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Abstract: The finite oscillator based on the Lie group of spinU(2) provides a model for finite one-dimensional (1D) arrays ofN =
2 j +1 pixels, for j integer or half-integer which, asj → ∞, deforms to the continuous 1D model of geometric optics. Translations,
linear transformations and aberrations in the latter are canonical and have theirN×N unitary counterparts in the former. Since inU(N)
there are onlyN2 independent transformations, we identify the finite counterparts of translations, linear transformations and aberrations
within the finite model, applicable to the correction of aberrated images or signals onN-pixel linear arrays.
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1 Introduction: The finite optical model

Starting from the 1D geometric optical model where the
coordinates of the phase space of rays are their positionq
and momentump at a line screen of sensors or leds, the
finite oscillator model [1,2] is built as a Lie-algebraic
deformation of these observables to twoN × N
(non-commuting) matricesQ = ‖Qm,m′‖ andP= ‖Pm,m′‖,
with their commutatorK = −i[Q,P], acting onN-vectors
f = { fm}

j
m=− j that represent theN-point signals or

pixellated images of that discrete model based on the
SU(2) group of quantum angular momentum [3], so that
N := 2 j + 1, for any fixed value ofj ∈ {0, 1

2,1,
3
2, . . .}.

The elements of these matrices are

q 7→ Qm,m′ := mδm,m′ , m, m′ ∈ {− j,− j+1, . . . , j}, (1)

p 7→ Pm,m′ := −i 1
2C j

mδm+1,m′ + i 1
2C j

−mδm−1,m′ , (2)

h 7→ Km,m′ := 1
2C j

mδm+1,m′ + 1
2C j

−mδm−1,m′ . (3)

where
C j

m :=
√
( j−m)( j+m+1), (4)

The three matrices are traceless and self-adjoint: the
position matrix Q in (1) is diagonal, themomentum
matrix P is skew-symmetric and pure imaginary, while
the symmetric realmodematrix K can be associated to
the classical oscillator Hamiltonianh = 1

2(p
2 + q2)

shifted by( j+ 1
2)1. The N = 2 j + 1 eigenvalues of each

are equally spaced:{− j,− j+1, . . . , j}.

For the classical model, theoscillatorLie algebraosc1
has four generators:p, q, h, and 1; under Poisson brackets
they close as

{h,q}=−p, {h, p}= q, {q, p}= 1, {1,◦}= 0.
(5)

Their corresponding matrices (1)–(4) close under
commutation as,

[K ,Q] =−iP, [K ,P] = iQ, [Q,P] = iK , [1,◦] = 0.
(6)

This set of commutators defines a basis for the Lie algebra
of phase and spin,u(2) = u(1)⊕su(2), in anN×N matrix
representation,N = 2 j +1, determined by the value of the
su(2) Casimir invariant [4,5],

C := Q2+P2+K2 = j( j+1)1. (7)

This process of finite quantization has been called the
discrete-quantization process[6] from geometric to finite
optics, roughly parallel to that from classical to quantum
angular momentum.

Translations of position and momentum of phase
space in the geometricparaxial optical model are
generated by the exponentiated Poisson operators
exp(u{p,◦}) and exp(−v{q,◦}). The corresponding
matrices in the finite model, exp(iuP) and exp(−ivQ), are
N×N unitarymatrices that act on the finite image vectors
f as analogues to those translations; exp(iαK) produces
fractional Fourier-Kravchuk transformations (rotations
between the position and momentum axes) [3,7], and
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expiφ1 impresses phases. They close into the
four-parameter LiegroupU(2) of 2× 2 unitary matrices.
This is a subgroup within the manifold of allN2

independent unitary transformationsU(N) that can be
inflicted on the linear vector space of images
f = { fm}

j
m=− j . In Sect.2 we recall the classification of

canonical transformations in the classical model and their
corresponding unitary matrix maps in the finite-array
models.

