then

EY)=a+p

E(T™),

H2 = E(Y?) = (a+B) ( g) p?
ps =E(Y3) = (a+B)3+ (m?+5)B%+ (3+ m)ap?
s = E(Y*) = (a +B)* (%4 +4r + 23) p*
+4(m? 4+ 5)a B3+ 2(® 4 3)a?p?
var(Y) = (1+ g) B2.

Corollary 3. LetY ~ EMLOG(a, 8), then the asymmetry
coefficient and the kurtosis coefficient of Y are given by

2

Y= ———— =02251
(14 2)3/2
and »
7
m 122+ 9
_ % — 40318
(1+73)
respectively.

Proof. By definition of the asymmetry coefficient we have 2

3.1 Method of moments estimation

The following proposition shows explicitly the moments
estimatorex andp.

Proposition 4. Let VY;,...,Y, be a random sample of a
distribution of the random variable X EMLOG(a, 3),
then the moments estimatorséb (a, 3) are

W
and BM - 3+ 7T2

whereY is the mean of the sample, avidis the mean of
the sample of the observations squared.

)

3

_ (8)
and then substituting(Y) for Y andE(Y?) for Y2 in (8)
we obtain a two-by-two system of equations. Solving this

system, we obtain the moments estimat@i&,ﬁM) of

(a,B).00

W Y
3+7T2

Proof. Using Corollary 2 we have that

E(Y)=a+B and E(Y?) = (a +B) +32<1+

3.2 Maximum likelihood estimators

Given an observed sampleYy,...,Y, from the
EMLOG(a,B) distribution, the log-likelihood function
for the parameters andg, giveny = (y1,...,yn) ', can be

written as
n vi—a
- zilog <e P+ 1)

I(a,B)

n —a
+Zlog[( e +1)Iog<e B +1> 1]
=
The maximum likelihood equations are given by
R . e " log (eJ/Tu +1> 1
Zi vida +.7 Vi a
e B +1 =& (e B +1>Iog<e B +1> 1

—a) (e Ba log (e Ba +1> —1) ; "
=ng.

+Zi (e B +1>Iog<eﬂ +1>—l

—nlog(B)

9)

-0,

(10)

3 3
E[Y —E(Y)] — Ha — SHz + 2 The solution for the system of equations given in
[var(Y))¥/? (12— u2)]¥? equations 10) - (11) can be obtained using the
. o Newton-Raphson numerical method. The maximum
for the kurtosis coefficient we have likelihood estimator (MLE) can also be obtained by
B 4 B 2, a4 maximizing directly the log-likelihood function given in
_E[¥ E(YZ)] _Ha 4“1“3+6g152 S (9), and various existing software programmes can be
[var(Y)] (K2 = p1) used, such as the R softwa@.[
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3.2.1 Simulation study 4.1 Application 1

We consider data for the concentration of Zirconium in 86
soil samples obtained by the Mines Department of
Universidad de Atacama, Chile. Tabl2 shows the
descriptive statistics, where we use the notalipandb;

to represent sample asymmetry and kurtosis coefficients
respectively. From the results in Section 3.1, the moments
estimates for the parameters of the EMLOG model are

By using the quantile function to generate random
numbers of a random logistic variable and the
representation given indj, it is possible to generate
random numbers for the EMLOG() distribution,
which leads to the following algorithm

1. Generat® ~ Uniform(0. 1), 1= 12,..,n Om =147.288 ancﬁM:26.573. These estimates are useful
2. Compute§ = a + BIn (W)v 1=12..n as starting values required to implement estimation via
3. Generatd ~ Exp(B), i =1,2,...,n. maximum likelihood using a numerical method. TaBle

4.Computef =S +T,i=1,2,...,n shows the MLEs for the parameters of the EMLOG and

EMG models. The standard errors of the maximum
likelihood estimates are calculated using the Hessian
matrix corresponding to each model.

It then follows thaty; ~ EMLOG(a,8), i =1,2,...,n.

