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Abstract: In this manuscript, we will consider an uncertainty approach based on intervals for impulsive fractional differential

equations (IFDEs). In this regard, we employ the Laplace transforms and the solution of IFDEs is calculated based on

Riemann-Liouville differentiability. Finally, the well-known Bagley-Torvik equation (arises in fluid mechanics), which involves an

additive delta function on the interval right-hand side is solved to validate the achieved results.
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1 Introduction

Fractional differentiation is an extension of integer-order differentiation. Thus, we can conclude that differential
equations of fractional order (FDEs) are a general extension of differential equations of integer-order. The aim of this
extension is not just for pure mathematics purposes, because the concept of FDEs has several important applications in
science and technology (see [1]). For example fatigue phenomenon in a material system [2] and fractional newton
mechanics [3]. For other applications see [4,5,6,7,8].

While we study many systems, we can observe that at specified points of time, the systems experience some abrupt
perturbations of states. In this case, we may conclude that the perturbations act quickly. In other words, the performance
of system can be considered with impulses. In this case, using impulsive fractional differential equations (IFDEs) for
modeling could help find a wide range of solutions instead of local solutions (e.g. see [9] and [10]). Based on these
conditions, several studies focused on IFDEs. For example, [11] addressed the stability of IFDEs with delays. The
authors of [12] proved some results about the existence of solutions for an impulsive fractional integro-differential
equation containing state-dependent delays. In [13] some existence and uniqueness theorems for the solutions of IFDEs
were proved. For more details see [14,15,16].

In real world phenomena, uncertainty is a natural concept which arises in the system modeling. Two main popular
approaches for modeling the uncertainty are fuzzy set theory as well as interval theory ([17,18,19]). Since, in practical
problems, there are several sources of uncertainty, FDEs are not an exception for uncertain modeling. See, for example,
[20,21,22,23,24,25,26,27,28,29] for some models and approaches which consider uncertain FDEs.

Although we see a high-growth in the papers that addressed the theory of fuzzy FDEs, the case is different for the
theory of interval FDEs. Few researches addressed interval FDEs (for example see [30,31]). The theory of IFDEs is very
applicable and even more effective in modeling some practical problems such as Abel equations [32].
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Considering aforementioned discussions, we are inspired to study the solution concepts of IFDEs described in [33]
under interval Riemann-Liouville derivative. The uniqueness of the solution of interval FIDE is investigated under the
w-monotony condition. Afterwards, a Bagley-Torvik equation which involves an additive delta function on the interval
right-hand side is solved to examine the applicability of the proposed approach.

The structure of the paper is as follows: In the next section we mention some necessary preliminaries related to the
interval analysis. In Section 3, a Lemma is presented to provide the unique solution of the IFDEs under interval uncertainty.
Section 4 is devoted to solve the Bagley-Torvik equation using the acquired results in Section 3. Section 5 is dedicated to
conclusion.

2 Preliminaries

The necessary background for this study is recalled in this section to support our theoretical results in the main body of
the context. For complete details, see for example [34,35]).

In this paper, I denotes the family of all intervals which are subsets of real line R which have three properties:
convexity, compactness and nonemptiness. We can define addition and multiplication in I . In other words, for I1, I2 ∈I

which I1 = [I1, I1], I2 = [I2, I2] with I1 ≤ I1, I2 ≤ I2 and for λ ≥ 0 we may have:

I1 + I2 = [I1 + I2, I1 + I2],

and also for λ ≥ 0 we have
λ I1 = [λ I1,λ I1]

Finally, for µ < 0 we have:
µI1 = [µI1,µI1].

Suppose that I is an element of I and λ1,λ2 ≥ 0 while µ1 and µ2 are arbitrary real numbers. Then we have:

λ1(λ2I) = (λ1λ2)I and (µ1 + µ2)I = µ1I + µ2I.

Now, we can define the Hausdorff distance DH in I as follows:

DH(I1, I2) = max{|I1 − I2|, |I1 − I2|},

where I1 = [I1, I1] and I2 = [I2, I2]. It is proved in several references (such as [34]) that the metric space (I ,DH) has the
following properties:

–Complete,
–Separable,
–Locally compact.

Suppose that I1, I2, I3, I4 ∈ I and λ ∈ R. The Hausdorff distance DH has the following properties:

DH(I1 + I2, I3 + I4)≤ DH(I1, I3)+DH(I2, I4),

DH(λ I1,λ I2) = |λ |DH(I1, I2),

Suppose that for I1, I2 ∈ I , there exists an element J ∈ I such that I1 = I2 + J. In this case we call J the Hukuhara

difference or (or for simplicity H-difference) of I1 and I2. We denote J by I1 ⊖ I2. It must be noted that
I1 ⊖ I2 6= I1 +(−1)I2.

