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Abstract: This article discuss the existence and uniqueness of solutions for a system of nonlinear fractional differential equations
involving Hadamardfractional derivative with nonlocal mixed boundary conditions with multiple orders. Example is given to
demonstrate application of our results.
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1 Introduction, motivation and preliminaries

Approximately 322-years old ago fractional calculus was paid attention to most of the available fractional differential
equations based on Riemann-Liouville and Caputo operators. One of the important characteristics of fractional operators
is their nonlocal nature. Counting for the hereditary properties of many phenomena and processes involved.

The theory of fractional order differential equations involving different kinds of boundary conditions has been a field
of interest in pure and applied sciences. In addition to the classical two-point boundary conditions, great attention is
paid to nonlocal multipoint and integral boundary conditions. Nonlocal conditions are used to describe certain features
of physical, chemical or other processes occurring in the internal positions of the given region, while integral boundary
conditions provide a plausible and practical approach to modeling the problems of blood flow. For more details and
explanation, see, for instance [1].

The efficient of the fractional differentiation approach has been proven in various sciences branches such as physics,
chemistry, epidemiology, finance and biology sciences [1,2,3,4,5,6], these are few of them just to mention. Hadamard
derivative differs from the preceding ones in the sense that the kernel of the integral contains a logarithmic function of
arbitrary exponent. Details and properties of the Hadamard fractional derivative and integral can be found in [7,8,9, 10,
11,12].

However, differential equations with Hadamard derivatives is still studied less than that of Riemann-Liouville and
Caputo fractional differential equations, see [13,14,15,16,17,18,19,20,21]. The purpose of this article is to investigate
the existence of solutions for the following system of nonlinear fractional derivative subject to the mixed Hadamard
fractional derivative and Hadamard fractional integral conditions with multiple orders.
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DS u(t) =f (t,u(t) ,v(t)) , 1<a<2,a<t<T,
uDP v(t) =g (tu(t) v(r)) , 1 <B<2,a<t<T, (1)

:
u(a) =0, leI{flu(T)JerHDsiu(T):51/ u(s)ds+ e,

a

n
v(a) =0, kzylgiv(T)thZHDZiv(T):az/ v(s)ds+ &,
a

where HDg . is the Hadamard fractional derivative of order 6; = {a, 3, p2,¢2} andylfi is the Hadamard fractional
integral of order 6, = {p,q;} withae—1 < p;,pa <o, B—1<qi,qa<B,a<&,n<T, 8,06, €,&, ki ky,M|, M €
R f,g€C([a,T] x R*R).
The reminder of the article is as follow: in the next Section, we present a basic concepts of Hadamard fractional calculus.
In Section 3, main results are given to investigate the existence and uniqueness of solutions for the problem 1. This paper
ends in Section 4 with a concluding remarks.

2 Preliminaries

In this section we introduce definition of the Hadamard fractional integral and derivative and present an auxiliary lemma
to define the solution of problem 1.
Definition 2.1 The Hadamard fractional integrals of order & for a continuous function ¢ : [a, 0] — R are defined by

W0l = o [ (15)" o

Definition 2.2 The Hadamard fractional derivatives of order ¢ for a continuous function ¢ : [a,] — R are defined by
. —a-1
DG @(x) = 8" (uly=0) (x) = (v55) gy Ja (In)" ™" ()",
[\ D) Bt
pe. (nt) = LB,y
HZ% \M I'p—a) "
then

ol (u5) 0 =30 35 (1n)

Notations

r a+p;—1 T a—py—1 s ya—1
Ay =k 2y (1) T My ()T = [ (),

a

M (1) = g—ll(zng)“*', Ao (t) = f—;(zng)“*‘, A (1) = Ag_;(zng)“*‘ A (t) = g—ll(znz)"‘*l,

80 = ko ey (1n )P 4 FE ()P = 5y [T (1ng ),

01() =2 ()P 0r () =2 ()P 93 =22 (1nt)P !, 9 (1) = & (1nt)P .

