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Abstract: In this work we investigate the following fractional Hamiltonian systems tD
α
∞(−∞Dα

t u(t))+L(t)u(t) = ∇W (t,u(t)), where

α ∈ (1/2,1), L ∈C(R,Rn2

) is a positive definite symmetric matrix, W (t,u) = a(t)V (t) with a ∈C(R,R+) and V ∈C1(Rn,R). By using

the Mountain pass theorem and assuming that there exist M > 0 such that (L(t)u,u)≥ M|u|2 for all (t,u) ∈ R×R
n and V satisfies the

global Ambrosetti-Rabinowitz condition and other suitable conditions, we prove that the above mentioned equation at least has one

nontrivial weak solution.
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1 Introduction

In this manuscript we study the existence of weak solution for the fractional systems

tD
α
∞(−∞Dα

t u(t))+L(t)u(t) = ∇W (t,u(t)), (1)

where L ∈C(R,Rn2
) be a positive definite symmetric matrix which satisfy the following condition

(V1)There is M > 0 such that
(L(t)x,x) ≥ M|x|2 for t ∈ R and x ∈ R

n,

W (t,x) = a(t)V (x) with a ∈C(R,R+) and V ∈C1(Rn,R).
Fractional calculus methods and techniques are playing and important role in science and engineering [1–8]. Since

fractional equations are important in theory and application, in the last years, researches on fractional differential equations
have achieved significant development. Recently, the study of fractional differential equations through variational methods
become an important filed of study for several researches [9–14]. A new research trend started to be developed, especially
for fractional differential equations having both the left and right fractional derivatives, because, in general, the fixed-point
theory is not a suitable tool to show existence results to this type of equations. Namely, it is not obvious to convert this
type of fractional equation into an equivalent integral equation and then transformed into some fixed-point problem.

Jiao and Zhou [10], have used critical point theory and variational methods to show the existence of at least one
nontrivial weak solution for

tD
α
T (0Dα

t u(t)) = ∇F(t,u(t)), a.e. t ∈ [0,T ], (2)

u(0) = u(T ) = 0.

Following this result, Torres [11], has considered a kind of fractional Hamiltonian systems with the left and right
fractional derivatives on R, namely

tD
α
∞(−∞Dα

t u(t))+L(t)u(t) = ∇W (t,u(t)), t ∈ R (3)

such that α ∈ (1/2,1), L ∈ C(R,Rn2
) denotes a symmetric matrix-valued function, W ∈ C1(R×R

n,R). Under the
following hypotheses,
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(L)∀ t ∈ R, the matrix L(t) is positive definite and symmetric. Moreover, there is l ∈C(R,(0,∞)) such that lim
|t|→∞

l(t) = ∞

and
(L(t)x,x) ≥ l(t)|x|2, ∀ (t,x) ∈ R×R

n. (4)

(W1)W ∈C1(R×R
n,R) and there exist µ > 2 obeying

0 < µW (t,x)≤ (x,∇W (t,x)), for all t ∈R and x ∈ R
n \ {0}.

(W2)|∇W (t,x)|= o(|x|) as x → 0 uniformly with respect to t ∈ R.
(W3)There exists W ∈C(Rn,R) obeying

|W (t,x)|+ |∇W(t,x)| ≤ |W (x)| for every x ∈ R
n and t ∈ R.

The author showed that (3) possesses at least one nontrivial weak solution via Mountain Pass Theorem.
For the case α = 1, (3) becomes

u′′−L(t)u+∇W(t,u) = 0, (5)

such that W : R×R
n → R denotes a given function. It was firstly recognized from Poincare [15] the existence of

homoclinic solutions of Hamiltonian systems (5) and its importance on the study of the behaving on dynamical systems.
During the last decades the variational methods and critical point theory were utilised to investigate the existence and
multiplicity of homoclinic solutions [16, 17].

Recently, by utilising the genus properties of critical point theory, in [14] it was proved some new criterion to guarantee
the existence of infinitely many solutions of (3) for the case that W (t,u) is subquadratic as |u| →+∞ and L fulfills (L).

Note that, condition (L) is the so-called coercive condition and is a little demanding. Thus, for a simple choice like
L(t) = sIn, where s > 0 and In is the n×n identity matrix, the condition (4) is not satisfied, so we can not get any existence
result for problem (1). Motivated by this dificulty, in the present work we focus our attention on the case that L(t) is
uniformly bounded from below, namely L(t) satisfies (V1).