Table 1: Empirical means and SD for the MLE estimatorsoof

andp. Table 2: Summary statistics for a data set of Zirconium
_n=50 _n=100 concentrations.
a B @ (SD) B (SD) @ (SD) B (SD) _
T 1 1.0128(0.2931) 0.9821(0.1147) 1.0080(0.1982) 0.9B0&27) n Y S by by
2 1.0199(0.5420) 1.9700(0.2207) 1.0019(0.4256) 1.9918(®) 86 173.860 55.361 1.2925 8.6525
3 1.1523(0.7735) 2.9546(0.3272) 1.0583(0.5735) 2.9708(D)
2 1 1.9996(0.2998) 0.9884(0.1152) 1.0583(0.5735) 2.9¥QB(9)
2 2.0601(0.5956) 1.9639(0.2305) 2.0110(0.2010) 0.980%@B)
3 2.0634(0.6592) 2.9594(0.3485) 2.0081(0.6056) 2.983365)
3 1 3.0059(0.2829) 0.9901(0.1150) 3.0038(0.2024) 0.99ER0828) We compare the EMLOG distribution with the EMG
§ %%32‘127((%58256%)) é;ggﬁggéiggg §;§§§§§8;‘g‘1’§§§ ;:g?gﬁ% model. We calculate the Akaike information criterion AIC
n=150 n=200 (see Akaike, 1974) and the Bayesian information criterion
a B G(S(D) ) B(SD() ) G(SD)( : ﬁ(SD)9 ) BIC (see Schwarz, 1978). For these data, the values in the
T 1 1.0031(0.1655) 0.9950(0.0672) 1.0090(0.1530) 0.996601 o fetrib it
2 1.0087(0.3430) 1.9901(0.1487) 1.0025(0.2952) 1.99726D) table |nd|cate that the '_EM,LOG distribution leads to a
3 1.0200(0.4716) 2.9964(0.1986) 1.0151(0.4311) 2.9797(®) better fit than the EMG distribution.
2 1 2.0090(0.1490) 0.9956(0.0591) 2.0090(0.1490) 0.4PBEO1)
2 1.9961(0.3374) 1.9869(0.1355) 1.9993(0.2934) 1.983%{b)
3 2.0453(0.4869) 2.9761(0.1937) 2.0040(0.4279) 2.998&(®)
3 1 3.0010(0.1710) 0.9953(0.050) 3.0020(0.1471) 0.9963 - . ) ) .
> 3.0267((0.3489)) 1.9959(81273)) 3.014420.2860; 1.98891533 Table 3: : Summary statistics for erconlu.m concentrations in
3 3.0043(0.5204) 2.9935(0.1964) 3.0136(0.4629) 2.9922@B) a data set of 86 samples: Model, ML estimates, AIC and BIC
values.
Model MLEs AIC BIC
a@(SD), B(SD), A(SD)
Table 1 shows the results of simulations studies EMLOG 1;%530'551-;)24'- 927.166  932.015
illustrating the behavior of the MLEs for, @00 generated EVG 100080 ices 120 6684 944.047
samples of sizes 50, 100, 150 and 200 from a population (4.921), (2.083) , (0.090)

EMLOG(a, B) distribution. For each sample generated,

MLEs are computed numerically using a

Newton-Raphson procedure. Means and standard ) .
deviations (SD) are reported. It is observed that the bias Figure3 presents the histogram for the data with the
becomes smaller as the sample sizicreases, as one f!tted dens!t!es and Figueeshows the qqg-plots of the two
would expect. fitted densities.

4 Applications 4.2 Application 2
This data set consists of several variables recorded in 202
In this Section we present two applications to real dataAustralian athletes, reported im3][ In particular we
sets. In the first we compare the new model with the EMGanalyse measurements of body mass index (BMI). Table
model which serves as the inspiration for the constructionpresents basic descriptive statistics for the data semFro
of the EMLOG model, and in the second we compare it tothe results in Section 3.1, the moments estimates for the
various models widely used in statistical literature. parameters of the EMLOG model amg, =21.573 and
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that the EMLOG distribution leads to a better fit than the
LOG, WEIBULL, GAMMA and GUMBEL distributions.
g ] — EMLOG
° " - - - EMG
e Lo Table 4: Summary statistics for data set of the body mass index
g h 7‘2{\ of 202 Australian athletes.
. C A K n Y S by by
2 § i , 7Z ' 202 22926 2.866 0.940 5.132
a © % .
S " \
8 -
§ 7 1
§_ z Table 5: Summary statistics for data set of the body mass index
© T T T T T T 1

100 150 200 250 300 350 400

Zirconium

Fig. 3: Models fitted by maximum likelihood method for data set

of 202 Australian athletes: Model, ML estimates, AIC and BIC

values.
Model MLEs AIC BIC
a(sb), B(SD
EMLOG(a, B) 21.523(0.073), 1.332 (0.071) 983.475  990.091
LOG(a, B) 22.787 (0.186), 1.529 (0.090) 986.924  993.540

WEIBULL(a,B)  7.281(0.340), 24.259 (0.249)  1053.042  1059.658
GAMMA(a,B)  67.729(0.6.723),2.950 (0.294)  989.453  996.069
GUMBEL(a,B)  21.636(0.182), 2.442 (0.127)  987.132  993.748

° Figure 5 shows the histogram for the data with the
2 - 8 - fitted densities and the qg-plots of the EMLOG
g distribution. Figuress and 7 show the qg-plots for the
LOG, WEIBULL, GAMMA and Gumbel models, which
g 8 - g 8 - are calculated with the estimates of the parameters in each
£ E model.
: £/
s 8 tel f
& &
o | O& o |
- o — 5
o Q
T T T T T T T T qu
100 200 100 200 =] 9 °
(a)Theoretical Quantiles (b)Theoretical Quantiles ” o
. . o > 2 E 8
Fig. 4: SThis represents the qg-plots for the Zirconium g © 3
concentration data set: EMLOG model (a) and EMG model (b) a ié o
< N
. 1)
ﬁM:1.383. These estimates are useful as the starting § —— a v
values required to implement estimation via maximum 5 25 35 45 15 25 35
likelihood using a numerical method. TalBeshows the
Body mass index (a)Theoretical Quantiles

MLEs for the parameters of the EMLOG, LOG,
WEIBULL, GAMMA and GUMBEL models. The

standard errors of the maximum likelihood estimates areFig. 5: Histogram for the body mass index data set with fitted
calculated using the Hessian matrix corresponding to eacHensities and qg-plot for the EMLOG model (a)

model. Tables shows the corresponding AIC and BIC for

each model. For these data, the values in the table indicate
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Fig. 6: Shows the qqg-plots: LOG model (b), WEIBULL model
(©)
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Fig. 7: Shows the qg-plots: GAMMA model (d), GUMBEL
model (e)

5 Conclusions

simulation study indicate that this model has good
properties for small and moderate sample sizes. We
compare the models using the AIC and BIC criteria; two
applications using real data indicate that this model can
produce a better fit than other distributions.
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