Lemma 3.2 The following system given by

HD u(t) =wi(t) , 1<a<2,0<a<t<T,
uDP V(i) =wa(1) , 1 <B<2,a<t<T,
w(a) =0, kg’ u(T)+MigDP2u(T) =8 % u(s) ds +e,
v(a) =0, kgl v(T)+MouyDP2v(T) =8, [ v(s) ds+ &,

is equivalent to the following integral equations
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u(t)y=21 )+ T 1a) /at <ln£)a71W1 (s) ? — 71_,(@625_1‘;1) /aT <lnz) OHP]?IWI (s) &

a N

ln%)amlw] (s) % - 1{?(()3 /aé (/as (ln%)ailwl (1) d—: )ds,

V()= 01 () + =7 /a’(mz)ﬁ1W2<s>@_%>)/r(lnz)ﬁm' ds

s C(B+q

s () L B ([ () ) £ .

Proof . Solving the linear equations
D% u(t) = wi (1),
#DP () = wa (1),

we get
o a1 a2
u(t) = glfiwi(t)+c (lna) +c (ln;) , (2)
P Al AL
v(t) = ulP wa(r) + dy (lna) tdy (1”5) . 3)
The boundary conditions u(a) = 0,v(a) = 0 implies ¢ = d» = 0.
o1
_ g Z
u(t) = gl wi(t) +cy (lna) , %)
1\B-1
v(t) = ulP wa(t) + dy (ln;) , (5)

observe that

r t otpi—l
HIP () = 1% P (1) + e L)) (lna) :

a

_ I'a) NG
D2l = P 0+ ey (121
oD 2u(t) = nl Wl(HC,r(a_pz) n- :

r t\ Bt+ai—1
HIT(t) = 1Py (1) + i)) (ln;) :
1

Bqr-1
aDP () = P s (1) +d i))(lné) .

then

r t\atpi—1
Klylfiu(t) +M1HDZ$M(I) = Klylgjmwl(l) +61K1&(ln ) (6)

I'(p1+a)

) C(a) o/, t\ep!
P ) et 2 (1,0)
+Mipl Pwi (1) + e o= py

5 t o—1
=5 /a <ng+w1(s)+c1 (ln;) >ds+81.

(6) implies that
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1 3 )
1= <51/ IS wi(s)ds+ g *KIHI:fp'w](T) 7M]HI:+ pzw;(T)) A £0 o
1 a
and

B+q1—1 -
) Mo PP ws (1) ®)

Konl®v(t) + MogDPv(1)d | = Kop P ' wi (1) + Kodly (ﬁ( ;l)(l "a
_AL(B) ¢, 1\Pre
r'—q) (l a)

p—1
fﬁz/‘ (HI +W2 +d] (lng) )ds+82.

+M2

(8) implies that

mop B+q1 B2
d = A_z 82/ HIaJrWQ(S)dS#*(‘:‘Z7](]1{101+ Wz(T)*]W]HIa+ WQ(T) ,Ag 7&0
Ja

Substitute (7),(8) in (4),(5) respectively, we get

] (x 1 o—1
u(t) = pgldw (t)+— ln / 1% wi(s derA <ln )
1

the converse holds by direct computation which completes the proof.

3 Main results

Let the space C ([a,T],R) denote the Banach space of all continuous function from [a,T] to R.

Introducing U = {u(t) | u(t) € C|a, T]} end ousted with the norm defined by|u| = sup,, -7 |u(¢)| . Obviously (U,|.|) is a
Banach space. Also let V = {v(t) | v(t) € Cla,T|} with the norm |v| = sup,,r[v(t)| , clearly the product space
(U x V,|(u,v)|) is a Banach space with norm

