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Abstract: In recent years, many researchers investigated and developed the Economic Production Quantity (EPQ) model under
permissible delay in payment. There are two payment terms which are usually being used. If a customer buys one item from a retailer
at timet belonging to the time-interval[0,N], then the customer will have a trade-credit periodN− t and will make the payment at
time N. The other payment term (alternate due date) is when a customer buys one item from a retailer at timet belonging to[0,T], the
customer will have a trade-credit periodN and will make the payment at timeN+ t. This paper develops a two-level trade-credit model
with a finite replenishment rate by considering an alternatedue date of payment and limited storage capacity together. Four theorems
are developed in this investigation with a view to characterizing the optimal solutions according to cost-minimization strategy. Finally,
sensitivity analyses are executed to investigate the effects of the various parameters on the ordering policies and theannual total relevant
costs. Several interesting results are also considered in order to make several managerial suggestions.

Keywords: Economic Production Quantity (EPQ), permissible delay in paymentayment, trade-credit model, alternate due date of
payment, trade-credit period, limited storage capacity, sensitivity analyses, optimal solutions, cost-minimization strategy.

1 Introduction

As long ago as 1913, Harris [1] designed the first
Economic Order Quantity (EOQ) model. Subsequently,
Taft [2] established the Economic Production Quantity
(EPQ) model which integrated the EOQ model with the
idea of continuous production in order to make it more
practical. Hartley [3] proposed the inventory model of
two warehouses for solving the capacity problem, which
distinguished between the owned and the rented
warehouses. Goyal [4] studied an EOQ model under
permissible delay in payments by assuming that the
supplier would offer the retailer a fixed-delay period and
the retailer could sell the goods and accumulate revenue

and earning within the trade-credit period. Huang [5] as
well as Teng and Goyal [6] extended Goyal’s EOQ model
in [4] to provide a fixed trade-credit periodM between the
supplier and the retailer, and a trade-credit periodN
between the retailer and the customer. Huang’s payment
terms (see [5]): If a customer buys one item from a
retailer at timet belonging to the time-interval[0,N], then
the customer will have a trade-credit periodN− t and will
make the payment at timeN. So, the retailer allows a
maximum trade-credit periodN for customers to settle the
account. Huang’s concept of payment terms in [5] was
extended by many researchers (see, [7,8,9,10,11,12,13,
14,15,16,17,18,19]). The Teng-Goyal payment terms
(see [6]): If a customer buys one item from a retailer at
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time t belonging to the time-interval[0,T], then the
customer will have a trade-credit periodN and will make
the payment at timeN + t. So, the retailer allows each
customer to settle the account within the same trade
period N. Related researches were present in several
subsequent works including [20,21,22,23,24,25].
We remark that Yenet al. [18] presented an EOQ model
by considering two warehouses system together with the
payment terms considered earlier by Teng and Goyal.
Motivated essentially by the above-mentioned
developmentsm our attempt in this paper is to develop a
generalization of the EPQ model considered by Yenet al.
[18]. Four easy-to-use theorems are developed in order to
characterize the optimal solutions according to the
cost-minimization strategy. Finally, sensitivity analyses
are executed to investigate the effects of the various
parameters on ordering policies and annual total relevant
costs (TRCs) of the inventory system. The conclusion in
the work by Yenet al. [18] will thus become a special
case of the results presented in this paper. For various
other recent developments on the subject, the interested
reader is referred also to such related works as those in
[26,27,28,29,30].

2 Formulation of the Mathematical Model

tw2− tw1 =











DTρ−W
P−D + DTρ−W

D (DTρ >W)

0 (DTρ ≦W)

T∗ the optimal solution of TRC(T)

2.1 Assumptions

We considered some assumptions for the proposed, both
of the of Demand rateD and eplenishment rateP are
known and constant. Shortages are not allowed and time
period is infinite. Moreover,k ≧ h, M ≧ N and s ≧ c.
When the order quantity is larger than the retailer’s OW
storage capacityW, the retailer would rent a warehouse to
store these exceeding items, and the RW storage capacity
is unlimited. When the demand occurs, the ordered items
would be replenished from the RW which stores those
exceeding items. During the period of time when the
account is not settled, generated sales revenue is
deposited in an interest-bearing account. WhenT ≧ M,
the account is settled atT = M, the retailer pays off all
units sold and keeps his/her profits, and starts paying for a
higher interest charge on the items in stock with rateIk.
When T ≦ M, the account is settled atT = M and the
retailer does not need to pay any interest charge. The
retailer can accumulate revenue and earn interest after a
customer pays for the amount of purchasing cost to the
retailer until the end of the trade-credit period offered by

the supplier. That is, the retailer can accumulate revenue
and earn interest between the periodN and the periodM
with rate Ie under the condition of trade credit. If a
customer buys an item from the retailer at timet ∈ [0,T],
then the customer will have a trade-credit periodN and
make the payment at timeN+ t.

2.2 The Annual Total Relevant Cost

The annual total relevant cost (TRC) consists of two
elements. First, the annual ordering cost is given by

Annual ordering cost=
A
T
. (1)

Second, annual stock-holding cost including owned
warehouse and rented warehouse). Two cases occur in
costs of owned warehouse:

1. DTρ ≦ W, shown in Figure1. The annual stock-
holding cost in owned warehouse is given by

Annual stock-holding cost in owned warehouse= DT hρ
2 .

(2)

W

DT

L
max

L
max

= (P D)
DT

P
= DT

t =
DT

P

Inventory Level

T
Time

Fig. 1: Annual stock-holding cost whenDTρ ≦W

2. DTρ > W, shown in Figure2. The annual stock-
holding cost in owned warehouse is given by

Annual stock-holding cost in owned warehouse=Wh− PW2

2DT(P−D) .

(3)

Two cases occur in costs of rented warehouse:

1. DTρ ≦ W, shown in Figure1. The annual stock-
holding cost in rented warehouse is given by

Annual stock-holding cost in rented warehouse= 0.
(4)

2. DTρ > W, shown in Figure2. The annual stock-
holding cost in rented warehouse given by

Annual stock-holding cost in rented warehouse= Pk(DTρ−W)2

2DT(P−D) .

(5)
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Fig. 2: Annual stock-holding cost when DTρ >W

Four cases are expected to occur each year in the costs of
interest charges for the items kept in stock.

1. T ≦ M−N. The annual interest charged is given, in
this case, by

Annual interest charged= 0. (6)

2. M − N ≦ T < M. The annual interest charged is
given, in this case, by

Annual interest charged= 0. (7)

3. M ≦T <
PM
D , shown in Figure3. The annual interest

charged is given, in this case, by

Annual interest charged=
cIkD(T −M)2

2T
. (8)

DT

L
max

L
max

= (P D)
DT

P
= DT

t =
DT

P

Inventory Level

T
Time

D(T M )

M

Fig. 3: Annual interest charged when M < T ≦ PM
D

4. PM
D < T, shown in Figure4. The annual interest

charged is given, in this case, by

Annual interest charged=
cIkρ(DT2−PM2)

2T
. (9)

DT

L
max

L
max

= (P D)
DT

P
= DT

t =
DT

P

Inventory Level

T
Time

M

(P D)M

Fig. 4: Annual interest charged when PM
D < T

There are four cases to occur in interest earned per year.