In Sect.3 we examine the characteristic signature of
phase space ‘translations’ on finite pixellated images,
while in Sect.4 we address the maps that correspond to
classical linear canonical transformations, generated by
Poisson operators of the threequadraticfunctionsq2, qp,
and p2, expliciting the action of their corresponding
N × N matrices on the pixellated images. Classically,
translations and linear canonical transformations
constitute the inhomogeneous symplectic Lie group
ISp(2,R). Higher powersqupv generateaberrationsin the
classical model; we consider also their finite counterparts
asU(N) matrices that donot belong to the previous subset
of translations [8], but can be assumed to be ‘close’ to the
classical linear subgroup, so that power expansions can be
usefully made in the finite model for small values of the
departure parameters as a requisite for their correction. A
closing Sect.5 presents some conclusions on the scope of
this correction and the issue of the parametrizations of the
N2-dimensional manifold of the groupU(N).

2 Classical canonical and finite unitary maps
of phase space

We transit the Royal Road by first formalizing the
classical geometric model in phase space with its linear
and aberration transformations, to determine their finite
counterparts as N × N self-adjoint matrices that
exponentiate to the unitary transformations in the finite
model that will thus conserve information.

In geometric optics with 1D screens, the observable of
position q ∈ R marks the intersection of a ray with a
standardz= 0 screen and ranges over the full real line.
Optical momentum is related to ray inclinationθ to the
screen normal byp= nsinθ , with n the refractive index.
To enter the metaxial régime, the range ofp is extended
to the full real line so that(q, p) ∈ R2 is the phase space
plane whose symplectic structure is contained in the basic
Poisson bracket{q, p} = 1, which is skew-symmetric,
bilinear, and follows the Leibnitz rule for products, so that
series expansions can be used [9].

2.1 Classical canonical transformations and
factored-product expansions

Canonical transformations of the classical phase space
plane (q, p) ∈ R2 are generated by the monomials

Mk,m := pk+mqk−m in the phase space coordinates, whose
Poisson operators are

M̂k,m := {pk+mqk−m,◦}=
∂Mk,m

∂q
∂

∂ p
−

∂Mk,m

∂ p
∂

∂q
, (8)

with

rank k∈ {0, 1
2,1,

3
2, . . .},

weight m∈ {k,k−1, . . . ,−k}.
(9)

This provides, for the operators that generate phase space
maps through their exponentials exp(∑k,mαk,mM̂k,m), the
classification (k,m) by rank and weight for 1D
aberrations [10,11], [9, Chap. 13]. The Lie exponentials
of the generators (8) act on beam density functions
ρ(q, p) or, for phase space display purposes on the
2-vector ( q

p), generatingcanonical transformations that
preserve its symplectic structure [4], in particular the
basic Poisson bracket{q, p}= 1.

For rankk = 0 the classical map is the identity since
M̂0,0 = 1 yields a null Poisson bracket. Whenk = 1

2 we
have phase spacetranslationsby α ∈ R,

exp(αM̂1
2 ,

1
2
)
(

q
p

)
=
(

q−α
p

)
,

exp(αM̂1
2 ,−

1
2
)
(

q
p

)
=
(

q
p+α

)
,

(10)

and with rankk= 1 we generatelinear transformations,

exp(αM̂1,1)
(

q
p

)
=
(

q−2α p
p

)
,

exp(αM̂1,0)
(

q
p

)
=
(

e−α q
eα p

)
,

exp(αM̂1,−1)
(

q
p

)
=
(

q
p+2αq

)
.

(11)

These maps close into the 5-parameter inhomogeneous
symplectic group of linear canonical transformations of
phase spaceISp(2,R), which is a distinguished subgroup
of all canonical transformations of the phase space plane.