We suppose that W (t,u) = a(t)V(u) fulfills the followings

(V2)a : R→ R
+ which is a continuous function obeying

lim
|t|→+∞

a(t) = 0;

(V3)V ∈C1(Rn,R) and there is a constant µ > 2 fulfilling

0 < µV (x)≤ (∇V (x),x) for all x ∈ R
n \ {0};

(V4)∇V (x) = o(|x|) as |x| → 0.

Thus, we can present the main result, namely

Theorem 1.Let 1
2
< α < 1. If (V1)− (V4) are satisfy, problem (3) possesses at least one nontrivial solution.

In [11], assuming that (L) holds, the author introduced some compact embedding theorem (see Lemma 2.2 in [11]).
This compact result plays a crucial role in order to prove Palais-Smale condition. Since we are assuming (V1), we can
not get a similar compact embedding, hence the main difficulty of this work is the lack of compactness. In order to show
Palais-Smale compactness result, we get a new compact embedding under condition (V1), for more details see Lemma 2
below.

The rest of the manuscript has the following organisation: in Section 2, some preliminary results are given. The proof
of Theorem 1 is presented in Section 3.

2 Preliminaries

Below the variational framework for the problem (1) is considered, for more details see [18].
Let α ∈ (0,1). For a suitable function u, the Liouville-Weyl fractional derivatives are defined as

−∞Dα
x u(x) =

d

dx
−∞I1−α

x u(x) and xDα
∞u(x) =−

d

dx
xI1−α

∞ u(x), (6)
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where −∞Iα
x and xIα

∞ are the left and right Liouville-Weyl fractional integrals given by

−∞Iα
x u(x) =

1

Γ (α)

∫ x

−∞
(x− ξ )α−1u(ξ )dξ and xIα

∞ u(x) =
1

Γ (α)

∫ ∞

x
(ξ − x)α−1u(ξ )dξ .

Let 2 ≤ p <+∞ and denote by Lp(R,Rn) the Banach spaces of functions on R with values in R
n under

‖u‖p
Lp :=

∫

R

|u(t)|pdt,

and L∞(R,Rn) is the Banach space of essentially-bounded functions from R into R
n such that

‖u‖∞ := esssup{|u(t)| : t ∈ R}.

Note that, for u ∈ Lp(R,Rn), we have

F (−∞Iα
x u(x)) = (iω)−α û(ω) and F (xIα

∞ u(x)) = (−iω)−α û(ω),

and for u ∈C∞
0 (R,R

n), we have

F (−∞Dα
x u(x)) = (iω)α û(ω) and F (xDα

∞u(x)) = (−iω)α û(ω),

where C∞
0 (R,R

n) denotes the space of infinitely differentiable functions with vanishing at infinity.
For α ∈ (0,1), let us define the fractional space

Iα
−∞(R,R

n) =C∞
0 (R,R

n)
‖.‖Iα

−∞ ,

where

‖u‖Iα
−∞

=
(
‖u‖2

L2 + |u|2Iα
−∞

)1/2

, (7)

and
|u|Iα

−∞
= ‖−∞Dα

x u‖L2

Moreover, we consider the fractional Sobolev space

Hα(R,Rn) =C∞
0 (R,R

n)
‖.‖α

.

where

‖u‖α =
(
‖u‖2

L2 + |u|2α
)1/2

,

and
|u|α = ‖|w|α û‖L2 . (8)

Since
|w|α û ∈ L2(R,Rn), for all u ∈ L2(R,Rn). (9)

Then
|u|Iα

−∞
= ‖|w|α û‖L2 . (10)

Therefore, Iα
−∞(R,R

n) and Hα(R,Rn) are equivalent with equivalent semi-norm and norm.

Theorem 2.[11] If α > 1
2
, then Hα(R,Rn)⊂C(R,Rn) and there is a constant C =Cα fulfilling

‖u‖∞ = sup
x∈R

|u(x)| ≤C‖u‖α , (11)

such that C(R,Rn) is the space of continuous functions from R into R
n.

Remark.From Theorem 2, the embedding Hα(R,Rn) →֒ Lq(R,Rn is continuous for all q ∈ [2,∞] and 1/2 < α < 1, since

∫

R

|u(x)|qdx ≤ ‖u‖q−2
∞ ‖u‖2

L2 .
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Below we discuss the fractional space used for the variational framework of (3). We consider

Xα =

{
u ∈ Hα(R,Rn)|

∫

R

|−∞Dα
t u(t)|2 +L(t)u(t).u(t)dt < ∞

}
.

Xα be a Hilbert space such that

〈u,v〉Xα =
∫

R

(−∞Dα
t u(t), −∞Dα

t v(t))+L(t)u(t).v(t)dt.

Besides the related norm is given by

‖u‖2
Xα = 〈u,u〉Xα .