1. T < M−N, shown in Figure5. The annual interest
earned is given, in this case, by

Annual interest earned=
sIeD(2M−2N−T)

2
. (10)

DT

$

T
Time

MN T +N0

Fig. 5: Annual interest earned when T ≧ M−N

2. M − N ≦ T < M, shown in Figure6. The annual
interest earned is given, in this case, by

Annual interest earned=
sIeD(M−N)2

2T
. (11)

3. M ≦ T <
PM
D

, shown in Figure7. The annual

interest earned is given, in this case, by

Annual interest earned=
sIeD(M−N)2

2T
. (12)

4.
PM
D

≦ T. The annual interest earned is given, in this

case, by

Annual interest earned=
sIeD(M−N)2

2T
. (13)
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DT
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MN T +N0

D(M N )

Fig. 6: Annual interest earned when M−N < T ≦ M

DT
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Time
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Fig. 7: Annual interest earned when M < T ≦ PM
D

From the above arguments, the annual total relevant
cost for the retailer can be expressed as follows:

TRC(T) = ordering cost+stock-holding+ interest charged− interest earned.

The following four cases arise:

1.
W
Dρ

< M−N.

2. M−N ≦
W
Dρ

< M.

3. M ≦
W
Dρ

<
PM
D

.

4.
PM
D

≦
W
Dρ

.

Case 1.
W
Dρ

< M−N.

According to Equations (1) to (13), the annual total

relevant cost, TRC(T), can be expressed by

TRC(T) =



























































































TRC1(T)

(

T ≦
W
Dρ

)

TRC2(T)

(

W
Dρ

≦ T < M−N

)

TRC3(T) (M−N ≦ T < M)

TRC4(T)

(

M ≦ T <
PM
D

)

TRC5(T)

(

PM
D

≦ T

)

,

(14)
where

TRC1(T) =
A
T
+

DThρ
2

+0−
sIeD(2M−2N−T)

2
, (15)

TRC2(T) =
A
T
+

Pk(DTρ −W)2

2DT(P−D)
+Wh−

PW2h
2DT(P−D)

+0−
sIeD(2M−2N−T)

2
, (16)

TRC3(T) =
A
T
+

Pk(DTρ −W)2

2DT(P−D)
+Wh−

PW2h
2DT(P−D)

+0−
sIeD(M−N)2

2T
, (17)

TRC4(T) =
A
T
+

Pk(DTρ −W)2

2DT(P−D)
+Wh−

PW2h
2DT(P−D)

+
cIkD(T −M)2

2T
−

sIeD(M−N)2

2T
(18)

and

TRC5(T) =
A
T
+

Pk(DTρ −W)2

2DT(P−D)
+Wh−

PW2h
2DT(P−D)

+
cIkρ(DT2−PM2)

2T
−

sIeD(M−N)2

2T
.

(19)

Since

TRC1

(

W
Dρ

)

= TRC2

(

W
Dρ

)

,

TRC2(M−N) = TRC3(M−N),

TRC3(M) = TRC4(M)

and

TRC4(
PM
D

) = TRC5

(

PM
D

)

,

the function TRC(T) is continuous whenT > 0.
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Case 2. M−N ≦
W
Dρ

< M.

According to Equations (1) to (13), the annual total
relevant cost, TRC(T), can be expressed by

TRC(T) =



























































































TRC1(T) (0< T < M−N)

TRC6(T)

(

M−N ≦ T <
W
Dρ

)

TRC3(T)

(

W
Dρ

≦ T < M

)

TRC4(T)

(

M ≦ T <
PM
D

)

TRC5(T)

(

PM
D

≦ T

)

,

(20)
where

TRC6(T) =
A
T
+

DThρ
2

+0+
sIeD(M−N)2

2T
. (21)

Since

TRC1(M−N) = TRC6(M−N),

TRC6

(

W
Dρ

)

= TRC3

(

W
Dρ

)

,

TRC3(M) = TRC4(M)

and

TRC4

(

PM
D

)

= TRC5

(

PM
D

)

,

the function TRC(T) is continuous whenT > 0.

Case 3. M≦
W
Dρ

<
PM
D

.

According to Equations (1) to (13), the annual total
relevant cost, TRC(T), can be expressed by

TRC(T) =



















































































TRC1(T) (0< T < M−N)

TRC6(T) (M−N ≦ T < M)

TRC7(T)

(

M ≦ T <
W
Dρ

)

TRC4(T)

(

W
Dρ

≦ T <
PM
D

)

TRC5(T)

(

PM
D

≦ T

)

,

(22)

where

TRC7(T) =
A
T
+

DThρ
2

+
cIkD(T −M)2

2T

−
sIeD(M−N)2

2T
. (23)

Since
TRC1(M−N) = TRC6(M−N),

TRC6(M) = TRC7(M),

TRC7

(

W
Dρ

)

= TRC4

(

W
Dρ

)

and

TRC4

(

PM
D

)

= TRC5

(

PM
D

)

,

the function TRC(T) is continuous whenT > 0.

Case 4.
PM
D

≦
W
Dρ

.

According to Equations (1) to (13), the annual total
relevant cost, TRC(T), can be expressed by

TRC(T) =



































































TRC1(T) (0< T < M−N)

TRC6(T) (M−N ≦ T < M)

TRC7(T)
(

M ≦ T <
PM
D

)

TRC8(T)
(

PM
D ≦ T <

W
Dρ

)

TRC5(T)
(

W
Dρ ≦ T

)

,

(24)

where

TRC8(T) =
A
T
+

DThρ
2

+
cIkρ(DT2−PM2)

2T

−
sIeD(M−N)2

2T
. (25)

Since
TRC1(M−N) = TRC6(M−N),

TRC6(M) = TRC7(M),

TRC7

(

PM
D

)

= TRC8

(

PM
D

)

and

TRC8

(

W
Dρ

)

= TRC5

(

W
Dρ

)

,

the function TRC(T) is continuous whenT > 0.