For ranksk > 1 the transformations are nonlinear in
(q, p) and generally referred to asaberrations, that yield
the closed expression

exp(α M̂k,m)
(

q
p

)
=




q

(
1+∑∞

n=1
(−α)n

n! c−k,m;n Mn(k−1),nm

)

p

(
1+∑∞

n=1
(+α)n

n! c+k,m;n Mn(k−1),nm

)

 ,

(12)
where cσ

k,m;n := ∏n−1
s=0

(
k+ σ(2s−1)m

)
. Letting w stand

for p and/orq, the action ofMk,m ∼ w2k in Eq. (12) on the
phase space coordinates has the leading terms
w+ cα w2k−1+ · · · , so one calls the exponentA := 2k−1
the aberrationorder of the generatorMk,m in the
geometric model of optics. All these transformations are
canonical, i.e.,{q, p} = {eαM̂q,eαM̂ p}; they conserve the
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volume and structure of phase space; no light is neither
lost nor gained.

The linear and aberration performance of optical
instruments comprising several elements with
individually known coefficient vectorsαk = {αk,m}

k
m=−k

can be concatenated as elements of an infinite-parameter
aberrationgroup using the factored product expansion
[10,11]

Â(α) = · · ·×exp(iαk · M̂k)× (13)

· · ·×exp(iα 3
2
· M̂3

2
)×exp(iα1 · M̂1).

For reasons of mathematical simplicity, the translation
factor exp(iα 1

2
· M̂1

2
) is normally excluded from the right

of (14), and instead one refers to aberration expansions
about adesign raycurtailed to some upper rankk as
transformations that are canonicalup toorderA= 2k−1.
These operators can be concatenated:
Â(α1)Â(α2) = Â(α3(α1,α2)), whose product coefficients
α3(α1,α2) have been tabulated to aberration order 7 in [9,
Chap. 14]. In the finite model however, translations are
naturally included within the unitary groupU(N) as we
proceed to recall below.

2.2 Finite unitary transformations and
factored-product expansions

The Royal Road tofinite quantization of the monomial
functionspaqb to matrices, leads to the consideration of
monomials with powers of thethreegenerators ofU(2) in
theirN := (2 j+1)-dimensional representations,Q, P, and
of the modematrix K . (The unit matrix1 is also present
but will not be addressed separately). These matrices are
related by the Casimir invariant (7), so we only need to
countK —the generator of Fourier-Kravchuk rotations of
phase space [8]— with exponents 0 or 1. Hence, instead
of the one pyramid of generatorŝMk,m in (8), in the finite
model we havetwo pyramids of matrix generators,

M0
k,m(Q,P) := {Pk+mQk−m}Weyl, m|k−k, (14)

M1
k,m(Q,P,K) := {KM 0

k− 1
2 ,m

(Q,P)}Weyl, m|
k− 1

2

−k+ 1
2
, (15)

where{AuBv Cw}Weyl is theWeyl orderingof the symbols
within the braces, i.e., the sum of all permutations of the
u+v+w objects divided by(u+v+w)!; when the forming
matrices are self-adjoint, so is the Weyl ordering of their
powers. The range of ranksk, classically unbounded in (9),
is restricted in in theN = 2 j +1 finite model to

k∈ {0, 1
2,1,

3
2, . . . , j} in M0

k,m,

k∈ {0, 1
2,1,

3
2, . . . , j− 1

2} in M1
k,m,

m|k−k, (16)

so ∑
σ ,k,m

1= (2 j+1)2,

The natural analogue of rank-k geometric
transformations (12) is thus the sum of self-adjoint
matrices with coefficientsαk = {ασ

k,m},

Mk(αk) =
k

∑
m=−k

α0
k,mM0

k,m+
k− 1

2

∑
m=−k+ 1

2

α1
k,mM1

k,m, (17)

while the analogue of the factored-product expansion (14)
that provides N × N complex unitary matrices with
parametersα = {αk}, is