Lemma 1.[11] Assume L fulfills (V1). Then Xα is continuously embedded in Hα(R,Rn).

In order to recover the Palais-Smale condition, we are going to show a new compact embedding result under the
condition (V1). Thus, if we denote by L

p
a(R,R

n) the weighted space of measurable functions u : R→R
n such that

‖u‖p
p,a =

∫

R

a(t)|u(t)|pdt < ∞,

then we have the following important result.

Lemma 2.Suppose that (V1), (V2) hold. Then, the imbedding Xα →֒ L2
a(R,R

n) is continuous and compact.

Proof.By (V2) there is A > 0 fulfilling |a(t)| ≤ A ∀t ∈ R, so

∫

R

a(t)|u(t)|2dt ≤ A

∫

R

|u(t)|2dt.

Therefore, by Lemma 1 and Remark 2, the embedding Xα →֒ L2
a(R,R

n) is continuous.

Let (uk) ∈ Xα such that uk ⇀ 0 in Xα . We are going to show that uk → 0 in L2
a(R,R

n). By the Banach-Steinhaus
theorem we have

B = sup
k

‖uk‖Xα <+∞.

By (V2), for any ε > 0; there is R > 0 such that

a(t)< ε, ∀|t| ≥ R.

So ∫

|t|>R
a(t)|uk(t)|

2dt ≤
ε

M

∫

|t|>R
l(t)|uk(t)|

2dt ≤
ε

M
B2. (12)

On the other hand, by Sobolev’s theorem, ‖uk‖C[−R,R] → 0 as k → ∞, thus, there is k0 such that

∫ R

−R
a(t)|uk(t)|

2dt ≤ ε, ∀ k ≥ k0. (13)

By (12) and (13) we get uk → 0 in L2
a(R,R

n) as k →+∞.

Lemma 3.There are positive constants c1,c2 such that

V (x)≥ c1|x|
µ , |x| ≥ 1 (14)

and

V (x)≤ c2|x|
µ , |x| ≤ 1. (15)
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Proof.Let f (σ) =V (σx), then by (V3) we have

d

dσ

(
f (σ)

σ µ

)
≥ 0. (16)

If |x| ≤ 1, by (16) we get

V (x)≤V (
x

|x|
)|x|µ . (17)

On the other hand, if |x| ≥ 1 by (16) we get

V (x)≥ |x|µV (
x

|x|
). (18)

Since, for all x ∈ R
n we have that x

|x| ∈ B(0,1), then by the continuity of V , there are c1,c2 > 0 such that

c1 ≤V (x)≤ c2, for every x ∈ B(0,1).

Thus, the proof of the Lemma was given.

Remark.By using the Lemma 3, we conclude

V (x) = o(|x|2) as |x| → 0, (19)

Also, by (V4), for any x ∈ R
n with |x| ≤ M1, there exists d = d(M1)> 0 fulfilling

|∇V (x)| ≤ d|x|. (20)

As in [11], we get the following result.

Lemma 4.Suppose that (V1) and (V2) are satisfied. If uk ⇀ u in Xα , then ∇V (uk)→ ∇V (u) in L2
a(R,R

n).

Proof.By (11) and the Banach-Steinhaus theorem, there exists d1 > 0 such that

sup
k∈N

‖uk‖∞ ≤ d1, ‖u‖∞ ≤ d1.

By (20), there exists d2 = d2(d1)> 0 such that

|∇V (uk(t))| ≤ d2|uk(t)|, |∇V (u(t))| ≤ d2|u(t)|,

for all k ∈ N and t ∈ R. So

|∇V (uk(t))−∇V(u(t))| ≤ d2(|uk(t)|+ |u(t)|)≤ d2(|uk(t)− u(t)|+ 2|u(t)|).

Moreover, by Lemma 2, uk → u in L2
a(R,R

n), so up to a subsequence, it can be assumed that

∞

∑
k=1

‖uk − u‖2,a <+∞,

which implies uk(t)→ u(t) a.e. t ∈ R and

∞

∑
k=1

|uk(t)− u(t)|= v(t) ∈ L2
a(R,R

n).

Therefore
a(t)|∇V (uk(t))−∇V(u(t))|2 ≤ d2

2a(t)(v(t)+ 2|u(t)|)2.

Then, by Lebesgue’s theorem we conclude.

Let B be a real Banach space, I ∈C1(B,R). Thus, I denotes a continuously Fréchet-differentiable functional defined on
B. In addition, I ∈ C1(B,R) is said to fulfil the (PS) condition if any sequence {uk}k∈N ∈ B, such that {I(uk)}k∈N is
bounded and I′(uk)→ 0 as k →+∞, admits a convergent subsequence in B.