In summary, all of the functions
TRCi(T) (i = 1, · · · ,8) are defined onT > 0.
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3 The Convexity of TRCi(T) (i = 1, · · · ,8)

Equations (15) to (19), (21), (23) and (25) yield the first-
order and second-order derivatives as follows:

TRC′
1(T) =−

A
T2 +

Dhρ
2

+
sIeD

2
, (26)

TRC′′
1(T) =

2A
T3 ≧ 0, (27)

TRC′
2(T) =−

A
T2 −

W2(k−h)
2DρT2 +

Dkρ
2

+
sIeD

2
, (28)

TRC′′
2(T) =

2A+
W2(k−h)

Dρ

T3 ≧ 0, (29)

TRC′
3(T) =−

A
T2 −

W2(k−h)
2DρT2 +

sIeD(M−N)2

2T2

+
Dkρ

2
, (30)

TRC′′
3(T) =

2A+ W2(k−h)
Dρ − sIeD(M−N)2

T3 , (31)

TRC′
4(T) =−

A
T2 −

W2(k−h)
2DρT2 −

cIkDM2

2T2

+
sIeD(M−N)2

2T2 +
Dkρ

2
+

cIkD
2

, (32)

TRC′′
4(T) =

2A+
W2(k−h)

Dρ + cIkDM2− sIeD(M−N)2

T3 ,

(33)

TRC′
5(T) =−

A
T2 −

W2(k−h)
2DρT2 +

cIkM2(P−D)

2T2

+
sIeD(M−N)2

2T2 +
Dkρ

2
+

cIkDρ
2

, (34)

TRC′′
5(T)=

2A+ W2(k−h)
Dρ − cIkM2(P−D)− sIeD(M−N)2

T3 ,

(35)

TRC′
6(T) =−

A
T2 +

sIeD(M−N)2

2T2 +
Dhρ

2
, (36)

TRC′′
6(T) =

2A− sIeD(M−N)2

T3 , (37)

TRC′
7(T) =−

A
T2 −

cIkDM2

2T2 +
sIeD(M−N)2

2T2

+
Dhρ

2
+

cIkD
2

, (38)

TRC′′
7(T) =

2A+ cIkDM2− sIeD(M−N)2

T3 , (39)

TRC′
8(T) =−

A
T2 +

cIkM2(P−D)

2T2 +
sIeD(M−N)2

2T2

+
Dhρ

2
+

cIkDρ
2

(40)

and

TRC′′
8(T) =

2A− cIkM2(P−D)− sIeD(M−N)2

T3 . (41)

If we let

G3 = 2A+
W2(k−h)

Dρ
− sIeD(M−N)2

, (42)

G4 = 2A+
W2(k−h)

Dρ
+ cIkDM2− sIeD(M−N)2

, (43)

G5 = 2A+
W2(k−h)

Dρ
− cIkM

2(P−D)

− sIeD(M−N)2
, (44)

G6 = 2A− sIeD(M−N)2
, (45)

G7 = 2A+ cIkDM2− sIeD(M−N)2 (46)

and

G8 = 2A− cIkM
2(P−D)− sIeD(M−N)2

, (47)

then Equations (42) to (47) imply that

G4 > G3 > G5 > G8 (48)

and
G4 > G7 > G6 > G8. (49)

Furthermore, Equations (26) to (41) lead us to the
following results: Upon solving these equations, we find
that

TRC′
1(T) = 0 (i = 1, · · · ,8), (50)

T∗
1 =

√

2A
Dhρ + sIeD

, (51)

T∗
2 =

√

√

√

√

2A+ W2(k−h)
Dρ

Dkρ + sIeD
, (52)

T∗
3 =

√

√

√

√

2A+
W2(k−h)

Dρ − sIeD(M−N)2

Dkρ
(G3 > 0),

(53)
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T∗
4 =

√

√

√

√

2A+ W2(k−h)
Dρ +cIkDM2−sIeD(M−N)2

Dkρ +cIkD
, (G4 > 0), (54)

T∗
5 =

√

√

√

√

2A+ W2(k−h)
Dρ −cIkM2(P−D)−sIeD(M−N)2

Dkρ +cIkDρ
, (G5 > 0), (55)

T∗
6 =

√

2A− sIeD(M−N)2

Dhρ
(G6 > 0), (56)

T∗
7 =

√

2A+ cIkDM2− sIeD(M−N)2

Dhρ + cIkD
(G7 > 0)

(57)
and

T∗
8 =

√

2A−cIkM2(P−D)−sIeD(M−N)2

Dhρ +cIkDρ
(G8 > 0).

(58)

Based upon the above observations, we now state the
following lemma.

Lemma 1. Each of the following assertions holds true:

1. TRCi(T) is convex on T> 0 if i = 1,2.
2. TRCi(T) is convex on T> 0 if i = 3, · · · ,8 and

Gi > 0 (i = 3, · · · ,8). Otherwise the functionTRCi(T)
is increasing on T> 0.

If T ∗
i exists, thenTRCi(T) is convex on T> 0 and

TRC′
i(T)



























< 0 (0< T < T∗
i )

= 0 (T = T∗
i )

> 0 (T > T∗
i ).

(59)

Equation (59) implies that the functionTRCi(T) is
decreasing on(0,T∗

i ] and increasing on[T∗
i ,∞) for all

i = 1, · · · ,8.

4 The Number ∆i j

We consider the following cases:

Case 1.
W
Dρ

< M−N.

Equations (26), (28), (30), (32) and (34) yield

TRC′
1

(

W
Dρ

)

= TRC′
2

(

W
Dρ

)

=
∆12

2

(

W
Dρ

)2 , (60)

TRC′
2(M−N) = TRC′

3(M−N) =
∆23

2(M−N)2 , (61)

TRC′
3(M) = TRC′

4(M) =
∆34

2M2 (62)

and

TRC′
4

(

PM
D

)

= TRC′
5

(

PM
D

)

=
∆45

2

(

PM
D

)2 , (63)

where

∆12 =−2A+
hW2

Dρ
+

sIeW2

Dρ
, (64)

∆23=−2A−
W2(k−h)

Dρ
+ sIeD(M−N)2

+Dkρ(M−N)2
, (65)

∆34=−2A−
W2(k−h)

Dρ
+sIeD(M−N)2+DkρM2 (66)

and

∆45=−2A−
W2(k−h)

Dρ
+ sIeD(M−N)2

+
cIkM2(P2−D2)

D
+

PkM2(P−D)

D
. (67)

Equations (64) to (67) imply that

∆45 > ∆34 > ∆23 > ∆12. (68)

Case 2. M−N ≦
W
Dρ

< M.

Equations (26), (36), (30), (32) and (34) yield

TRC′
1(M−N) = TRC′

6(M−N) =
∆16

2(M−N)2 , (69)

TRC′
6

(

W
Dρ

)

= TRC′
3

(

W
Dρ

)

=
∆63

2

(

W
Dρ

)2 , (70)

TRC′
3(M) = TRC′

4(M) =
∆34

2M2 (71)

and

TRC′
4

(

PM
D

)

= TRC′
5

(

PM
D

)

=
∆45

2

(

W
Dρ

)2 , (72)

where

∆16 =−2A+ sIeD(M−N)2+Dhρ(M−N)2 (73)

and

∆63 =−2A+ sIeD(M−N)2+
hW2

Dρ
. (74)

Equations (66), (67), (73) and (74) imply that

∆45 > ∆34 > ∆63 ≧ ∆16. (75)
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Case 3. M≦
W
Dρ

<
PM
D

.

