
Appl. Math. Inf. Sci.12, No. 6, 1067-1071 (2018) 1067

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/120601

Study on a New (3+1)-Dimensional Extensions of the
Konopelchenko-Dubrovsky Equation
Abdul-Majid Wazwaz∗

Department of Mathematics, Saint Xavier University, Chicago, IL USA 60655

Received: 12 Jul. 2018, Revised: 2 Aug. 2018, Accepted: 6 Aug. 2018
Published online: 1 Nov. 2018

Abstract: In this work we introduce new (3+1)-dimensional extensionsof the Konopelchenko-Dubrovsky (KD) equation. We use the
simplified Hirota’s method to study these new extensions. Wederive the dispersion relation and the multiple soliton solutions for each
developed model.
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1 Introduction

In [1], the Konopelchenko-Dubrovsky (KD) equation was
presented in the form

ut −uxxx−6buux+
3
2

a2u2ux−3(∂−1
x uy)y+3aux∂−1

x uy = 0,

(1)
wherea andb are real parameters, and∂−1

x is the inverse
of ∂x, with ∂−1

x ∂x = ∂x∂−1
x = 1, and

(∂−1
x f )(x) =

∫ x

−∞
f (t)dt, (2)

under the decaying condition at infinity.
Eq. (1) is a new nonlinear integrable evolution

equation on two spatial and one temporal
dimensions [2–4] The following equations

ψy +ψxx +

(

au+
2b
a

)

ψx = 0, (3)

and

ψt −4ψxxx −6
(

au− 2b
a

)

ψxx +
(

3av− 3
2a2u2+6bu−12b2

a2 −3aux

)

ψx = 0,

(4)
whereuy = vx, are a Lax pair [3] for the KD equation (1).
Konopelchenko and Dubrovsky [1] introduced (1) in
connection with the nonlinear waves with a weak
dispersion. Foruy = 0, equation (1) becomes the Gardner
equation. However, Fora = 0, equation (1) is the

well-known Kadomtsev-Petviashvili (KP) equation.
Moreover, for b = 0, equation (1) is the modified KP
equation.

In [1], this equation was investigated by the inverse
scattering transform method. The F-expansion method is
used in [2] to investigate the KD equation. The main
focus of these works in [1] and [2] was the solitary wave
solutions.

To solve the KD equation (1), various
methods [5]- [17] have been invested, such as the stan
dard truncated Painlev́e analysis, the tanh method and its
generalizations, the the extended Riccati equation rational
expansion method, the homotopy perturbation method,
and many others.

Using the sense of the KD equation, we introduce the
following (3+1)-dimensional extensions of the KD
equation, given as

ut − uxxx −6buux+
3
2a2u2ux −3(∂−1

x uy)y

+3aux∂−1
x uy −3(∂−1

x uz)z +3aux∂−1
x uz = 0,

(5)

ut − uxxx −6buux+
3
2a2u2ux −3(∂−1

x uy)y +3aux∂−1
x uy

−3(∂−1
x uz)z +3a∂−1

x uz∂−1
x uyy = 0,

(6)
and

ut − uxxx −6buux+
3
2a2u2ux −3(∂−1

x uy)y +3aux∂−1
x uy

−3(∂−1
x uz)z +3a∂−1

x uz∂−1
x uzz = 0,

(7)
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will be referred to as the first, second, and third (3+1)-
dimensional extended KD equations respectively, wherea
andb are real constants.

The objectives of this work are twofold. First, we seek
to study the three new (3+1)-dimensions extensions by
investing the simplified Hirota’s method. Second, we aim
to show that these equations give multiple soliton
solutions for specific values of coefficients of the spatial
variablesx,y, and z. The three new models give distinct
single- soliton solutions.

2 The first extended KD equation

In this section we study the first extended KD equation

ut − uxxx −6buux+
3
2a2u2ux −3(∂−1

x uy)y +3aux∂−1
x uy −3(∂−1

x uz)z +3aux∂−1
x uz = 0.

(8)
We first remove the integral term in (8) by introducing the
potential

w(x,y,z, t) = ux(x,y,z, t), (9)

to carry (8) to the equation

wxt −wxxxx −6bwxwxx +
3
2a2w2

xwxx −3wyy +3awxxwy −3wzz +3awxxwz = 0.

