
Appl. Math. Inf. Sci. 7, No. 2, 587-598 (2013) 587

Applied Mathematics & Information Sciences
An International Journal

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

Efficient Mining Differential Co-Expression Constant
Row Bicluster in Real-Valued Gene Expression Datasets
Miao Wang1∗ and Xuequn Shang1 and Xiaoyuan Li1 and Zhanhuai Li1 and Wenbin Liu2

1 School of Computer Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
2 Department of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China

Received: Jul 8, 2012; Revised Oct. 4, 2012; Accepted Oct. 6, 2012
Published online: 1 Mar. 2013

Abstract: Biclustering aims to mine a number of co-expressed genes under a set of experimental conditions in gene expression dataset.
Recently, differential co-expression biclustering approach has been used to identify class-specific biclusters between two gene expres-
sion datasets. However, it cannot handle differential co-expression constant row biclusters efficiently in real-valued datasets. In this
paper, we propose an algorithm, DRCluster, to identify Differential co-expression constant Row biCluster in two real-valued gene
expression datasets. Firstly, DRCluster infers the differential co-expressed genes from each pair of samples in two real-valued gene
expression datasets, and constructs a differential weighted undirected sample-sample relational graph. Secondly, the differential co-
expression constant row biclusters are produced in the above differential weighted undirected sample-sample relational graph. We also
design several pruning techniques for mining maximal differential co-expression constant row biclusters without candidate mainte-
nance. The experimental results show our algorithm is more efficient than existing one. The performance of DRCluster is evaluated
by MSE score and Gene Ontology, the results show our algorithm can find more significant and biological differential biclusters than
traditional algorithm.

Keywords: differential co-expression, biclustering, constant row, gene expression.

1. Introduction

Biclustering [1] is one of the popular methods for gene
expression dataset analysis. It can identify a group of co-
expressed genes under a subset of experimental conditions.
There have existed many biclustering methods. Such as,
[1] proposed the first biclustering algorithm which em-
ployed a greedy node deletion approach using a low mean
squared residue for mining constant value and constant
row or column biclusters, [2] focuses on discovering con-
stant value biclusters, coherent evolution biclusters can be
found by [3], [4] uses a weighted multi-graph to mine scal-
ing biclusters and [5] proposed to mine biclusters in dis-
cretized gene expression dataset. However, above algorithms
do not consider the class labels to infer the differential co-
expression biclusters in two or more labeled gene expres-
sion datasets.

Differential co-expression biclustering methods are used
to detect differential co-expression bicluster which shows
highly corrected co-expression in one dataset but not in the

other. Mining differential co-expression bicluster is more
useful for disease detection. For example, it can lead to the
identification of age-related genes under age-associated con-
ditions by comparing the expression of the genes between
two age periods. Biologically speaking, using differential
co-expression bicluster can indicate the wrong regulation
of a pathway [6].

Recently, many approaches have been proposed to in-
fer differential co-expression biclusters. [7] used two-steps
approach to produce differential co-expression biclusters.
It identifies biclusters in each class separately firstly, then
above identified biclusters are ranked based on their dif-
ference between the two classes. [8] also used two-steps
to infer differential co-expression biclusters. The first step
is to mine the up or the down regulated genes, then [9] is
used to identify the biclusters from the up-regulation and
the down-regulation data. Above two-steps procedure for
mining differential co-expression bicluster is naive. The
produced bicluster in one class may also be inferred in the
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other class, which influences the mining efficiency. There-
fore, [10] developed a methodology for differential co-
expression network analysis for the comparison of gene
co-expression on a global scale. Each edge in the differ-
ence network represents the change in correlation that oc-
curs between two gene expression classes. Then they iden-
tified a number of functional gene groups that change co-
expression between two age classes. [5] produces discrim-
inative bicluster in the weighted undirected sample rela-
tional graph which is constructed based on difference be-
tween two gene expression datasets. Above two methods
construct a difference matrix to mine discriminative bi-
cluster. However, differential bicluster may not be differ-
ential co-expression bicluster.

The recent proposed DiBiCLUS [11] algorithm aims
to mine differential co-expression biclusters from two dis-
cretized gene expression datasets. Firstly, DiBiCLUS iden-
tifies the differential pairs of genes. Then the differential
biclusters are generated using clustering method. However,
there existed some drawbacks of DiBiCLUS. Firstly, DiBi-
CLUS can only handle one relation between two genes,
which may omit some biological information. Secondly,
DiBiCLUS cannot be used for mining differential bicluster
in real-valued gene expression datasets, which may lose
some biological interesting results. Thirdly, DiBiCLUS needs
to be double mining differential co-expression bicluster.
One is to mine differential co-expression biclusters from
Class A to Class B. The other is from Class B to Class A.
Such double checking procedure influences the mining ef-
ficiency. Finally, DiBiCLUS maintenances the whole clus-
ter in memory, which influences the memory efficiency.