Now we define the concepts length and magnitude of an element in I . Suppose that I = [I, I] is an element of I . The
length of I is denoted by

L(I) := I− I.
We also define the magnitude of I as ‖ I ‖:= DH(I,{0}) = max{|I|, |I|},
It is proved that when L(I1) ≥ L(I2) then I1 ⊖ I2 exists (see [36]). If I1, I2, I3, I4 ∈ I , then we have the following

properties ([36]):
(i) if there exist the H-differences I1 ⊖ I2 and I1 ⊖ I3, then we have: DH(I1 ⊖ I2, I1 ⊖ I3) = DH(I2, I3);
(ii) if there exist the H-differences I1 ⊖ I2 and I3 ⊖ I4, then we have: DH(I1 ⊖ I2, I3 ⊖ I4) = DH(I1 + I4, I2 + I3);
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(iii) if there exist the H-differences I1 ⊖ I2 and I1 ⊖ (I2 + I3), then there exist (I1 ⊖ I2) ⊖ I3 and
(I1 ⊖ I2)⊖ I3 = I1 ⊖ (I2 + I3);
(iv) if there exist the H-differences I1 ⊖ I2, I1 ⊖ I3, I3 ⊖ I2, then there exists (I1 ⊖ I2)⊖ (I1 ⊖ I3) and we have:
(I1 ⊖ I2)⊖ (I1 ⊖ I3) = I3 ⊖ I2.

We can conclude that although H-difference is unique, it does not always exist. To overcome this shortcoming, an
extension of the H-difference has been introduced by the authors of [34].

Definition 1.The generalized H-difference (gH-difference) of two intervals u1,u2 ∈ I is defined as follows

u1 ⊖g u2 = u3 ⇔







(i)u1 = u2 + u3,

or

(ii)u2 = u1 +(−1)u3,

(1)

in which u3 ∈ I .

One may choose several possible definitions of differentiability for a function with interval values. Particularization
is a key idea for fuzzy sets. For interval case, in [37] this concept is extended to introduce the generalized fuzzy
differentiability.

Definition 2. Suppose that F is a function from interval (a,b) to I and x belongs to (a,b). In this situation, we will

suppose that F is strongly gH-differentiable at the given point x, if there exists an element F
′
(x) ∈ I , such that F

′
(ω)

satisfies in one of the conditions (i)-(iv) which are listed below:

(i) for all positive real numbers h which are sufficiently small, ∃F (x+ h)⊖F (x), ∃F (x)⊖F (x− h) and

lim
hց0

F (x+h)⊖F (x)
h

= lim
hց0

F (x)⊖F (x−h)
h

,

= F
′
(x)

(ii) for each positive real numbers h which are sufficiently small, ∃F (x)⊖F (x+ h), ∃F (x− h)⊖F (x) and

lim
hց0

F (x)⊖F (x+h)
−h

= lim
hց0

F (x−h)⊖F (x)
−h

,

= F
′
(x)

(iii) for all positive real numbers h which are sufficiently small, ∃F (x+ h)⊖F (x), ∃F (x− h)⊖F (x) and

lim
hց0

F (x+h)⊖F (x)
h

= lim
hց0

F (x−h)⊖F (x)
−h

,

= F
′
(x)

(iv) for each positive real numbers h which are sufficiently small, ∃F (x)⊖F (x+ h), ∃F (x)⊖F (x− h) and

lim
hց0

F (x)⊖F (x+h)
−h

= lim
hց0

F (x)⊖F (x−h)
h

,

= F
′
(x).

In [34] the gH-differentiability was proposed using the gH-difference.

Definition 3. Suppose that x belongs to the interval (c,d) and also suppose that h be so that x+ h belongs to (c,d), then

the gH-derivative of the function F from the interval (c,d) to I (which indicates a function with interval values) can be

determined as

F
′
gH(t) = lim

h→0

F (x+ h)⊖gF (x)

h
. (2)

A function I is said to be gH-differentiable at point x, if there exists F ′
gH(x) ∈ I which satisfies eq. (2). We can

also suppose that I is [(i)-gH]-differentiable at given point x, if F satisfies in Definition (2)-(i), then we can write

F ′
gH(t) = [F ′

1(x),F
′
2(x)], in similar way, x is [(ii)-gH]-differentiable at t, if F satisfies in Definition (2)-(ii), then we

can write F ′
gH(x) = [F ′

2(x),F
′
1(x)].
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Consider a function F from the interval [a,b] to I (which indicates a function with interval values). We say that F

is w-increasing (w-decreasing) on [a,b] if the real function t →wF (x) :=w(F (t)) is increasing (decreasing) on [a,b]. If
F is w-increasing or w-decreasing on [a,b], then we say that F is w-monotone on [a,b] (see, [31]).