[(u,v) ] = lu| + ],

Define an operator T = (2%53) ,
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where
] 1 a—1 d
(T4 =20 + gy [ (05) (o) ve) S
AQ([) T Z a+p1—1 ﬁ
s [T (D) o))
O T (D) sty vn®
Tla—p) nS fs,u(s),v(s .
Aq(t) S s s\ -1 drt
Sy [ (3)" rmum e Tas
1 ! B-1 d
(T2 v)0) = 90(0)+ gy [ (n5) a0, v(6) T
o) (T T\PT! ds
*m/a <1n;) g(S,M(S),V(S))?
o3(0) (T TP ds
") /a (]n;) g(s,u(s),v(s))?
bl etzato) o) Las
For computational convenience we get
1 1\ 1ds ()| T/ T\*T s
0O —Wsupagtgr/a (111;) T+SMP“S’ST7F(a+p1)/a (111;) .
A T a—py—1 a 14
+5“Pa<t<T%/a (111%) éﬁLSMPa<z<T I t|/ / Tds
B 1ty t\P-lds 02(1)] (T (. T\PTlds
Qz—SuPaSzgrm/a (111;) _+Supa<t<T1—~(ﬁ+ql)/ (111;) -

I

B—a2— ldS

i ()

5T Supa<t<T

B—1
|// 1— gds.

F

Theorem 3.1 Assume f,g € [a,T] x R? — R are jointly continuous and assume that there exist

Ly, ,Lf,,Lg, ,Lg, > 0 such that V¢ € [a,
such that

|f (t,u
g (t,u
if (Lpy +Lp,) 01+ (

T],V uy,ux,vy,va2€ R,

1,v1) = f(t,uz,v2)| < Ly, |uy —

1,v1) — & (t,u2,v2)| < Lg, |ug — us|

+Ly, |V| *V2|,

+ Ly, |V| 7V2|,

L, + Lg,)Q> < 1 then the BVP (1) has a unique solution on [a,T].
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Proof: Define Ry = sup,<,<7f(,0,0) and Ry = sup,,7g(t,0,0) such that

R1 01+ (1)] Ry 0o +[91(1)]
r= max{ T=(Ly, +Lp,)01 * T=(Ly +Lg;)02 }

We show that 'S, C S, where S, = {(u,v)eU x V,|(u,v)| < r},V(u,v)eS,,Vt € [a,T] we have

(T4 < a1+ g [ (1n3) " st

[(%] s s
2o (1) T( z)‘””” ds
tataryy ) (i IEORTONES
2a( *=pz-1 d
Ias = (n ) (s, (s) v (5| <
Ag( d
Ty / (1n2) " e vt Las,
but
|f (2,u(2),v(0))] < |f (£,u(t),v(2)) = £(2,0,0)[ +[f(2,0,0)|
< Ly, ful+ Ly, v 4 sup,<; <7 f(2,0,0)
< Lp fu[+Ly, V] +Ry,
then
Similarly
(T (u,v) ()] < |91]+ [(Lg, +Lgy)r+ Ra] Q2 <.
Consequently
T (u,v) (1) <,
which implies T (u,v)€S, that is
Next ,we show that the operator T is a contraction
d
i) = T 202 < rgmonpucrcr | (1n2) " o0 ()00 (9) = F s (5)12)| 5
2a( T\* 1 d
|a2+p1 [ ) (5015111 () — s, 128, v 5] &2
a( T\% " 1 d
s [ (o ) (5.0, (5) £ (5,0(5),v2(5)] 22

20l ° / 0" e (210 0) (2 w2 s
< [Lp [y —wg| + Ly, vy = v2[] Q1

=Ly, |ur —ua| Q1 + Lp, [vi — 2| O

< (L @1 +Lp 01) (|l — ua] + |vi =2

Similarly
|T>(ur,v1) — Ty (uz,v2)| < (Lg, Q2+ Lg, @2) (|u1 — ua| + [vi — v2).

Consequently
|T(M1,V])* T(uz,vz)| < ([(Lfl +Lf2)] 0+ |:Lg1 +Lg2} QQ) (|u1 — I/t2| + |V1 *V2|),

hence T is a contraction. Based on the Banach contraction mapping theorem the BVP has a unique solution on [a, T
which complete the proof.
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Theorem3.2 : Assume f,g € [a,T] x R — R are jointly continuous and assume there exist a1, a, by, b3, 71,72 € R such
that

[ (8 u,v)| < @+ by [ul +r[v],
|§(t,u,v)| < a2 +ba |ul + r2 |v],V(t,u,v)e[a, T] x R?