(10)
Substituting

w(x,y,z, t) = eθi
,θi = kix+ riy+ siz−ωi t, (11)

into the linear terms of (10), and solving the resulting
equation forωi we obtain the dispersion relation as

ωi =−

k4
i +3r2

i +3s2
i

ki
, i = 1,2,3, (12)

and hence the wave variableθi becomes

θi = kix+ riy+ siz+

(

k4
i +3r2

i +3s2
i

ki

)

t. (13)

We then use the transformation

w(x,y,z, t) = R(ln f (x,y,z, t)) , (14)

where the auxiliary functionf (x,y,z, t) reads

f (x,y,z, t) = 1+ e
k1x+r1y+s1z+

(

k4
1+3r21+3s21

k1

)

t
, (15)

into Eq. (10) and solve to find that

R =
2
a
, (16)

and for the single-soliton solution to exist, the coefficient
s1 must take the form

s1 =−

(ar1−2bk1+ ak2
1)

a
, (17)

wherek1 andr1 are left as free parameters. The last results
give the dispersion relation (12) as

ω1 =−

(

k4
1+3r2

1

k1
+

3(ar1−2bk1+ ak2
1)

2

a2k1

)

, i = 1,2,3.

(18)
In view of these last results, the single soliton solution for
the (3+1)-dimensional extended KD equation (8) is given
by

u(x,y,z, t) = 2k1e
k1x+r1y−

(ar1−2bk1+ak2
1)

a z+

(

k4
1+3r21

k1
+

3(ar1−2bk1+ak2
1)

2

a2k1

)

t

a(1+e
k1x+k1y−

(ar1−2bk1+ak2
1)

a z+

(

k4
1+3r21

k1
+

3(ar1−2bk1+ak2
1)

2

a2k1

)

t

)

,

(19)
obtained upon using the potential defined in (9).

For the two-soliton solutions, we use the auxiliary
function f (x,y,z, t) as

f (x,y,z, t) = 1+ eθ1 + eθ2
, (20)

whereθ1 andθ2 are given in (13). By using this auxiliary
function in (10), we find that the two soliton solutions exist
only if

ri = ki,

si = −
ki(a−2b+aki)

a , i = 1,2,3,
(21)

whereki is left as a free parameter.
To determine the two-soliton solutions explicitly, we

substitute the obtained results into the formula
w(x,y,z, t) = 2

a (ln f (x,y,z, t)), and then we use the
potentialw(x,y,z, t) = ux(x,y,z, t) as defined in (9).

To determine the three soliton solutions, we substitute
the auxiliary function

f (x,y,z, t) = 1+ eθ1 + eθ2 + eθ3
, (22)

and proceed as before, we obtain the three-soliton
solutions under the conditions (21).

3 The second extended KD equation

In this section we investigate the second extended KD
equation

ut − uxxx −6buux+
3
2a2u2ux −3(∂−1

x uy)y +3aux∂−1
x uy −3(∂−1

x uz)z +3a∂−1
x uz∂−1

x uyy = 0.

(23)
To remove the integral term in (23) we use the potential

w(x,y,z, t) = ux(x,y,z, t), (24)

which gives the equation

wxt −wxxxx −6bwxwxx +
3
2a2w2

xwxx −3wyy +3awxxwy −3wzz +3awzwyy = 0.

(25)
Substituting

w(x,y,z, t) = eθi
,θi = kix+ riy+ siz−ωi t, (26)
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into the linear terms of (25), and solving the resulting
equation forωi we obtain the dispersion relation as

ωi =−

k4
i +3r2

i +3s2
i

ki
, i = 1,2,3, (27)

and hence the wave variableθi becomes

θi = kix+ riy+ siz+

(

k4
i +3r2

i +3s2
i

ki

)

t. (28)

We next use the transformation

w(x,y,z, t) = R(ln f (x,y,z, t)) , (29)

where the auxiliary functionf (x,y,z, t) reads

f (x,y,z, t) = 1+ e
k1x+r1y+s1z+

(

k4
1+3r21+3s21

k1

)

t
, (30)

into Eq. (25) and solve to find that

R =
2
a
, (31)

and for the single-soliton solution to exist, the coefficient
s1 must take the form

s1 =−

k2
1(ar1−2bk1+ ak2

1)

ar2
1

, (32)

wherek1 andr1 are left as free parameters. The last results
give the dispersion relation as

ω1 =−

(

k4
1+3r2

1

k1
+

3k4
1(ar1−2bk1+ ak2

1)
2

a2r4
1

)

, i = 1,2,3.

(33)
In view of these last results, the single soliton solution for
the (3+1)-dimensional extended KD equation (23) is given
by

u(x,y,z, t) = 2k1e
k1x+r1y−

k2
1(ar1−2bk1+ak2

1)

ar21
z+

(

k4
1+3r21

k1
+

3k4
1(ar1−2bk1+ak2

1)
2

a2r41

)

t

a(1+e
k1x+k1y−

k2
1(ar1−2bk1+ak2

1)

ar21
z+

(

k4
1+3r21

k1
+

3k4
1(ar1−2bk1+ak2

1)
2

a2r41

)

t

)

,

(34)
obtained upon using the potential defined in (24).