A(α ) = exp(iM j (α j ))×exp(iM j− 1
2
(α j− 1

2
))×

·· ·×exp(iM1(α1))×exp(iM 1
2
(α 1

2
))eiα0

0,0,
(18)

where we note that the product is not open-ended as (14),
but has 2j +1 factors, with the rightmost being an overall
phase. The natural inner product in the vector space of
signals f = { fm}

j
m=− j , where the matrices of the basis

(14)–(15) are self-adjoint and their i-exponentials are
unitary is, of course,

(f,g) :=
j

∑
m=− j

f ∗mgm ⇒

{
(f,Mg) = (M†f,g),

(A(α ) f,A(α )g) = (f,g).
(19)

Thus one has the Lie groupU(N) of all N2 transformations
of 2 j+1=N-pixel 1D images, that are reversible (byα 7→
−α) and thus conserve information.

3 Finite phase space ‘translation’ maps

To evince the action of the exponentiated matrices
exp(iαMσ

k,m) on anN-point signalf = { fm}
j
m=− j , let us

consider the translation and linear maps, (10) and (11)
that belong to the linear (paraxial) subgroup in the
geometric model seen above.

3.1 Linear phase generated byQ

We note first that thepositionmatrix M0
1
2 ,−

1
2
= Q in (1)

acts as(Qf)m = m fm, so the exponential action is

fm 7→ f (α)
m = (eiαQf)m

= fm+ iα(Qf)m− 1
2! α

2(Q2f)m+ · · ·

= eiαm fm, (20)

impressing a linear phase on the pixels off, as originating
from an inclined plane wave on the screen. This action
corresponds with (10) as a translation in momentum
space that here is cyclic inα with period 2π when j is
integer, or modulo 4π when half-integer. However, if we
regardα in (20) as asmall parameter, we should regard
only the first term after the unity, namely(Qf)m = m fm.
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Fig. 1: Transformation of a 65-point real signalf (0)m := δ0,m consisting of a single-pixel of value 1 on a background of 0’s, under the
maps generated by the exponentiated matrices exp(iαP) (top), and exp(iαK) (bottom). The real, imaginary and absolute values of the
transformed signal are shown for parametersα = 0, 0.1, 0.3 and 0.5. The gray scale adjusts to the minimal (black) and maximal (white)
values of the pixels with gray remaining zero.

3.2 The ‘translation’ map generated byP

Next, consider themomentum, M0
1
2 ,

1
2
= P in (2), whose

exponentiated action classically translates positions as
eβ ∂x f (x) = f (x + β ) in (10). In the finite model, the
matrix exp(iβP) acts on signalsf through the well-known
Wigner SU(2) little-d functions d j

m,m′(β ) [5]. The
exponential series inβ acting on the pixel values is the
map

fm 7→ f ′m(β ) = (eiβ Pf)m

= fm+ iβ (Pf)m− 1
2! β

2(P2f)m+ · · ·

=
j

∑
m′=− j

(−1)m′−md j
m,m′(β ) fm′ . (21)

The action of exp(iβP) is unitary and real, i.e.,
orthogonal. It is shown in Fig.1 (top), where the object

signal is the one-point unit signals(m
◦)

m := δm◦,m at the
central pixelm◦ = 0; the result of the transformation is

the spot s(m
◦)′ = {s(m

◦)′
m } on the 1D screen. This is the

analogue of thepoint-transfer functionbetweenm◦ andm
in discrete mechanical systems. And again, ifβ in (21) is
small, we only have to regard the first term in the series
after the unity,

i(Pf)m = 1
2C j

m fm+1−
1
2C j

−m fm−1, (22)

This is a centered, two-point discrete derivative (that limits
to ∂x as j → ∞); the coefficientsC j

m in (4) are minimal at
the extremes and maximal at the center of them-position
range.

For m< 0 the first coefficient in (22) is larger than the
second, so the series of exp(iαP) yields same-sign
decreasing values that multiply the original spot signal; to
its right m> 0 the second coefficient is larger than the
first, so the exponential series multiplies the spot signal

by alternating signs that form an oscillatory wake. This is
the finite analogue of thetranslation of pixel positions
(10). The ‘center of mass’ of the signal moves to the left
and leaves a real oscillating tail of alternating signs to its
right, which in the j → ∞ limit is zero. The absolute
values are symmetric inm though.