Let Br be the open ball in B with the radius r and centered at 0 and ∂Br represents its boundary. Utilising the following
the Mountain Pass Theorems [19] we discuss the existence of solutions of (3).
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Theorem 3.Let B denoting a real Banach space and I ∈C1(B,R) fulfilling (PS) condition. Assume that I(0) = 0 and

i.There are constants ρ1,β1 > 0 obeying I|∂Bρ1
≥ β1, and

ii.There is e1 ∈B\Bρ1
fulfilling I(e1)≤ 0.

Then I admits a critical value c1 ≥ β1. c1 is given by

c1 = inf
γ1∈Γ

max
s∈[0,1]

I(γ1(s))

such that

Γ = {γ1 ∈C([0,1],B) : γ1(0) = 0, γ1(1) = e1}.

3 Proof of theorem 1

Following the ideas of [20], consider the functional I : Xα →R as

I(u) =
∫

R

[
1

2
|−∞Dα

t u(t)|2 +
1

2
(L(t)u(t),u(t))−W(t,u(t))

]
dt =

1

2
‖u‖2

Xα −
∫

R

W (t,u(t))dt. (21)

Here and subsequently, W (t,u) denotes a(t)V (u) unless otherwise specified. We consider the differentiability of the
functional I, more precisely we have:

Lemma 5.Under the conditions of Theorem 1, we conclude

I′(u)v =

∫

R

[(−∞Dα
t u(t),−∞ Dα

t v(t))+ (L(t)u(t),v(t))− (∇W(t,u(t)),v(t))]dt (22)

for all u,v ∈ Xα , which implies that

I′(u)u = ‖u‖2
Xα −

∫

R

(∇W (t,u(t)),u(t))dt. (23)

Besides, I is a continuously Fréchet differentiable functional defined on Xα , i.e., I ∈C1(Xα ,R).

Proof.By (19), there is a δ > 0 fulfilling

V (x)≤ ε|x|2 for all |x| ≤ δ . (24)

Since u ∈ Xα , then u(t)→ 0 as |t| →+∞. So, there is a constant R1 > 0 obeying

|u(t)| ≤ δ , for all |t| ≥ R1.

Hence, by (24), we conclude

∫

R

W (t,u(t))≤

∫ R1

−R1

a(t)V(u(t))dt + ε

∫

|t|≥R1

a(t)|u(t)|2dt <+∞, (25)

and I : Xα → R.
Next we show that I ∈C1(Xα ,R). Rewrite I as follows; I = I1 − I2, where

I1 =
1

2

∫

R

[|−∞Dα
t u(t)|2 +(L(t)u(t),u(t))]dt, I2 =

∫

R

W (t,u(t))dt.

Then I1 ∈C1(Xα ,R) and

I′1(u)v =

∫

R

[(−∞Dα
t u(t),−∞ Dα

t v(t))+ (L(t)u(t),v(t))]dt. (26)

Now, we are going to show that

I′2(u)v =

∫

R

(∇W (t,u(t)),v(t))dt, for all u,v ∈ Xα . (27)
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In fact, for any given u ∈ Xα , let us define J(u) : Xα → R as follows

J(u)v =

∫

R

(∇W (t,u(t)),v(t))dt.

By inspection we conclude that J(u) is linear. By using (20), there is a constant d3 > 0 obeying

|∇W (t,u(t))| ≤ d3a(t)|u(t)|.

So by Hölder inequality and Lemma 2

|J(u)v| =

∣∣∣∣
∫

R

(∇W (t,u(t)),v(t))dt

∣∣∣∣≤ d3

∫

R

a(t)|u(t)||v(t)|dt ≤ d3C2
a‖u‖Xα‖v‖Xα . (28)

Furthermore, for u and v ∈ Xα , by mean-value theorem, we get

∫

R

W (t,u(t)+ v(t))dt −

∫

R

W (t,u(t))dt =

∫

R

(∇W (t,u(t)+ h(t)v(t)))dt,

where h(t) ∈ (0,1). So, by Lemma 4 and the Hölder inequality, we obtain
∫

R

(∇W (t,u(t)+ h(t)v(t)),v(t))dt−
∫

R

(∇W (t,u(t)),v(t))dt =
∫

R

(∇W (t,u(t))+ h(t)v(t)−∇W(t,u(t)),v(t))dt → 0 (29)

as v → 0 in Xα . Therefore, by (28) and (29), the asseveration in (27) holds. It remains to prove that I′2 is continuous.
Suppose that u → u0 in Xα and note that

sup
‖v‖Xα =1

|I′2(u)v− I′2(u0)v| = sup
‖v‖Xα =1

∣∣∣∣
∫

R

(∇W (t,u(t))−∇W(t,u0(t)),v(t))dt

∣∣∣∣

≤ sup
‖v‖Xα =1

‖∇V (u(.))−∇V(u0(.))‖2,a‖v‖2,a ≤Ca‖∇V (u(.))−∇Vu0(.))‖2,a.