SDC algorithm [12] is another method for mining sub-
space differential co-expression (SDC) patterns. It can also
be used for discovering differential co-expression biclus-
ter. SDC algorithm aims to infer the patterns which are
co-expressed over a large percent of the conditions in one
microarray dataset, but in a much smaller percent of con-
ditions in the other microarray dataset. Unlike some differ-
ential co-expression biclustering algorithms which mine
DC biclusters in discretized datasets, SDC can use the novel
range support to produce constant row SDC bicluster in
real-valued gene expression datasets. Range support is pro-
posed by [13] which uses it to mine the meaningful pat-
terns which are coherent for a substantial fraction of trans-
actions or samples in the dataset. However, there existed
some limitations of range support measure. Firstly, a con-
dition of the range support pattern can only contribute to
the range support of gene set if the values of all the genes
in it are all positive or negative. Therefore, range support
cannot measure the values of some genes in one transac-
tion are not same sign. Secondly, range support can mea-
sure coherent genes under one condition, but it cannot han-
dle the coherent conditions of one gene, which is very
important for mining bicluster. Finally, range support can
only mine coherent genes, but it cannot illustrate the co-
expression types between a pair of genes in real-valued
dataset.

However, SDC framework has some limitations for min-
ing differential co-expression constant row biclusters in
real-valued gene expression datasets. Firstly, it adopts the
Apriori framework which limits its efficiency and scala-
bility. Secondly, the similar to DiBiCLUS, SDC algorithm
also needs to be double mining SDC patterns. One is to
mine SDC patterns from Class A to Class B, the other is
to infer from Class B to Class A. Thirdly, due to the stric-
tion of subspace differential co-expression support [13],
it may generate very small genes. Fourthly, when min-
ing constant row bicluster using gene-growth procedure,
it needs to compute all the coherent samples under each
gene. Such two-steps approach is very time-consuming.
Finally, based on the definition of subspace differential co-
expression, SDC cannot find some interesting differential
co-expression biclusters.

In hopes of overcoming the limitations of existed dif-
ferential biclustering methods, we propose an efficient al-
gorithm, DRCluster, for inferring Differential co-expression
constant Row biClusters in two real-valued gene expres-
sion datasets. In order to escape of traditional double-checking
approach, our algorithm can produce differential biclusters
in one time. Firstly, we infer the differential co-expressed
genes in each pair of samples in two real-valued gene ex-
pression datasets, and construct a differential weighted undi-
rected sample-sample relational graph. In order to handle
the coherent conditions or samples in one gene, we de-
fined a new range support measure, sample range sup-
port, to measure user-defined coherent meaningful sam-
ples. We also defined the three co-expression relationships
between a pair of genes in real-valued dataset for mining
differential co-expression bicluster in real-valued microar-
ray datasets. Secondly, the differential co-expression con-
stant row biclusters are produced in the above differential
weighted undirected sample-sample relational graph. We
design several pruning techniques to improve efficiency
for generating maximal biclusters without candidate main-
tenance. The overview of our approach is illustrated in
Fig.1.

The contributions of our DRCluster framework which
distinguish from existing ones are summarized as follows:

(1) DRCluster can identify new type of differential co-
expression constant row biclusters in two real-valued gene
expression datasets.

(2) We define the sample range support to measure co-
herent samples under genes.

(3) The three types of co-expression relationship be-
tween two genes are defined in real-valued gene expres-
sion data.

(4) The proposed DRCluster algorithm can mine maxi-
mal differential co-expression constant row biclusters with-
out candidate maintenance.

2. PRELIMINARIES AND DEFINITIONS

The gene expression data is denoted as D = G×C, where
the column C represents the set of experimental condi-
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Figure 1 The overview of DRCluster for inferring maximal differential co-expression biclusters.

tions, and the row G represents genes. The element value
of Dij is a real value which is the expression level of gene i
under condition j. A bicluster P is defined as a sub-matrix
of D, denoted as Samples(Genes). For simplicity, we de-
note the gene set of P as P.Geneset and the conditions of
P as P.Sample. Given two microarray datasets, D1 and
D2, shown in Table 1 and Table 2, where D1 ⊆ D and
D2 ⊆ D.

Table 1 An example of real-valued gene expression dataset D1.

