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Abstract: RBF-Pseudospectral is used for the numerical solution of complex modified Kortewege-de Vries 
(CmKdV) equation. The numerical scheme is fast and accurate. There is no linearization of the nonlinear terms. 

The scheme is tested for single solitary wave, two and three solitary waves interaction. The results of the 
numerical scheme are compared with other meshless method of lines and the earlier work. 
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1 Introduction 

During the last two decades the meshless methods 
have been developed and effectively applied to 

solve many engineering and science problems [1-

4]. There is a class of meshless methods that focus 
on the use of radial basis functions [5], such as 

radial basis function collocation method (RBFCM) 

[6-10]. The radial basis functions (RBFs) have been 
under intensive research in multivariate data and 

Kansa used them for scattered data approximation 

in [7] and pioneered the solution of PDEs [8], that 
is why the method is some time called the Kansa's 

method. The key point of the Kansa's method for 

solving the PDEs is the approximation of the fields 
on the boundary and in the domain by a set of 

global approximation functions. The convergence 

theory of Kansa's approach was provided by 
Schaback [11]. The main advantage of using the 

RBFCM for solution of PDEs is its simplicity, 

applicability to various PDEs, and effective-ness in 
dealing with high dimensional problems and 

complicated domains. The main disadvantage of 

RBFCM represents the related full matrices that are 
very sensitive to the choice of the free parameter in 

RBFs and difficult to solve for problems with a 

large number of unknowns. This is because the use 
of the radial basis function interpolation increases 

the condition numbers of the related matrices with 

increasing number of nodes. This is especially true 
for a bad choice of data centers and when infinitely 

smooth basic functions such as multiquadrics are 

used with extreme values of their associated shape 

parameter. There are several methods to circumvent 
this issue such as domain decomposition [12, 13] 

the greedy algorithm [14, 15], etc. One of the 

possibilities for mitigating computational cost for 
large-scale problems is to employ the domain 

decomposition by Mai-Duy and Tran-Cong [16], 

multi-grid approach and compactly supported RBFs 
by Chen et al. [5] in 2002. 

     G. Fasshauer  [17] connected the radial basis 

functions collocation method to the pseudo-spectral 
method, known as RBF-PS method. G. Fasshauer 

used RBF-PS method for solving 

Allen-Cahn equation, 2D Helmholtz equation and 
2D Laplace equation with piecewise boundary 

conditions [2]. Ferreira et al. [18, 19] used RBF-PS 

method for solving beams, plates and shells 
problems. Roque et al. [20,21] applied RBF-PS 

method for composite and sandwich plates 

problems.  
     In the present work we extended the approach of 

G. Fasshauer [17] and developed a kernel based 

meshless scheme for the complex modified 
Korteweg-de Vries (CmKdV). Given a set of 

centers .},...,,{ 21 Nxxx  The RBF  

approximation of a function ),( txu  takes the form 





N

j

jj xxxKttxu
1

,),,()(),(    (1) 

where the radial kernels ),( jxxK  are defined by  

,1),(:),( NjxxxxK jj  and jxxr    
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denote the Euclidean distance between two points 

x and jx and )(r  is a function defined for 0r . 

Interpolation of the function 

Ru : on the set of points  },...,,{ 21 Nxxx  

is done by solving the system of equations 





N

j

jiji NixxKttxu
1

,1),,()(),(    (2) 

In matrix form, we have 

,Au       (3) 

where the entries of the matrix A  are  

,,1),,( NjixxK ji   and vector expansion 

coefficients is 
T

N },...,,{ 21  . 

Using equation (1) the derivatives xu may be 

obtained by differentiating the kernel functions and 

then evaluating at each point ,ix we have in matrix-

vector notation 

,xx Au       (4) 

where the entries of the matrix xA   

.,1,),( NjixxK
dx

d
ixxj    

The differentiation matrix can be obtained by 

solving equations (5)-(6) for the value of 

 . Thus, we have 

,1 uDuAAu xxx  
    (5) 

where 
1 AAD xx  is the differentiation matrix. It 

should be noted that the differentiation matrix 

depends on the invertibility of the matrix A . It is 

well known that the 

matrix A is always invertible for distinct set of 
collocation points. In a similar way, we can write 

,1 uDuAAu xxxxxx  
    (6) 

Where ,1 AAD xxxx  and the entries of matrix 

xxA  are .,1,),(
2

2

NjixxK
dx

d
ixxj   

Similarly we can compute differentiation matrices 

of higher order. 
 

 

2   RBF-PS scheme for CmKdV equation 
The numerical solution of nonlinear wave 

equations has been the subject of many studies in 
recent years. There is little numerical analysis 

literature for non integrable wave equations. The 

complex modified Korteweg-de Vries (CmKdV) 
equation is known as non integrable equation. Only 

a few analytical solutions corresponding to some 

special cases of CmKdV equation are available. 
The complex modified Korteweg-de Vries 

(CmKdV) equation given by 

,0,,0)(
2

3

3















txww

xx

w

t

w


     (7) 

 where w is complex valued function of the spatial 

coordinate  x and time ,t   is a real parameter. 