Equations (26), (32), (34), (36) and (38) yield

TRC′
1(M−N) = TRC′

6(M−N) =
∆16

2(M−N)2 , (76)

TRC′
6(M) = TRC′

7(M) =
∆67

2M2 , (77)

TRC′
7

(

W
Dρ

)

= TRC′
4

(

W
Dρ

)

=
∆74

2

(

W
Dρ

)2 (78)

and

TRC′
4

(

PM
D

)

= TRC′
5

(

PM
D

)

=
∆45

2

(

PM
D

)2 , (79)

where

∆67 =−2A+ sIeD(M−N)2+DhρM2 (80)

and

∆74 =−2A+ sIeD(M−N)2− cIkDM2+
hW2

Dρ

+
cIkW2

Dρ
. (81)

Equations (67), (73), (80) and (81) imply that

∆45 > ∆74 > ∆67 ≧ ∆16. (82)

Case 4.
PM
D

≦
W
Dρ

.

Equations (26), (34), (36), (38) and (40) yield

TRC′
1(M−N) = TRC′

6(M−N) =
∆16

2(M−N)2 , (83)

TRC′
6(M) = TRC′

7(M) =
∆67

2M2 , (84)

TRC′
7

(

PM
D

)

= TRC′
8

(

PM
D

)

=
∆78

2

(

PM
D

)2 (85)

and

TRC′
8

(

W
Dρ

)

= TRC′
5

(

W
Dρ

)

=
∆85

2

(

W
Dρ

)2 , (86)

where

∆78 =−2A+ sIeD(M−N)2+
cIkM2(P2−D2)

D

+
PkM2(P−D)

D
(87)

and

∆85 =−2A+ sIeD(M−N)2+ cIkM
2(P−D)+

hW2

Dρ

+
cIkW2

Dρ2 . (88)

Equations (73), (80), (87) and (88) imply that

∆85> ∆67 ≧ ∆16 (89)

and
∆78 > ∆67 ≧ ∆16. (90)

Based upon the above-mentionedarguments, we derive the
following results.

Lemma 2. Each of the following assertions holds true:

1. If ∆23 ≦ 0, then
(a) G3 > 0;
(b) T∗

3 exists;
(c) TRC3(T) is convex on T> 0.

2. If ∆34 ≦ 0, then
(a) G3 > 0 and G4 > 0;
(b) T∗

3 and T∗4 exist;
(c) TRC3(T) andTRC4(T) are convex on T> 0.

3. If ∆45 ≦ 0, then
(a) G4 > 0 and G5 > 0;
(b) T∗

4 and T∗5 exist;
(c) TRC4(T) andTRC5(T) are convex on T> 0.

4. If ∆16 ≦ 0, then
(a) G6 > 0;
(b) T∗

6 exists;
(c) TRC6(T) is convex on T> 0.

5. If ∆63 ≦ 0, then
(a) G3 > 0 and G6 > 0;
(b) T∗

3 and T∗6 exist;
(c) TRC3(T) andTRC6(T) are convex on T> 0.

6. If ∆67 ≦ 0, then
(a) G6 > 0 and G7 > 0;
(b) T∗

6 and T∗7 exist;
(c) TRC6(T) andTRC7(T) are convex on T> 0.

7. If ∆74 ≦ 0, then
(a) G4 > 0 and G7 > 0;
(b) T∗

4 and T∗7 exist;
(c) TRC4(T) andTRC7(T) are convex on T> 0.

8. If ∆78 ≦ 0, then
(a) G7 > 0 and G8 > 0;
(b) T∗

7 and T∗8 exist;
(c) TRC7(T) andTRC8(T) are convex on T> 0.

9. If ∆85 ≦ 0, then
(a) G5 > 0 and G8 > 0;
(b) T∗

5 and T∗8 exist;
(c) TRC5(T) andTRC8(T) are convex on T> 0.

Proof. Our item-wise demonstration of Lemma2 is
given belo.
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1. (a) If ∆23 < 0, then

2A+
W2(k−h)

Dρ
≧ sIeD(M−N)2+Dkρ(M−N)2

(91)
and

G3 = 2A+
W2(k−h)

Dρ
− sIeD(M−N)2

≧ Dkρ(M−N)2
> 0. (92)

(b) Equation (53) implies thatT∗
3 exists.

(c) Equation (31) and Lemma1 imply thatTRC3(T)
is convex onT > 0.

2. (a) If ∆34 ≦ 0, then

2A+
W2(k−h)

Dρ
≧ sIeD(M−N)2+DkρM2

, (93)

G3 = 2A+
W2(k−h)

Dρ
− sIeD(M−N)2

≧ DkρM2
> 0 (94)

and

G4 = 2A+
W2(k−h)

Dρ
+ cIkDM2− sIeD(M−N)2

≧ DkρM2+ cIkDM2
> 0. (95)

(b) Equations (53) and (54) imply that T∗
3 andT∗

4
exist.

(c) Equations (31) and (33), together with Lemma
1, imply that TRC3(T) and TRC4(T) are convex
onT > 0.

3. (a) If ∆45 ≦ 0, then

2A+
W2(k−h)

Dρ
≧ sIeD(M−N)2

+
cIkM2(P2−D2)

D

+
PkM2(P−D)

D
, (96)

G4 = 2A+
W2(k−h)

Dρ
+ cIkDM2− sIeD(M−N)2

≧
PkM2(P−D)

D
+

cIkP2M2

D
> 0 (97)

and

G5 = 2A+
W2(k−h)

Dρ
− cIkDM2(P−D)

− sIeD(M−N)2

≧
PkM2(P−D)

D
+

cIkPM2(P−D)

D
> 0.

(98)

(b) Equations (54) and (55) imply that T∗
4 andT∗

5
exist.

(c) Equations (33) and (35), together with Lemma
1, imply that TRC4(T) and TRC5(T) are convex
onT > 0.

4. (a) ∆16 ≦ 0, then

2A≦ sIeD(M−N)2+Dhρ(M−N)2 (99)

and

G6 = 2A− sIeD(M−N)2

≧ Dhρ(M−N)2
> 0. (100)

(b) Equation (56) implies thatT∗
6 exists.

(c) Equation (37) and Lemma1 imply thatTRC6(T)
is convex onT > 0.

5. (a) If ∆63 ≦ 0, then

2A≧ sIeD(M−N)2+
hW2

Dρ
, (101)

G6 = 2A− sIeD(M−N)2 ≧
hW2

Dρ
> 0 (102)

and

G3 = 2A+
W2(k−h)

Dρ
− sIeD(M−N)2

≧
kW2

Dρ
> 0. (103)

(b) Equations (53) and (56) imply that T∗
3 andT∗

6
exist.