For the two-soliton solutions, we the auxiliary function
f (x,y,z, t) as

f (x,y,z, t) = 1+ eθ1 + eθ2
, (35)

whereθ1 andθ2 are given in (13). By using this auxiliary
function in (25), we find that the two soliton solutions exist
only if

ri = ki,

si = −
ki(a−2b+aki)

a , i = 1,2,3,
(36)

whereki is left as a free parameter.
To determine the two-soliton solutions explicitly, we

substitute the obtained results into the formula

w(x,y,z, t) = 2
a (ln f (x,y,z, t)), and then we use the

potentialw(x,y,z, t) = ux(x,y,z, t) as defined in (24).
To determine the three-soliton solutions, we substitute

the auxiliary function

f (x,y,z, t) = 1+ eθ1 + eθ2 + eθ3
, (37)

and proceed as before, we obtain the three-soliton
solutions under the conditions (21). It is interesting to
note that although the first and the second extended KD
equations are different in the last term and the dispersion
relation, but the second- and the third-soliton solutions
are the same.

4 The third extended KD equation

In this section we study the third extended KD equation

ut − uxxx −6buux+
3
2a2u2ux −3(∂−1

x uy)y +3aux∂−1
x uy −3(∂−1

x uz)z +3a∂−1
x uz∂−1

x uzz = 0,

(38)
Using the potential

w(x,y,z, t) = ux(x,y,z, t), (39)

carries (38) to the equation

wxt −wxxxx −6bwxwxx +
3
2a2w2

xwxx −3wyy +3awxxwy −3wzz +3awzzwz = 0.

(40)
Proceeding as before, the dispersion relation as

ωi =−

k4
i +3r2

i +3s2
i

ki
, i = 1,2,3, (41)

and hence the wave variableθi becomes

θi = kix+ riy+ siz+

(

k4
i +3r2

i +3s2
i

ki

)

t. (42)

Using the transformation

w(x,y,z, t) = R(ln f (x,y,z, t)) , (43)

where the auxiliary functionf (x,y,z, t) reads

f (x,y,z, t) = 1+ e
k1x+r1y+s1z+

(

k4
1+3r21+3s21

k1

)

t
, (44)

into Eq. (40) and solve to find that

R =
2
a
, (45)

and for the single soliton solution to exist, the coefficient
r1 must take the form

r1 =−

(ak4
1+ as3

1−2bk3
1)

ak2
1

, (46)
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wherek1 ands1 are left as free parameters. The last results
give the dispersion relation (41) to

ω1 =−

(

k4
1+3s2

1

k1
+

3(ak4
1+ as3

1−2bk3
1)

2

a2k5
1

)

, i = 1,2,3.

(47)
In view of these last results, the single-soliton solution for
the (3+1)-dimensional extended KD equation (38) is given
by

u(x,y,z, t) = 2k1e
k1x−

(ak4
1+as31−2bk3

1)

ak2
1

y+s1 z+

(

k4
1+3s21

k1
+

3(ak4
1+as31−2bk3

1)
2

a2k5
1

)

t

a(1+e
k1x−

(ak4
1+as31−2bk3

1)

ak2
1

y+s1 z+

(

k4
1+3s21

k1
+

3(ak4
1+as31−2bk3

1)
2

a2k5
1

)

t

,

(48)
obtained upon using the potential defined in (39).

For the two-soliton solutions, we the auxiliary function
f (x,y,z, t) as

f (x,y,z, t) = 1+ eθ1 + eθ2
, (49)

whereθ1 andθ2 are given in (42). By using this auxiliary
function in (40), we find that the two soliton solutions exist
only if

si = ki,

ri = −
ki(a−2b+aki)

a , i = 1,2,3,
(50)

whereki is left as a free parameter.
To determine the two-soliton solutions explicitly, we

substitute the obtained results into the formula
w(x,y,z, t) = 2

a (ln f (x,y,z, t)), and then we use the
potentialw(x,y,z, t) = ux(x,y,z, t) as defined in (39).

To determine the three-soliton solutions, we substitute
the auxiliary function

f (x,y,z, t) = 1+ eθ1 + eθ2 + eθ3
, (51)

and proceed as before, we obtain the three soliton solutions
under the conditions (50).

5 Conclusion

In this work we introduce three (3+1)-dimensional
extended KD equations. We show that the three extended
forms give the same dispersion relation. The
single-soliton solution for each extended form is distinct
and appear for specific conditions of the coefficients of
the spatial variables. However, the two- and three-soliton
solutions are identical for the three-extended equations,
and these solutions exist for specific values of the spatial
variables coefficients.