Equation (1) has an exact solitary wave solution 
[22] 

)exp()]([sec
2

),( 00 


iCtxxCh
C

txw   

(8) 

This solitary wave is centered at 0x  and moving to 

the right with velocity C . CmKdV equation is a 

model for the propagation of transverse waves in a 
molecular chain model [23]. The CmKdV equation 

(7) has been solved numerically by Taha [24],  

M. S. Ismail [22, 26], G. M. Muslu [23], M. Uddin 
et al. [10] and analytically by Wazwaz [26]. The 

CmKdV equation is transformed into nonlinear 

coupled equations by decomposing w  into its real 

and imaginary parts i.e. 

,1),,(),(),( 2  itxivtxutxw   (9) 

where ),( txu  and ),( txv  are real functions. As 

a result we obtained the following coupled pair of 

equations 

,0]2)3[( 22  xxxxxt uvvuvuuu   

(10) 

,0]2)3[( 22  xxxxxt uvuvuvvv   

(11) 

 

 
In vector form the system of equations (10)-(11) 

may be written as 

,0),(  xxxxt wvuGww    (12) 

 

where ,],[ tvuw   
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vuuv
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Using the above differentiation matrices, the 

kernel-based meshless schemes corresponding to 
equations (10)-(11) are given as 



 

]2)3[( 22 vDuvuDvuuD
dt

du
xxxxx  

 

                                      (13) 

]2)3[( 22 uDuvvDuvvD
dt

dv
xxxxx  

 
                                      (14) 

,),( wLvuGwL
dt

dw
xxxx    (15) 

Where xL  and xxxL  are the corresponding 

differentiation matrices and G  and w are 

defined in (12). In more compact form we have 

 

,Dw
dt

dw
      (16) 

where xxxx LvuGLD  ),( . 

The scheme (16) is the ODE system generated by 
the meshless method of lines. For time integration 

we can use any ODE solver. In our computations 

we used Runge-Kutta method of order four. 
In the present scheme the differentiation 

matrices ,xD and xxxD  are computed only once 

outside the time-stepping procedure. Inside the 

time-stepping we require only matrix-vector 
multiplications. So this approach is much faster 

than the approach used in [27-29, 10], where the 

interpolation coefficients are computed at each 
time-step. We can choose any differential kernel 

function which is decaying towards infinity. To 

keep the matrices xDA,  and xxxD sparse, we can 

use compactly supported radial kernel functions. A 
radial kernel is given as 

.1),(:),( NjxxxxK jj   

 The are a variety of radial kernel functions in the 
literature. In our computation we used the 

multiquadric 
22)( crr   a globally 

supported radial kernel and the Wendland's 

)318)(35()1()( 26

2,3   crcrcrr  

a compactly supported radial kernel. As usual 
these kernel functions contain a shape parameter c. 

An algorithm for finding optimal values of c is 

proposed by G. Fasshauer [2] for such type of 
meshless method of lines.  

3   Stability of the scheme 
In the present technique the time-depend PDE is 

transformed into a system of ODEs in time. The 

method of lines refers to the idea of solving this 

coupled system of ODEs by a finite difference 

formula in t (e.g Runge-Kutta). The numerical 
stability of the method of lines is investigated by 

the Rule of Thumb, which is given by  

The method of lines is stable if the eigenvalues 
of the (linearized) spatial discretization operator, 

scaled by t , lie in the stability region of the time-

discretization operator [30]. The stability region is 

the subset of complex plane consisting of those 
eigenvalues for which the technique produces 

bounded solution. 

 

4   Numerical results 

    In this section the meshless method of lines is 
applied for the numerical solution of CmKdV 

equation. The accuracy of the method is tested in 

terms of the error norms and the three invariants 
given by 






 ,1 wdxI  






 ,
2

2 dxwI  






 dxwwI x )
2

(
24

3


,   (17) 

 

Single soliton: We consider equation (7) with 

the initial condition 
 

)exp()]([sec
2

)0,( 00 


ixxCh
C

xw   

The problem is solved in spatial domain 

,4020  x  and time domain ]20,0[ . The two 

radial kernels the Hardy's MQ and the Wendland's 

2,3 are used in this computations, other radial 

kernels produced the same results. For time 

integration RK4 method is used. The parameters 

,5.0)(,0,600,0001.0,1,2 0  cMQxNtC 

and 22.0)( 2,3 c  are used in this computations. 

 

1- Corresponding to ,4/0    the results are 

given in Table 1. In comparison the present 

scheme produced better results than the 

other numerical schemes [22, 25]. The 
motion of solitary wave is shown in Figure 

1. 
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2- When ,00  then we are left only with the 

real partu . The results are listed in Table 2. 

In comparison the results of the present 

scheme are better than those given in 

[22,10]. 
 