(c) Equations (31) and (37), together with Lemma
1, imply that TRC3(T) and TRC6(T) are convex
onT > 0.

6. (a) If ∆67 ≦ 0, then

2A≦ sIeD(M−N)2+DhρM2
, (104)

G6 = 2A− sIeD(M−N)2 ≧ DhρM2
> 0 (105)

and

G7 = 2A+ cIkDM2− sIeD(M−N)2

≧ DhρM2+ cIkDM2
> 0. (106)

(b) Equations (56) and (57) imply that T∗
6 andT∗

7
exist.

(c) Equations (37) and (39), together with Lemma
1, imply that TRC6(T) and TRC7(T) are convex
onT > 0.

7. (a) If ∆74 ≦ 0, then

2A+ cIkDM2
> sIeD(M−N)2+

hW2

Dρ

+
cIkW2

Dρ2 , (107)
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G7 = 2A+ cIkDM2− sIeD(M−N)2

≧
hW2

Dρ
+

cIkW2

Dρ2 > 0 (108)

and

G4 = 2A+
W2(k−h)

Dρ
+ cIkDM2− sIeD(M−N)2

≧
kW2

Dρ
+

cIkW2

Dρ2 > 0. (109)

(b) Equations (54) and (57) imply that T∗
4 andT∗

7
exist.

(c) Equations (33) and (39), together with Lemma
1, imply thatTRC4(T) andTRC7(T) are concave
onT > 0.

8. (a) If ∆78 ≦ 0, then

2A≧ sIeD(M−N)2+
cIkM2(P2−D2)

D

+
PkM2(P−D)

D
, (110)

G7 = 2A+ cIkDM2− sIeD(M−N)2

≧
PkM2(P−D)

D
+

cIkP2M2

D
> 0, (111)

and

G8 = 2A− cIkDM2(P−D)− sIeD(M−N)2

≧
PkM2(P−D)

D
+

cIkPM2(P−D)

D
> 0.

(112)

(b) Equations (57) and (58) imply that T∗
7 andT∗

8
exist.

(c) Equations (39) and (41), together with Lemma
1, imply that TRC7(T) and TRC8(T) are convex
onT > 0.

9. (a) If ∆85 ≦ 0, then

2A≧ sIeD(M−N)2+cIkM
2(P−D)+

hW2

Dρ
+

cIkW2

Dρ2 ,

(113)

G8 = 2A− cIkM
2(P−D)− sIeD(M−N)2

≧
hW2

Dρ
+

cIkW2

Dρ2 > 0 (114)

and

G5 = 2A+
W2(k−h)

Dρ
− cIkM

2(P−D)

− sIeD(M−N)2

≧
hW2

Dρ
+

cIkW2

Dρ2 > 0. (115)

(b) Equations (55) and (58) imply that T∗
5 and T∗

8
exist.

(c) Equations (35) and (41), together with Lemma
1, imply that TRC5(T) and TRC8(T) are convex
onT > 0.

5 The Determination of the Optimal Cycle
Time T∗ of TRC(T)

Theorem 1. Suppose that

W
Dρ

< M−N.

Then each of the following assertions holds true:

1. If ∆12 > 0, thenTRC(T∗) = TRC(T∗
1 ) and T∗ =

T∗
1 .

2. If ∆23 > 0 ≧ ∆12, thenTRC(T∗) = TRC(T∗
2 ) and

T∗ = T∗
2 .

3. If ∆34 > 0 ≧ ∆23, thenTRC(T∗) = TRC(T∗
3 ) and

T∗ = T∗
3 .

4. If ∆45 > 0 ≧ ∆34, thenTRC(T∗) = TRC(T∗
4 ) and

T∗ = T∗
4 .

5. If 0 ≧ ∆45, thenTRC(T∗) = TRC(T∗
5 ) and T∗ =

T∗
5 .

Proof. Our item-wise proof of Theorem1 runs as
follows.

1. When∆12 > 0, then

∆45 > ∆34 > ∆23 > ∆12 > 0.

Lemma1 and Equation (59) imply that
(a) TRC1(T) is decreasing on(0,T∗

1 ] and increasing

on

[

T∗
1 ,

W
Dρ

]

.

(b) TRC2(T) is increasing on

[

W
Dρ

,M−N

]

.

(c) TRC3(T) is increasing on[M−N,M].

(d) TRC4(T) is increasing on

[

M,
PM
D

]

.

(e) TRC5(T) is increasing on

[

PM
D

,∞
)

.

Since TRC(T) is continuous onT > 0, Equation (14)
and the above conclusions would show that TRC(T) is
decreasing on(0,T∗

1 ] and increasing on[T∗
1 ,∞), so we

have

T∗ = T∗
1 and TRC(T∗) = TRC1(T

∗
1 ).

2. When∆23 > 0> ∆12, then

∆45 > ∆34 > ∆23 > 0> ∆12.

Lemma1 and Equation (59) imply that
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(a) TRC1(T) is decreasing on

(

0,
W
Dρ

]

;

(b) TRC2(T) is decreasing on

[

W
Dρ

,T∗
2

]

and

increasing on[T∗
2 ,M−N];

(c) TRC3(T) is increasing on[M−N,M];

(d) TRC4(T) is increasing on

[

M,
PM
D

]

;

(e) TRC5(T) is increasing on

[

PM
D

,∞
)

.

Because TRC(T) is continuous onT > 0, Equations
(14) and the above conclusions would show that
TRC(T) is decreasing on(0,T∗

2 ] and increasing on
[T∗

2 ,∞), so we get

T∗ = T∗
2 and TRC(T∗) = TRC2(T

∗
2 ).

3. When∆34> 0> ∆23, then

∆45 > ∆34 > 0> ∆23 > ∆12.

Lemmas1 and2, together with Equation (59), imply
that

(a) TRC1(T) is decreasing on

(

0,
W
Dρ

]

;

(b) TRC2(T) is decreasing on

[

W
Dρ

,M−N

]

.

(c) TRC3(T) is decreasing on[M − N,T∗
3 ] and

increasing on[T∗
3 ,M].

(d) TRC4(T) is increasing on

[

M,
PM
D

]

.

(e) TRC5(T) is increasing on

[

PM
D

,∞
)

.

Since TRC(T) is continuous onT > 0, Equations (14)
and the above conclusions would show that TRC(T) is
decreasing on(0,T∗

3 ] and increasing on[T∗
3 ,∞), so we

have

T∗ = T∗
3 and TRC(T∗) = TRC3(T

∗
3 ).

4. When∆45> 0> ∆34, then

∆45 > 0> ∆34 > ∆23 > ∆12,

so Lemmas1 and2, together with Equation (59), imply
that

(a) TRC1(T) is decreasing on

(

0,
W
Dρ

]

;

(b) TRC2(T) is decreasing on

[

W
Dρ

,M−N

]

;

(c) TRC3(T) is decreasing on[M−N,M].
(d) TRC4(T) is decreasing on (M,T∗

4 ] and
increasing on

[

T∗
4 ,

PM
D

]

.