References

[1] B. G. Konopelchenko and V. G. Dubrovsky, Some
new integrable nonlinear evolution equations in 2 + 1
dimensions, Phys. Lett. A, Vol. 102 No. (1/2), pp. 15–17
(1984).

[2] D. Wang and H-Q Zhang, Further improved F-expansion
method and new exact solutions of Konopelchenko-
Dubrovsky equation, Chaos, Solitons and Fractals, Vol. 25,
pp. 601–610 (1984).

[3] H H.-Wei, and Y. Jun, Finite symmetry transformation group
of the Konopelchenko–Dubrovsky equation from its Lax
pair, Chin. Phys. B, Vol. 21, No. 2, 020202 (2012).

[4] G. B. Whitham, Linear and Nonlinear waves, Wiley, New
York, (1999).

[5] H. Triki, A.M. Wazwaz, Bright and dark soliton solutions
for a K(m,n) equation witht-dependent coefficients, Phys.
Lett A, Vol. 373, pp. 2162–215 (2009).

[6] C.M. Khalique, Solutions and conservation laws of
BenjaminBonaMahonyPeregrine equation with power-law
and dual power-law nonlinearities, Pramana, Vol. 80, pp.
413–427 (2013).

[7] A.H. Kara and C.M. Khalique, Nonlinear evolution-type
equations and their exact solutions using inverse variational
methods, J. Phys. A: Math. Gen., Vol. 38, pp. 4629–4636
(2005).

[8] S. A. Khuri, Soliton and periodic solutions for higher order
wave equations of KdV type (I), Chaos, Solitons & Fractals,
Vol. 26, No. 1, pp. 25–32 (2005).

[9] H. Leblond and D . Mihalache, Few–optical–cycle solitons:
Modified Korteweg-de Vries sine-Gordon equation versus
other non-slowly-varying–envelope–approximation models,
Phys. Rev. A, Vol. 79, 063835 (2009).

[10] H. Leblond, H. Triki, and D. Mihalache, Derivation
of a generalized double-sine-Gordon equation describing
ultrashort-soliton propagation, Phys. Rev. Am Vol. 86,
063825 (2012).

[11] R. Hirota, The Direct Method in Soliton Theory, Cambridge
University Press, Cambridge (2004).

[12] W. Hereman and A. Nuseir, Symbolic methods to construct
exact solutions of nonlinear partial differential equations,
Mathematics and Computers in Simulation, Vol. 43, 13–27
(1997).

[13] A.M. Wazwaz, Multiple soliton solutions and other exact
exact solutions for a two-mode KdV equation, Mathematical
Methods in Applied Sciences, Vol. 40, No. 6, pp. 2277–2283
(2017).

[14] A. M. Wazwaz, A new integrable equation combining the
modified KdV equation with negative-order modified KdV
equation: multiple soliton solutions and a variety of solitonic
solutions, Waves in Random Complex and Complex Media
, Vol. 28, No. 3, pp. 533–543 (2018).

[15] A.M. Wazwaz, Partial Differential Equations and Solitary
Waves Theory, HEP and Springer, Peking and Berlin,
(2009).

[16] A.M. Wazwaz, Multiple soliton solutions for extended
(3+1)- dimensional Jiomb-Miwa equations, Appl. Math.
Letts., Vol. 64, pp. 21–26 (2017).

[17] A. M. Wazwaz and S. El-Tantawy, A new integrable
(3+1)-dimensional KdV-like model with its multiple soliton
solutions, Nonlinear Dynamics, Vol. 83, pp. 1529–1534
(2016).

c© 2018 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.12, No. 6, 1067-1071 (2018) /www.naturalspublishing.com/Journals.asp 1071

Abdul-Majid Wazwaz
is a Professor of Mathematics
at Saint Xavier University
in Chicago, Illinois, USA.
He has both authored
and co-authored more
than 530 papers in applied
mathematics, solitary waves
theory, and mathematical
physics. He is the author of

five books on the subjects of discrete mathematics,
integral equations and partial differential equations.
Furthermore, he has contributed extensively to theoretical
advances in solitary waves theory, the Adomian
decomposition method and other computational methods.
He is a member of the editorial board of the journals
Nonlinear Dynamics (Springer), Physica Scripta (IOP),
and others. For these four years in a row, 2014, 2015,
2016, and 2017, Clarivate Analytics (Formerly Thomas
Reuters) granted him four different badges for being a
”Highly Cited Researcher.” For more information, see the
web site:http://web.sxu.edu/aw1/

c© 2018 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp
http://web.sxu.edu/aw1/

	Introduction
	The first extended KD equation
	The second extended KD equation
	The third extended KD equation
	Conclusion