3.3 The Fourier-Kravchuk map generated byK

Also shown in Fig.1 (bottom), is the exponentiated action
of the mode generator matrixK in (3), which is
symmetric and real. Its exponential exp(iαK) rotates
between the plane ofQ and P, the position and
momentum matrices. Thus,K is the generator of the
fractionalFourier-Kravchuktransforms [3] that which act
on the 1D signalsf as,

fm 7→ f (γ)m = (eiγK f)m

= fm+ iγ(Kf )m− 1
2! γ

2(K2f)m+ · · ·

=
j

∑
m′=− j

d j
m,m′(γ) fm′ . (23)

For smallγ, the term after the unity shows thatK acts as a
position-dependent averager,

(Kf )m = 1
2C j

m fm+1+
1
2C j

−m fm−1. (24)

Had we realized thesu(2) algebra (1)–(3) as
generators of rotations on a 2-sphere in an ambient 3D
(q, p,κ)-space, their exponentiated action would be that
of rigid rotations of the sphere —the counterpart of
translations and rotations of classical phase space.
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Fig. 2: Transformation of a 65-point signal consisting of five spot pixels of value 1 on a background of 0’s, under the maps generated by
the exponentiated matrices exp(iαP2) (top) and exp(iα{QP}Weyl) (bottom). As in the previous figure, the real, imaginary and absolute
values of the transformed signal are shown in the same gray scale; here the parameters areα = 0, 0.001, 0.003 and 0.005.

3.4 On ‘correction’ of translations inU(N)
maps

We can probe a finite optical systemA ∈ U(N)
represented by anN×N unitary matrix, by recording its
action onN one-point signals,s(m

◦) := ‖δm,m◦‖, for all
m◦|

j
− j . Each one will transform to a spot

As(m
◦) = s(A;m◦) = ‖s(A;m◦)

m ‖, encompassing neighbouring
pixels m|

j
− j . Since the set of allN one-point signals

{s(m
◦)}

j
m◦=− j form an orthonormal basis under the inner

product (19), so do their unitarily transformed spots
s(A;m◦). In principle, if we know all of the latter, we can
reconstruct the N × N transformation matrix
A = ‖Am,m′‖ = ‖(s(m),As(m

′))‖ which is a unitary matrix
(18) with the set ofN2 cyclic parametersα = {ασ

k,m}.
Consider first transformations generated by a linear

combination of the threeSU(2) ⊂ U(N) generator
matricesM0

1
2 ,±

1
2

and M1
0,0 at the top of the pyramids

(14)–(15),

M (1)(a,b,c) = aQ+bP+ cK (25)

acting ons(m). Since this matrix is tri-diagonal, one-pixel
object signals atm will diffuse to three pixels,s′m−1, s′m
ands′m+1. Using (20), (22) and (24), we can recover the
parameters in (25) of the first-order approximation of
exp(iαM (1))s ≈ s+ iαM (1) s =: s′. Introducing the rank
and weight indices, they can be expressed as

a(m) = α0
1
2 ,−

1
2
(m) =

i
m

(
1− s′m

sm

)
, (m 6= 0) (26)

b(m) = α0
1
2 ,

1
2
(m) =

1
sm

(
s′m−1

C j
m−1

−
s′m+1

C j
−m−1

)
, (27)

c(m) = α1
0,0(m) = −

i
sm

(
s′m−1

C j
m−1

+
s′m+1

C j
−m−1

)
, (28)

wheresm = 1 for unit test signals and, whenm= ± j, the
correspondings′±( j+1) are obviated becauseC j

± j = 0.
(The fact that (26) excludes them = 0 value can be
supplemented byM0

0,0 = 1 that generates an overall phase

eiαs(0), so a(0) = s′0/s0.) Thus, when we test the
transformation system with unit signals(s(m