By Lemma 4, we obtain that I′2(u)v− I′2(u0)v → 0 as ‖u‖Xα → ‖u0‖Xα uniformly with respect to v, which implies the

continuity of I′2 and I ∈C1(Xα ,R).

Lemma 6.Under the hypotheses of Theorem 1, I satisfies the (PS) condition.

Proof. Suppose that (uk)k∈N ∈ Xα be a sequence such that {I(uk)}k∈N is bounded and I′(uk)→ 0 as k →+∞. Then there
exists a constant C1 > 0 such that

|I(uk)| ≤C1, ‖I′(uk)‖(Xα )∗ ≤C1, (30)

for every k ∈ N. Then by (21), (23) and (V3), we have

C1 + ‖uk‖Xα ≥ I(uk)−
1

µ
I′(uk)uk

=

(
1

2
−

1

µ

)
‖uk‖

2
Xα −

∫

R

[W (t,uk(t))−
1

µ
(∇W (t,uk(t)),uk(t))]dt

≥

(
1

2
−

1

µ

)
‖uk‖

2
Xα .

(31)

Since µ > 2, then (uk)k∈N is bounded in Xα and Lemma 2, up to a subsequence we get

uk ⇀ u, weakly in Xα ,

uk → u, strongly in L2
a(R,R

n).

So
(I′(uk)− I′(u))(uk − u)→ 0 as k → ∞.

Furthermore, by Lemma 4 and Hölder inequality we obtain

∫

R

(∇W (t,uk(t))−∇W(t,u(t)),uk(t)− u(t))dt → 0 as k → ∞.
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Combining these previous results with

(I′(uk)− I′(u))(uk − u) = ‖uk − u‖2
Xα −

∫

R

[∇W (t,uk)−∇W(t,u)](uk − u)dt → 0,

we obtain that, ‖uk − u‖Xα → 0 as k →+∞. �

Below we present the proof of Theorem 1. The proof is divided into specific steps.

Proof of theorem 1.

Step 1. By inspection we conclude that I(0) = 0 and I ∈C1(Xα ,R) fulfills the (PS) condition by Lemma 5 and 6.

Step 2. By (19), for all ε > 0, there exists δ > 0 such that

|V (x)| ≤ ε|u|2, for all |x| ≤ δ .

Letting γ = δ
Cα

and ‖u‖α = γ , we have ‖u‖∞ ≤ δ . Hence

|V (u(t))| ≤ ε|u(t)|2, for all t ∈ R.

Then by Lemma 2 we conclude ∫

R

W (t,u(t))dt ≤ ε‖u‖2
2,a ≤ εC2

a‖u‖2
Xα .

So, by taking ε = 1
4C2

a
, we obtain

I(u)≥
1

2
‖u‖2

Xα − εC2
a‖u‖2

Xα

=

(
1

2
− εC2

a

)
‖u‖2

α ≥
δ 2

4C2
= β > 0.

(32)

Then I obeys the first condition of Theorem 3.

Step 3. For any σ ∈ R, consider the function

I(σu) =
σ2

2
‖u‖2

Xα −

∫

R

W (t,σu(t))dt.

By (14), there exists c1 > 0 fulfilling

W (t,u(t))≥ c1|u(t)|
µ for all |u(t)| ≥ 1. (33)

Consider some u ∈ Xα obeying ‖u‖Xα = 1. So, there exists an open interval (a,b)⊂ R with a < b, such that u(t) 6= 0 for
t ∈ (a,b). Consider σ > 0 fulfilling σ |u(t)| ≥ 1 for t ∈ (a,b). As a result from(33), we conclude

I(σu)≤
σ2

2
− c1σ µ

∫ b

a
a(t)|u(t)|µdt. (34)

Taking into account that a(t)> 0, c1 > 0 and µ > 2, (34) says that I(σu)< 0 for some σ > 0 with ‖σu‖Xα > γ , where γ
is given in Step 2. By utilising the Theorem 3, I admits a critical value c ≥ β > 0 such that

c = inf
γ∈Γ

max
s∈[0,1]

I(γ(s)),

where

Γ = {γ ∈C([0,1],Xα) : γ(0) = 0, γ(1) = e}.

Thus, there is u ∈ Xα obeying

I(u) = cand I′(u) = 0.
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