(e) TRC5(T) is increasing on

[

PM
D

,∞
)

.

Because TRC(T) is continuous onT > 0, Equations
(14) and the above conclusions would show that

TRC(T) is decreasing on(0,T∗
4 ] and increasing on

[T∗
4 ,∞), so we have

T∗ = T∗
4 and TRC(T∗) = TRC4(T

∗
4 ).

5. When 0> ∆45, then

0> ∆45 > ∆34 > ∆23 > ∆12,

so Lemmas1 and2, together with Equation (59), imply
that

(a) TRC1(T) is decreasing on

(

0,
W
Dρ

]

;

(b) TRC2(T) is decreasing on

[

W
Dρ

,M−N

]

;

(c) TRC3(T) is decreasing on[M−N,M].

(d) TRC4(T) is decreasing on

[

M,
PM
D

]

;

(e) TRC5(T) is decreasing on

[

PM
D

,T∗
5

]

and

increasing on[T∗
5 ,∞).

Since TRC(T) is continuous onT > 0, Equations (14)
and the above conclusions would show that TRC(T) is
decreasing on(0,T∗

5 ] and increasing on[T∗
5 ,∞), so we

have

T∗ = T∗
5 and TRC(T∗) = TRC5(T

∗
5 ).

Theorem 2. Suppose that

M−N ≦
W
Dρ

< M.

Then each of the following assertions holds true:

1. If ∆16 > 0, thenTRC(T∗) = TRC(T∗
1 ) and T∗ =

T∗
1 .

2. If ∆63 > 0 ≧ ∆16, thenTRC(T∗) = TRC(T∗
6 ) and

T∗ = T∗
6 .

3. If ∆34 > 0 ≧ ∆63, thenTRC(T∗) = TRC(T∗
3 ) and

T∗ = T∗
3 .

4. If ∆45 > 0 ≧ ∆34, thenTRC(T∗) = TRC(T∗
4 ) and

T∗ = T∗
4 .

5. If 0 ≧ ∆45, thenTRC(T∗) = TRC(T∗
5 ) and T∗ =

T∗
5 .

Proof. Our item-wise demonstration of Theorem2 is
presented below.

1. When∆16 > 0, then

∆45 > ∆34 > ∆63 > ∆16 > 0,

so Lemma1 and Equation (59) imply that
(a) TRC1(T) is decreasing on(0,T∗

1 ] and increasing
on [T∗

1 ,M−N];

(b) TRC6(T) is increasing on

[

M−N,
W
Dρ

]

;
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(c) TRC3(T) is increasing on

[

W
Dρ

,M

]

;

(d) TRC4(T) is increasing on

[

M,
PM
D

]

;

(e)TRC5(T) is increasing on

[

PM
D

,∞
)

.

Because TRC(T) is continuous onT > 0, Equations
(20) and the above conclusions would show that
TRC(T) is decreasing on(0,T∗

1 ] and increasing on
[T∗

1 ,∞), so we have

T∗ = T∗
1 and TRC(T∗) = TRC1(T

∗
1 ).

2. When∆63 > 0> ∆16, then

∆45 > ∆34 > ∆63 > 0> ∆16,

so Lemmas1 and2, together with Equation (59), imply
that
(a) TRC1(T) is decreasing on(0,M−N];
(b) TRC6(T) is decreasing on[M − N,T∗

6 ] and

increasing on

[

T∗
6 ,

W
Dρ

]

;

(c) TRC3(T) is increasing on

[

W
Dρ

,M

]

;

(d) TRC4(T) is increasing on

[

M,
PM
D

]

;

(e) TRC5(T) is increasing on

[

PM
D

,∞
)

.

Since TRC(T) is continuous onT > 0, Equations (20)
and the above conclusions would show that TRC(T) is
decreasing on(0,T∗

6 ] and increasing on[T∗
6 ,∞), so we

have

T∗ = T∗
6 and TRC(T∗) = TRC6(T

∗
6 ).

3. When ∆34> 0> ∆63, then

∆45 > ∆34 > 0> ∆63 > ∆16,

so Lemmas1 and2, together with Equation (59), imply
that
(a) TRC1(T) is decreasing on(0,M−N];

(b) TRC6(T) is decreasing on

[

M−N,
W
Dρ

]

.

(c) TRC3(T) is decreasing on

[

W
Dρ

,T∗
3

]

and

increasing on[T∗
3 ,M];

(d) TRC4(T) is increasing on

[

M,
PM
D

]

.

(e) TRC5(T) is increasing on

[

PM
D

,∞
)

.

Since TRC(T) is continuous onT > 0, Equations (20)
and the above conclusions would show that TRC(T) is
decreasing on(0,T∗

3 ] and increasing on[T∗
3 ,∞), so we

have

T∗ = T∗
3 and TRC(T∗) = TRC3(T

∗
3 ).

4. When∆45 > 0> ∆34, then

∆45 > 0> ∆34 > ∆63 > ∆16,

so Lemmas1 and2, together with Equation (59), imply
that
(a) TRC1(T) is decreasing on(0,M−N];

(b) TRC6(T) is decreasing on

[

M−N,
W
Dρ

]

;

(c) TRC3(T) is decreasing on

[

W
Dρ

,M

]

;

(d) TRC4(T) is decreasing on [M,T∗
4 ] and

increasing on

[

T∗
4 ,

PM
D

]

;

(e) TRC5(T) is increasing on

[

PM
D

,∞
)

.

Because TRC(T) is continuous onT > 0, Equations
(20) and the above conclusions would show that
TRC(T) is decreasing on(0,T∗

4 ] and increasing on
[T∗

4 ,∞), so we have

T∗ = T∗
4 and TRC(T∗) = TRC4(T

∗
4 ).

5. When 0> ∆45, then

0> ∆45 > ∆34 > ∆63 > ∆16,

so Lemmas1 and2, together with Equation (59), imply
that
(a) TRC1(T) is decreasing on(0,M−N];

(b) TRC6(T) is decreasing on

[

M−N,
W
Dρ

]

;

(c) TRC3(T) is decreasing on

[

W
Dρ

,M

]

;

(d) TRC4(T) is decreasing on

[

M,
PM
D

]

;

(e) TRC5(T) is decreasing on

[

PM
D

,T∗
5

]

and

increasing on[T∗
5 ,∞).

Since TRC(T) is continuous onT > 0, Equations (20)
and the above conclusions would show that TRC(T) is
decreasing on(0,T∗

5 ] and increasing on[T∗
5 ,∞), so we

get

T∗ = T∗
5 and TRC(T∗) = TRC5(T

∗
5 ).