◦))m = δm◦,m

at all pixels m◦| j
− j , we obtain the fourU(2) lowest,

‘linear’ parameters of the system.
Only when the system matrixA(α) in (18) is an

exponential exp(iM (1)(a,b,c)) of the sum (25), will the
parametersa, b, c have values independent ofm. In this
case, theU(2) phase and linear transformations due to
translation can bereversed for any and all pixellated
imagesf′ on the finite array to recuperate the original
f = exp(−iM (1))f′. Yet, if the parameters arenot
m-independent, we may choose theiraverage values
a,b,c over m|

j
− j to build anM (1)(a,b,c) to eliminatethe

two rightmost factors in the factored product (18) (i.e.,
linear transformation and overall phase). The remaining
2 j − 1 factors to the left in (18) will contain the
departures of (26)–(28) from constancy as aberrations of
the corrected first-order system. Thus, we continue with
the action of higher-rank transformations.

4 Correction of quadratic and higher
transformations

The finite analogue of the classical linear transformations
(11) is generated by the fiveN×N ‘quadratic’ matrices
Q2, P2, {QP}Weyl, {QK}Weyl and{KP}Weyl of rankk = 1,
which can be analysed in terms similar to the linear ones
above.

Again, exp(iαQ2) impresses a phase on the
components of a signalf; this is the quadratic
approximation to a multiplication by a circular wavefront
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train. Regarding squared momentum,

(P2f)m =− 1
4C j

mC j
m+1 fm+2+

1
4(C

j
mC j

−m−1+C j
−mC j

−m+1) fm

− 1
4C j

−mC j
−m−1 fm−2, (29)

it is represented by a real symmetric matrix with positive
diagonal terms, zeroes on the second diagonals
m = m′ ± 1, and smaller negative terms on the third
diagonalsm = m′ ± 2. The action of the i-exponential
exp(iαP2) on a signal f will produce a symmetric
diffusive oscillatory pattern, as a quantum mechanical
free potential on peaked wavefunctions. In Fig.2 we
show the action ofP2 on five test one-point signals
distributed on the pixel array, and their corresponding
spots for various values of the parameterα.

As to the matrix K2 = −Q2 − P2 − j( j+1)1,
comparing (24) with (22), its action will be that of (29)
with all plus signs: symmetric and diffusive but not
oscillatory. The matrix{QP}Weyl =

1
2(QP + PQ) will

generate translations modulated by position, so that
according to the parameter sign it compresses or expands
the pixellated 1D image, as can be seen in Fig.2,
corresponding in the continuous classical limit with
squeezing or expanding the positions of the spots on the
pixel array.

For the quadratic elements generating transformations
of rankk= 1 and aberrations order 2, the general form of
their generator is

M (2)
(α) = α0

1,1P2+α0
1,0{QP}Weyl+α0

1,−1Q2

+α1
1
2 ,

1
2
{KP}Weyl+α1

1
2 ,−

1
2
{KQ}Weyl. (30)

This matrix has five nonzero diagonals,
m′ ∈ {m,m±1,±2}, and its elements are

M(2)

m,m′ = −(α0
1,1+ iα1

1
2 ,

1
2
) 1

4C j
mC j

m+1δm+2,m′

−(iα0
1,0−α1

1
2 ,−

1
2
) 1

4(2m+1)C j
mδm+1,m′

+
(

α0
1,1

1
4(C

j
mC j

−m−1+C j
−mC j

m−1)+α0
1,−1m

2
)

δm,m′

+(iα0
1,0+α1

1
2 ,−

1
2
) 1

4(2m−1)C j
−mδm−1,m′

−(α0
1,1− iα1

1
2 ,

1
2
+) 1

4C j
−mC j

−m+1δm−2,m′ . (31)