if (b101+b205) < 1 and (r1 Q1 + r2Q>) < 1 then the BVP (1) has at least one solution on [a,T] .
Proof. Step1. We show that the operator 7 : U x V — U x V is completely continuous
It’s clear that T is continuous as both f and g are continuous.
Let A be a bounded set in U x V then the exist positive constants y;, %> such that
f (8,u(2),v(0))] < y1 and [g (1,u(t),v(1))] <92, V(u,v)€A

then for any (u,v)€A , it follows that [Ty (u,v)] < M|+ 701 and [T (u,v)] < |¢1| + 10:>.
Consequently
T (u,v)| < |A1|+]Q1]+ 1 Q1 + 10>, that is T is uniformly bounded.
Step 2. We show that T is equicontinuous for this we let t1,1,€ [a, T| with ; < t, , then

similarly

|T2 (M,V) (tz) -1 (u,v) (t|)| —0ast; = t.

Therefore, the operator 7T is equicontinuous and hence it is completely continuous.
Finally, it will be verified that the set

B={(u,v)euxv:(u,v)=uT (u,v),u<c0,1]}
is bounded
Vtela,T], V (u,v)€P we have
w(t)=pT(uy) . v(t)= ph(uyv),
then
implying that
lu[ + V] < [+ |1+ (@1 Q1 +a202) + (0101 + 5202) |u| + (1 Q1 + r202) ||
. Consequently
()] < 1]+ 1]+ (@101 +a202)
T T min{1 — (b1 Q1 +b202), 1= (r1Q1 +1202)}’

which proves that § is bounded by Leray-schauder Alterrature the operator T has at least one fixed point. jhence BVP (1)
has at least one solution.

Example
Consider the following system of fractional differential equations

el (1+2)
D] (1) = (o (t) + %sinv(t)) ,1<t<e

3 u
nDFu(t) = lits (it ) + docosv@) 1< <e
4

( +11) )
u(1) = 217 u(e) — 1+u( )=25f12u(S)ds
v(1) =0, 2ui} v(e) + uD}iv(e) =3 [ v(s)ds+1,
with
a=3a=1¢E=2,T=¢,61=2,6 =0,k =1p =%M=-1,
ﬁzgak2=27P2=:1;7Q1Z%,Clzzgﬁzzln—27M2—1782=17
and

In u(t 1 2
1,x,y) = ef(z+t2)5 (H‘»\(uzt‘)\) + 5gcosv(t)”,

g(t,x,y) = U;Tl) (]—lzcosu(t) + l]—3sinv(t)) ,

it is clear that the functions f an g are continuous and Lipschitzian with Ly, = 5}, Ly, = 55 and Ly, = 55, Ly, = 35,

I(p1+a) ] 1"(06(317)2)
(s § (3 eyt
(D73 (lnT)l—l—(—l)Fé)(lnl T2/ (Ind )2ds

0.8862 —
>1.7725 - 48862 1 67 = —0.870,

A = ki T(p1) (ln%)aij]*]jLMl [(a) (lnz)a—p2—175 f;’: (lni )ailds
_ )
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note that _flz (Ing )%ds < +/In2 . In similar manner one can find Ay > 3.62,

20| = max {0, 5k (Ine)z b = 1.148,
2] = max {0, ;2= (ine)2 | = 1.148,
|Ag| = max O,Wzm(lne)% =2.296,

now Q <6.13 and Q, < 2.65,
with the given values it is found that the condition (Ls, 4+ Ly,)Q1 + (Ly, +Lg,)Q2 = (535 + 35) 6-13+ (5 + 75) 2.65 =
0.798 < 1. All the condition of theorem 1 satisfied, that is problem (9) has unique solution on [1,e].

4 Conclusion

In this paper, we have discussed the existence and uniqueness of solutions for a new class of boundary value problems
consisting of a system of fractional differential equations involving Hadamard fractional derivative and supplemented
with nonlocal mixed boundary conditions with multiple orders. It should be stressed that, similarly problems via different
fractional derivatives such as Katogampola and Atangana-Baleanu can be investigated. So the present work is a useful
contribution to the existing literature on the topic.
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