 

            

MQ t 
L  2L  RMS 

1I  2I  3I  

 5  510067.1   
510378.5   

610196.2   13642.3  99667.1  66556.0  

 10  510063.1   
510890.5   

610404.2   13643.3  99667.1  66556.0  

 15  510534.1   
510314.7   

610980.2   13642.3  99667.1  66556.0  

 20  510412.2   
510065.9   

610701.3   13645.3  99667.1  66556.0  

2,3  5  510988.1   
510385.9   

610831.3   13637.3  99667.1  66556.0  

 10  510676.3   
410833.1   

610482.7   13637.3  99667.1  66556.0  

 15  510505.5   
410751.2   

610123.1   13637.3  99667.1  66556.0  

 20  510242.7   
410661.3   

610495.1   13637.3  99667.1  66556.0  

[22] 20  410490.1   - - 14160.3  99999.1  66976.0  

[25] 20  410080.3   - - - 99999.1  - 

 

Table 1: Single soliton: .600,0001.0,2.0)(,5.0)(,4/,1,2 2,30  NtMQC cc   

corresponding to (1). 

 

 

MQ t 
L  2L  RMS 

1I  2I  3I  

 5  510067.1   
510378.5   

610196.2   13642.3  99667.1  66556.0  

 10  510063.1   
510890.5   

610404.2   13643.3  99667.1  66555.0  

 15  510534.1   
510314.7   

610986.2   13642.3  99667.1  66556.0  

 20  510412.2   
510065.9   

610701.3   13645.3  99667.1  66556.0  

2,3  5  510988.1   
510385.9   

610831.3   13637.3  99667.1  66556.0  

 10  510676.3   
410833.1   

610482.7   13637.3  99667.1  66556.0  

 15  510505.5   
410751.2   

510123.1   13637.3  99667.1  66556.0  

 20  510242.7   
410661.3   

510495.1   13637.3  99667.1  66556.0  

[22] 20  410180.2   - - 14159.3  99999.1  66976.0  

[10] 20  410731.2   
510572.1   - 14159.3  99999.1  66666.0  

 

Table 2: Single soliton: .600,0001.0,2.0)(,5.0)(,4/,1,2 2,30  NtMQC cc   

corresponding to (1).
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Figure 1:   Interaction of two solitary waves: ,2  ,21 C  ,5.02 C ,01  ,2/2    ,0001.0t 

.500N 

 

 
Two soliton interaction: Now we consider 

interaction of two solitary waves, with the initial 

condition of the form 

)exp()]([sec
2

)0,(
2

1

jjj

j

j
ixxCh

C
xw 






 

      (19) 

This problem is solved in ,1000  x over time 

].30,0[  The Wendland's 2,3  compactly supported  

 

 
kernels function is used in this computations. For 

time integration RK4 method is used. The 

parameters ,2 ,21 C ,5.02 C ,0001.0t

,500N  ,251 x ,502 x  and 22.0)( 2,3 c  

are used in this computations. 
 

 

 

1- We examined the interaction of 

orthogonally polarized waves when 

,01  .2/2   The results are fully 

agreed with [25] and are shown in Figure 2. 

2- Next we studied the interaction of two y-

polarized solitary waves when ,01   and 

.02   Here again the results are shown in 

Figure 3, and are agreed with [25]. 

3- Finally we consider the interaction of two 
solitary waves when 

,4/1   .4/2   These results are 

displayed in Figure 4, and is agreed with 
[25]. 
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Figure 2: Interaction of two solitary waves: 

,2 ,21 C ,5.02 C ,01  ,2/2   ,22.0)( 2,3 c ,500N ,0001.0t  

 
 

Figure 3. Interaction of two solitary waves: 

,2 ,21 C ,5.02 C ,01  ,02  ,22.0)( 2,3 c .500N
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Figure 4. Interaction of two solitary waves: 

,2 ,21 C ,5.02 C ,4/1   ,4/2   ,22.0)( 2,3 c .500N

 

 
 

 

Three soliton interaction: Finally we consider the interaction of three solitary waves, with the initial 
condition 

)exp()]([sec
2

)0,(
3

1

jjj

j

j
ixxCh

C
xw 






 

(20) 

We solved the problem in spatial domain ,1000  x  over time ].30,0[  The Wendland's 2,3 compactly 

supported kernels function is used. RK4 scheme is used for time integration. The parameters 

,2 ,11 C ,5.02 C  ,3.03 C  ,0001.0t  ,500N ,101 x ,302 x   

,503 x ,22.0)( 2,3 c .3,2,1,4/  ii    

 are used in this computations. The results are shown in Figure 5, and the scheme successfully resolved the 

motion and interaction of the three solitary waves. 
 

 

5 Concluding remarks 

 
In this paper, RBF-PS scheme is used for the approximate solution of complex modified Korteweg-de 

Vries equation. The present scheme is much faster and accurate than the other meshless method of lines 

[10]. The present scheme performed well in terms of accuracy and robustness. To reduce computation time 
further we 

used Wendland's compactly supported function. The technique used in this paper provides an efficient 

alternative for the solution of such type of nonlinear partial differential equations. 
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Figure 5. Interaction of three solitary waves: 

,2 ,21 C ,5.02 C ,3.03 C ,4/1   ,4/2   ,4/3   ,22.0)( 2,3 c .500N
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