As previously, the action on the one-point test functions
(s(m

′))m = δm,m′ that yield the aberrated datas′m, allows the
inversion for the coefficientsασ

k,m —all depending on the

positionm of the object unit test function,

α0
1,1 = 2i

(
sm−2

C j
m−2C j

m−1

+
sm+2

C j
−m−2C j

−m−1

)
, (32)

α0
1,0 = 2

(
sm−1

(2m−1)C j
m−1

−
sm+1

(2m+1)C j
−m−1

)
, (33)

α0
1,−1 = −i

C j
m−1C j

−m+C j
−m−1C j

m

2m2

(
sm−2

C j
m−2C j

m−1

+
sm+2

C j
−m−2C j

−m−1

)

+i 1−sm
m2 , (34)

α1
1
2 ,

1
2
= −2

(
sm−2

C j
m−2C j

m−1

−
sm+2

C j
−m−2C j

−m−1

)
, (35)

α1
1
2 ,−

1
2
= 2i

(
sm−1

(2m−1)C j
m−1

+
sm+1

(2m+1)C j
−m−1

)
, (36)

where m 6= 0 in (34). When we determine these
coefficients, or their average values if they depend onm,
we can implement the quadratic correction by applying
exp(−iαM (2)) after the linear correction has been made.

Next we can address transformations of rankk = 3
2

and aberration order 3, generated by linear combinations
of M 3

2 ,m
(α 3

2 ,m
) in (17). The matrix is now 7-diagonal

with elements

M(3)

m,m′=(2iα0
3
2 ,

3
2
−α1

1,1)
1
16C

j
mC j

m+1C
j
m+2δm+3,m′

− (α0
3
2 ,

1
2
+iα1

1,0)(m+1) 1
4C j

mC j
m+1δm+2,m′

−
(
(iα0

3
2 ,

3
2
− 1

6 iα1
1,1)

1
8C j

m(C
j
m+1C

j
−m−2

+C j
mC j

−m−1+C j
m−1C

j
−m)

+ (iα0
3
2 ,−

1
2
−α1

1,−1)(m
2+m+ 1

3)
1
2C j

m

)
δm+1,m′

+

(
1
4α0

3
2 ,

1
2

(
(m+1

3)C
j
mC j

−m−1+(m− 1
3)C

j
−mC j

m−1

)

+α0
3
2 ,−

3
2
m3

)
δm,m′ (37)

+
(
(iα0

3
2 ,

3
2
+ 1

6α1
1,1)

1
8C j

−m(C
j
mC j

−m−1

+C j
m−1C

j
−m+C j

m−2C
j
−m+1)

+ (iα0
3
2 ,

1
2
+α1

1,−1)(m
2−m+1

3)
1
2C j

−m

)
δm−1,m′

− (α0
3
2 ,

1
2
−iα1

1,0)(m−1) 1
4C j

−mC j
−m+1δm−2,m′

− (2iα0
3
2 ,

3
2
+α1

1,1)
1
16C

j
−mC j

−m+1C
j
−m+2δm−3,m′

By applying this transformation on one-point signalss(m),
we can obtain an approximation of the values of the
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aberration coefficients present in the signal. This is

α0
3
2 ,

3
2
= 4

(
sm−3

C j
m−3C j

m−2C j
m−1

−
sm+3

C j
−m−3C j

−m−2C j
−m−1

)
, (38)

α0
3
2 ,

1
2
= 2i

(
sm−2

(m−1)C j
m−2C j

m−1

+
sm+2

(m+1)C j
−m−2C j

−m−1

)
, (39)

α0
3
2 ,−

1
2
= 1

(3m4−m2+ 1
3 )

(
−

sm−3

C j
m−1C j

m−2C j
m−3

×
(

2(m2+m+ 1
3)C

j
−m+1C

j
m−2

+(3m2+m+1)(C j
m−1C

j
−m+C j

−m−1C
j
m)

+ (m2−m+ 1
3)C

j
−m−2C

j
m+1

)