Proposition 1.(see, [19]). Suppose that F : [c,d] → I is such that F (x) = [F1(x),F2(x)], for x ∈ [c,d]. If F is a

w-monotone function and gH-differentiable on [c,d], then d
dx

F−(x) and d
dx

F+(x) exist for all x ∈ [c,d]. Moreover, we

have that:

(i) If F is a w-increasing function, then for each x in interval [c,d], we have F ′(x) = [ d
dx

F1(x),
d
dx

F2(x)].

(ii) If F is a w-decreasing function, then for each x in interval [c,d], we have F ′(x) = [ d
dx

F2(x),
d
dx

F1(x)].

3 IFDEs Under Uncertainty

In this section, we will obtain the exact solution for the following IFDE:

Dα y(x) = Ay(x)+Bu(x)+∑
j∈J

c jδ (x− x j), (3)

where 0 < α ≤ 1, y : R+ → I n, y : R+ → I m, A,B are constant matrices and c j ∈ I n are fixed interval vectors. D
denotes the Riemann-Liouville derivative under interval uncertainty as described in [31].
Suppose that Eq. (3) has the following initial condition:

I1−α y(x)|x=0+ = y0, (4)

in which I is the fractional integral under interval uncertainty as presented in [31].
Now, we study the uniqueness conditions of the solution of Eq. (3) under interval Riemann-Liouville differentiability.

Lemma 1.The IFDE(3) with the initial condition (4) has a unique solution as follows:

If y(x) is w-increasing, then the unique solution of the Eqs. (3)-(4) will be as:

y(x) = xα−1Eα ,α(Axα)y0 +
∫ x

0
(x− t)α−1

Eα ,α

[

A(x− t)α]
Bu(t)dt+

∑
j∈J

χ(x− x j)(x− x j)
α Eα ,α

[

A(x− x j)
α]

c j,

in which Eα ,α is the Mittag-Leffler function.

Proof.Applying the Laplace transforms to both sides of (3), we have:

sαY (s)⊖ y0 = AY (s)+BU(s)+∑
j∈J

e−xisc j,

or equivalently






sαY1(s)− y0,1 = AY1(s)+BU1(s)+ ∑
j∈J

e−x jsc j,1,

sαY2(s)− y0,2 = AY2(s)+BU2(s)+ ∑
j∈J

e−x jsc j,2,

where Y (s) = [Y1(s),Y2(s)], and all the matrices are assumed to be positive. Then,










Y1(s) = (sα I−A)−1
y0,1 +(sαI −A)−1

BU1(s)+ ∑
j∈J

e−x js(sα I −A)−1
c j,1,

Y2(s) = (sα I−A)−1
y0,2 +(sαI −A)−1

BU2(s)+ ∑
j∈J

e−x js(sα I −A)−1
c j,2.

Therefore, using the fact that

L{tβ−1Eα ,β (Atα)}= sα−β (sα I−A)−1
,

and the time shifting and convolution properties, we obtain the result. Indeed, the uniqueness of the solution is trivial (we
conclude it using the uniqueness of the Laplace transform).

Remark.When α = 1, the solution of problem (3) has the following form:

y(x) = eAxy0 +

∫ x

0
eA(x−t)Bu(t)dt +∑

j∈J

eA(x−x j)c j.
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4 Example

In this part, the Bagley-Torvik equation is solved under interval uncertainty based on the interval Riemann-Liouville
derivative.

Example 1. Now, consider the Bagley-Torvik equation which involves additive delta function under interval uncertainty
as:

ay′′(x)+ bD
3
2 y(x)+ cy(x) = u(x)+ dδ (x− x1). (5)

Using the following notations
V1(x) = y(x),

V2(x) =D
1
2 y(x),

V3(x) = y′(x),

V4(x) =D
3
2 y(x).

Then, Eq. (5) reduces to the following uncertain system:

D
1
2 V = AV +BU +Cδ (x− x1),

where A =







0 1 0 0
0 0 1 0
0 0 0 1

− c
a

0 0 − b
a






, B =







0
0
0
1
a






, C =







0
0
0
d
a






and V =







V1

V2

V3

V4






under the initial conditions y0 =







0
0
0
0






.

Using Lemma (1), the solution is achieved as:

V (x) =

∫ x

0

1√
x− t

E 1
2 ,

1
2
(A
√

x− t)Bu(t)dt +
χ(x− x1)√

x− x1

E 1
2 ,

1
2
(A
√

x− t)C

5 Conclusion

In this paper we developed some conditions for the uniqueness of the IFDEs which was illustrated in [33] under interval
uncertainty based on the Riemann-Liouville differentiability. The results were tested by solving the interval
Bagley-Torvik equation involving additive delta function to depict the correctitude of the approach.
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