Theorem 3. Suppose that

M ≦
W
Dρ

<
PM
D

.

Then each of the following assertions holds true:

1. If ∆16 > 0, thenTRC(T∗) = TRC(T∗
1 ) and T∗ =

T∗
1 .

2. If ∆67 > 0 ≧ ∆16, thenTRC(T∗) = TRC(T∗
6 ) and

T∗ = T∗
6 .

3. If ∆74 > 0 ≧ ∆67, thenTRC(T∗) = TRC(T∗
7 ) and

T∗ = T∗
7 .
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4. If ∆45 > 0 ≧ ∆74, thenTRC(T∗) = TRC(T∗
4 ) and

T∗ = T∗
4 .

5. If 0 ≧ ∆45, thenTRC(T∗) = TRC(T∗
5 ) and T∗ =

T∗
5 .

Proof. Our item-wise proof of Theorem3 is presented
below.

1. When∆16> 0, then

∆45 > ∆74 > ∆67 > ∆16 > 0,

so Lemma1 and Equation (59) imply that
(a) TRC1(T) is decreasing on(0,T∗

1 ] and increasing
on [T∗

1 ,M−N];
(b) TRC6(T) is increasing on[M−N,M];

(c) TRC7(T) is increasing on

[

M,
W
Dρ

]

;

(d) TRC4(T) is increasing on

[

W
Dρ

,
PM
D

]

;

(e) TRC5(T) is increasing on

[

PM
D

,∞
)

.

Because TRC(T) is continuous onT > 0, Equations
(22) and the above conclusions would show that
TRC(T) is decreasing on(0,T∗

1 ] and increasing on
[T∗

1 ,∞), so we have

T∗ = T∗
1 and TRC(T∗) = TRC1(T

∗
1 ).

2. When∆67> 0> ∆16, then

∆45 > ∆74 > ∆67 > 0> ∆16,

so Lemmas1 and2, together with Equation (59), imply
that
(a) TRC1(T) is decreasing on(0,M−N];
(b) TRC6(T) is decreasing on[M − N,T∗

6 ] and
increasing on[T∗

6 ,M];

(c) TRC7(T) is increasing on

[

M,
W
Dρ

]

;

(d) TRC4(T) is increasing on

[

W
Dρ

,
PM
D

]

;

(e) TRC5(T) is increasing on

[

PM
D

,∞
)

.

Since TRC(T) is continuous onT > 0, Equations (22)
and the above conclusions would have TRC(T) is
decreasing on(0,T∗

6 ] and increasing on[T∗
6 ,∞), so we

have

T∗ = T∗
6 and TRC(T∗) = TRC6(T

∗
6 ).

3. When∆74> 0> ∆67, then

∆45 > ∆74 > 0> ∆67 > ∆16,

so Lemmas1 and2, together with Equation (59), imply
that
(a) TRC1(T) is decreasing on(0,M−N];

(b) TRC6(T) is decreasing on[M−N,M];
(c) TRC7(T) is decreasing on [M,T∗

7 ] and

increasing on

[

T∗
7 ,

W
Dρ

]

;

(d) TRC4(T) is increasing on

[

W
Dρ

,
PM
D

]

;

(e) TRC5(T) is increasing on

[

PM
D

,∞
)

.

Because TRC(T) is continuous onT > 0, Equations
(22) and the above conclusions would show that
TRC(T) is decreasing on(0,T∗

7 ] and increasing on
[T∗

7 ,∞), so we have

T∗ = T∗
7 and TRC(T∗) = TRC7(T

∗
7 ).

4. When∆45 > 0> ∆74, then

∆45 > 0> ∆74 > ∆67 > ∆16,

so Lemmas1 and2, together with Equation (59), imply
that
(a) TRC1(T) is decreasing on(0,M−N];
(b) TRC6(T) is decreasing on[M−N,M];

(c) TRC7(T) is decreasing on

[

M,
W
Dρ

]

;

(d) TRC4(T) is decreasing on

[

W
Dρ

,T∗
4

]

and

increasing on

[

T∗
4 ,

PM
D

]

;

(e) TRC5(T) is increasing on

[

PM
D

,∞
)

.

Since TRC(T) is continuous onT > 0, Equations (22)
and the above conclusions would show TRC(T) is
decreasing on(0,T∗

4 ] and increasing on[T∗
4 ,∞), so we

have

T∗ = T∗
4 and TRC(T∗) = TRC4(T

∗
4 ).

5. When 0> ∆45, then

0> ∆45 > ∆74 > ∆67 > ∆16,

so Lemmas1 and2, together with Equation (59), imply
that
(a) TRC1(T) is decreasing on(0,M−N];
(b) TRC6(T) is decreasing on[M−N,M];

(c) TRC7(T) is decreasing on

[

M,
W
Dρ

]

;

(d) TRC4(T) is decreasing on

[

W
Dρ

,
PM
D

]

;

(e) TRC5(T) is decreasing on

[

PM
D

,T∗
5

]

and

increasing on[T∗
5 ,∞).

Because TRC(T) is continuous onT > 0, Equations
(22) and the above conclusions would show that
TRC(T) is decreasing on(0,T∗

5 ] and increasing on
[T∗

5 ,∞), so we have

T∗ = T∗
5 and TRC(T∗) = TRC5(T

∗
5 ).
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Theorem 4. Suppose that

PM
D

≦
W
Dρ

.

Then each of the following assertions holds true:

1. If ∆16 > 0, thenTRC(T∗) = TRC(T∗
1 ) and T∗ =

T∗
1 .

2. If ∆67 > 0 ≧ ∆16, thenTRC(T∗) = TRC(T∗
6 ) and

T∗ = T∗
6 .

3. If ∆78 > 0 ≧ ∆67 and ∆85 > 0 ≧ ∆67, then
TRC(T∗) = min{TRC(T∗

7 )} and T∗ = T∗
7 .

4. If ∆85 > 0 ≧ ∆78, thenTRC(T∗) = TRC(T∗
8 ) and

T∗ = T∗
8 .

5. If ∆78 > 0 ≧ ∆85, then
TRC(T∗) = min{TRC(T∗

7 ),TRC(T∗
5 )} and T∗ = T∗

7
or T∗

5 .
6. If 0≧ ∆85 and∆78, thenTRC(T∗) = TRC(T∗

5 ) and
T∗ = T∗

5 .

Proof. Our item-wise demonstration of Theorem4 is
presented below.

1. When∆16 > 0, then

∆78> ∆67 > ∆16 > 0

and
∆85 > ∆67 > ∆16 > 0,

so Lemma1 and Equation (59) imply that
(a) TRC1(T) is decreasing on(0,T∗

1 ] and increasing
on [T∗

1 ,M−N];
(b) TRC6(T) is increasing on[M−N,M];

(c) TRC7(T) is increasing on

[

M,
PM
D

]

;

(d) TRC8(T) is increasing on

[

PM
D

,
W
Dρ

]

;

(e) TRC5(T) is increasing on

[

W
Dρ

,∞
)

.