− (3m2+3m+1) sm−1

C j
m−1

+(3m2−3m+1) sm+1

C j
−m−1

+
sm+3

C j
−m−1C j

−m−2C j
−m−3

(
(m2+m+ 1

3)C
j
−m+1C

j
m−2

+(3m2−m+1)(C j
m−1C

j
−m+C j

−m−1C
j
m)

+2(m2−m+ 1
3)C

j
−m−2C

j
m+1

))
, (40)

α0
3
2 ,−

3
2
= i 1

6m3

(
sm−2

(m−1)C j
m−2C j

m−1

+
sm+2

(m+1)C j
−m−2C j

−m−1

)

×
(
(3m−1)C j

m−1C
j
−m+(3m+1)C j

−m−1C
j
m

)

− i sm−1
m3 (41)

α1
1,1 = 4i

(
sm−3

C j
m−3C j

m−2C j
m−1

+
sm+3

C j
−m−3C j

−m−2C j
−m−1

)
, (42)

α1
1,0 = 2

(
sm−2

(m−1)C j
m−2C j

m−1

−
sm+2

(m+1)C j
−m−2C j

−m−1

)
,

α1
1,−1 = − i

(3m4−m2+ 1
3)

(
sm−3

C j
m−1C j

m−2C j
m−3

×
(
− (m2−m+ 1

3)C
j
−m−2C

j
m+1

+(m2+3m+ 1
3)(C

j
m−1C

j
−m+C j

−m−1C
j
m)

+2(m2+m+ 1
3)C

j
−m+1C

j
m−2

)

+(3m2+3m+1) sm−1

C j
m−1

+(3m2−3m+1) sm+1

C j
−m−1

+
sm+3

C j
−m−1C j

−m−2C j
−m−3

(
2(m2−m+ 1

3)C
j
−m−2C

j
m+1

+(m2−3m+ 1
3)(C

j
m−1C

j
−m+C j

−m−1C
j
m)

− (m2+m+ 1
3)C

j
−m+1C

j
m−2

))
. (43)

Except for the diagonal exp(iαQu), the exponential of
the matrices (1)–(3) will generally be fullN×N matrices.
Since the central elements of the matricesPv and Kw

grow as∼ (1
2 j)v+w, the values of the parameterα must be

reduced by the inverse factor to keep the aberrations
within a visually comparable scale, as done in Figs.1 vs.
2. This motivates us to look at the first term of the

exponential series, after the unity, to characterize the face
of the aberrations assuming that they are indeed small.

5 Concluding remarks

The finite quantization scheme applied to images on 1D
pixel arrays allows the classification of linear, quadratic
and higher-order aberrations in correspondence with their
continuous geometric optical counterparts. It also allows
an iterative method to determine the coefficients that
generate these transformations, rank by rank. Whether
one decides to remove the lower ranks in the
factored-product decomposition (18) and inquire on the
aberrations in the remainder of that product, or use the
extraction algorithm in (26)–(28) and (32)–(36), to
determine a ‘corrected’ linear transformation, the
factored-product expansion provides a well-defined
parametrization of the unitary groupU(N) based on small
departures from the ‘linear’U(2) subgroup.

This should be considered as an as-yet unexplored
parametrization of theN2-dimensional manifold of the
unitary groupU(N), whose best-known parametrization
follows that of Euler angles in theN-dimensional
orthogonal subgroup of matrices of unit determinant,
SO(N) ⊃ SO(N−1) ⊃ ·· · ⊃ SO(3) ⊃ SO(2), inserting
phase transformations after each factor in that group
chain [12]. The factored-product expansion coordinates
{ασ

k,m} however, do not compose simply under the
concatenation of group elements, nor has the Haar
measure over the group been written in terms of these
coordinates. Further afield, sinceU(N) properly contains
the discrete permutation groupΠ (N) of N! elements; a
parametrization based on the permutation of pixel values,
with small departures due to ‘aberrations’ seems possible
but, to our knowledge, has not yet been attempted.
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