Because TRC(T) is continuous onT > 0, Equations
(24) and the above conclusions would show that
TRC(T) is decreasing on(0,T∗

1 ] and increasing on
[T∗

1 ,∞), so we have

T∗ = T∗
1 and TRC(T∗) = TRC1(T

∗
1 ).

2. When∆67 > 0> ∆16, then

∆78> ∆67 > 0> ∆16

and
∆85 > ∆67 > 0> ∆16,

so Lemmas1 and2, together with Equation (59), imply
that
(a) TRC1(T) is decreasing on(0,M−N];
(b) TRC6(T) is decreasing on[M − N,T∗

6 ] and
increasing on[T∗

6 ,M];

(c) TRC7(T) is increasing on

[

M,
PM
D

]

;

(d) TRC8(T) is increasing on

[

PM
D

,
W
Dρ

]

;

(e) TRC5(T) is increasing on

[

W
Dρ

,∞
)

.

Since TRC(T) is continuous onT > 0, Equations (24)
and the above conclusions would show that TRC(T) is
decreasing on(0,T∗

6 ] and increasing on[T∗
6 ,∞), so we

have

T∗ = T∗
6 and TRC(T∗) = TRC6(T

∗
6 ).

3. When∆78 > 0> ∆67, then

∆78 > 0> ∆67 > ∆16

and
∆85 > 0> ∆67 > ∆16,

so Lemmas1 and2, together with Equation (59), imply
that
(a) TRC1(T) is decreasing on(0,M−N];
(b) TRC6(T) is decreasing on[M−N,M];
(c) TRC7(T) is decreasing on [M,T∗

7 ] and

increasing on

[

T∗
7 ,

PM
D

]

;

(d) TRC8(T) is increasing on

[

PM
D

,
W
Dρ

]

;

(e) TRC5(T) is increasing on

[

W
Dρ

,∞
)

.

Because TRC(T) is continuous onT > 0, Equations
(24) and the above conclusions would have TRC(T)
is decreasing on(0,T∗

7 ] and increasing on[T∗
7 ,∞), so

T∗ = T∗
7 and TRC(T∗) = TRC7(T∗

7 ).
4. When∆85 > 0> ∆78, then

∆85 > 0> ∆78 > ∆67 > ∆16,

so Lemmas1 and2, together with Equation (59), imply
that
(a) TRC1(T) is decreasing on(0,M−N];
(b) TRC6(T) is decreasing on[M−N,M];

(c) TRC7(T) is decreasing on

[

M,
PM
D

]

;

(d) TRC8(T) is decreasing on

[

PM
D

,T∗
8

]

and

increasing on

[

T∗
8 ,

PM
D

]

;

(e) TRC5(T) is increasing on

[

W
Dρ

,∞
)

.

Since TRC(T) is continuous onT > 0, Equations (24)
and the above conclusions would show that TRC(T)
is decreasing on(0,T∗

8 ] and increasing on[T∗
8 ,∞), so

we haveT∗ = T∗
8 and TRC(T∗) = TRC8(T∗

8 ). When
∆78 > 0> ∆85, then

∆78 > 0> ∆85∆67 > ∆16,
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so Lemmas1 and2, together with Equation (59), imply
that
(a) TRC1(T) is decreasing on(0,M−N];
(b) TRC6(T) is decreasing on[M−N,M].
(c) TRC7(T) is decreasing on [M,T∗

7 ] and

increasing on

[

T∗
7 ,

PM
D

]

;

(d) TRC8(T) is increasing on
[

PM
D ,T∗

8

]

and

decreasing on

[

T∗
8 ,

W
Dρ

]

;

(e) TRC5(T) is decreasing on

[

W
Dρ

,T∗
5

]

and

increasing on[T∗
5 ,∞).

Because TRC(T) is continuous onT > 0, Equations
(24) and the above conclusions would show that
TRC(T) is decreasing on(0,T∗

7 ] and increasing on
[T∗

7 ,T
∗
8 ], decreasing on[T∗

8 ,T
∗
5 ] and increasing on

[T∗
5 ,∞), so we get

TRC(T∗) = min{TRC7(T
∗
7 ),TRC5(T

∗
5 )},

which yieldsT∗ = T∗
5 or T∗

7 .
5. When 0> ∆85, then

0> ∆78> ∆67 > ∆16

and
0> ∆85 > ∆67 > ∆16,

so Lemmas1 and2, together with Equation (59), imply
that
(a) TRC1(T) is decreasing on(0,M−N];
(b) TRC6(T) is decreasing on[M−N,M];

(c) TRC7(T) is decreasing on

[

M,
PM
D

]

;

(d) TRC8(T) is decreasing on

[

PM
D

,
W
Dρ

]

;

(e) TRC5(T) is decreasing on

[

W
Dρ

,T∗
5

]

and

increasing on[T∗
5 ,∞).

Finally, since TRC(T) is continuous onT > 0,
Equations (24) and the above conclusions would show
that TRC(T) is decreasing on(0,T∗

5 ] and increasing
on [T∗

5 ,∞), so we have

T∗ = T∗
5 and TRC(T∗) = TRC5(T

∗
5 ).

6 The Sensitivity Analyses

We first setD = 1000 units/year,P = 3000 units/year,
A = $400/order, c = $10/unit, s = $30/unit,
h = $40/unit/year,k = $80/unit/year,ik = 0.08%/year,
ie = 0.04%/year, M = 0.2 year, N = 0.1 year and
W = 400 units. We then increase/decrease the parameters
by 25% and 50% at the same time to execute the
sensitivity analyses. Based upon the computational results
as shown in Figure8 and Figure9, we can get the
following result in Table1.
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Fig. 8: The sensitivity analysis forT∗
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Fig. 9: The sensitivity analysis forT∗

Table 1: Comparison of relative parameters impact toT∗ and
TRC(T) in the sensitive analyses.
Impact T∗ TRC(T)
Positive & Major A D, P, A, h, k
Positive & Minor W c, Ik, Ie, N
Negative & Minor c, s, h, Ik, Ie, M, N s
Negative & Major D, P, k M, W

7 Perspective

The EPQ model in this paper is based upon two levels of
trade-credit with finite replenishment rate and considers
alternate due date of payment different from the payment
terms used by Teng and Goyal [6], in which finite
replenishment rate and limited storage capacity are used
together in order to reflect the real situation. Our results
are stated and proved as two lemmas (see Lemmas1 and
2) and four theorems (see Theorems1 to 4). Comparison
of the relative parameters’ impact toT∗ and TRC(T) are
identified in the sensitivity analyses so that the
practitioners can make their managerial decisions with
higher precision. Consequently, the earlier work of Yenet
al. [18] can be treated as a special case of our present
investigation.
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