S1 S2 S3 S4 S5

G1 2.1 2.12 2.11 2.1 2.09
G2 3.3 3.29 3.3 3.31 3.29
G3 -1.5 -1.53 -1.55 -0.51 -1.53
G4 -2.62 -2.61 -2.6 0.61 3.7
G5 5.5 3.5 8.1 2.2 4.51
G6 1.6 2.5 3.1 4.2 1.91

Table 2 An example of real-valued gene expression dataset D2.

S1 S2 S3 S4 S5

G1 2.87 3.2 4.9 2.2 1.21
G2 2.1 3.1 3.72 4.1 3.41
G3 1.1 1.9 2.9 3.8 0.02
G4 1.54 1.55 1.54 2.1 1.53
G5 5.2 5.21 -0.2 5.19 5.21
G6 -1.12 -1.1 -1.13 -1.1 -1.11

As mentioned in [13], a bicluster is interesting if all
the genes under conditions are co-expressed based on the
following range support definition.

Definition 1. Given a gene expression dataset D and a
self-assignment value α, the range support of a real-valued
gene set G = {g1, g2, · · · , gk} is defined as

RangeSupport(G) =
∑
c∈C

rs(c,G)

where rs(c,G) is defined as:

rs(c,G) =



min
g∈G

|Dc,g| if [∀g ∈ G,Dc,g > 0 or

∀g ∈ G,Dc,g < 0] &

[(max
g∈G

Dc,g −min
g∈G

) ≤

α(min
g∈G

|Dc,g|)]

0 otherwise
(1)

As mentioned in above section, range support needs to
measure the expression values of genes having all positive
or all negative in one transaction and it cannot measure the
coherent samples under genes. Therefore, in this paper, we
will mine constant row bicluster in real-valued gene ex-
pression dataset using the following sample range support
measure.

Definition 2. Given a microarray dataset D and a self-
assignment value α. Therefore, the Sample Range Support
(SRS) of one real-valued gene set G = {g1, g2, · · · , gk} is
defined as

SampleRangeSupport(G) =
∑
g∈G

srs(g, C)
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where srs(g, C) is defined as:

srs(g, C) =


min
c∈C

|Dg,C | if [∀c ∈ C, (max
c∈C

Dg,c−

min
c∈C

Dg,c) ≤ α(min
c∈C

|Dg,c|)]

0 otherwise
(2)

Traditional DC bicluster mining methods [11,12] aim
to find different co-expression types between any two genes
under a set of samples. [12] discovers a set of genes which
are co-expressed on a much larger percent of conditions in
one dataset compared to the co-expression on any size-2
subset of genes in the other dataset. However, SDC support
can produce many little differential co-expression genes
which may influence the biological analysis. In order to
escape of producing more little scales of differential co-
expression biclusters, we produce DC bicluster using the
following definition in this paper.

Definition 3. A bicluster is differential co-expression bi-
cluster if the co-expressed type of relations (positive or
negative) between at least two genes under all the con-
ditions in one class is not the same as the co-expression
type of relations between the same genes under the same
conditions in the other class.

The definition 3 indicates that differential co-expression
bicluster has at least a pair of genes which is positive co-
expression in Class A, and is negative co-expression or
non-expression in Class B. Or it is negative co-expression
in Class A, and is positive co-expression or non-expression
in Class B. Our goal is to mine all the maximal differen-
tial co-expression biclusters in two real-valued microarray
datasets. However, using definition 2 can find set of co-
expressed genes under some conditions, but it cannot infer
the co-expression relationship among genes. Differential
biclustering aims to find gene sets that are co-expressed
under a subset of conditions in one class but not in the
other class. Therefore, how to infer the co-expression re-
lationship between two genes under a subset of conditions
is very important for discovering differential constant row
biclusters in real-valued gene expression datasets. Three
types of relations between genes G1 and G2 in two given
conditions C1 and C2 can be respectively defined as fol-
lows.

(1) G1 and G2 is positive co-expression which is de-
noted as {G1G2} if [∀g ∈ {G1, G2}|( max

c∈{C1,C2}
Dg,c −

min
c∈{C1,C2}

Dg,c) ≤ α( min
c∈{C1,C2}

|Dg,c|)] and [∀c ∈ {C1, C2}

|(DG1,c ×DG2,c > 0)];
(2) G1 and G2 is negative co-expression which is de-

noted as {G1−G2} if [∀g ∈ {G1, G2}|( max
c∈{C1,C2}

Dg,c−

min
c∈{C1,C2}

Dg,c) ≤ α( min
c∈{C1,C2}

|Dg,c|)] and [∀c ∈ {C1, C2}

|(DG1,c ×DG2,c < 0)];
(3) G1 and G2 is non-expression if they are not up-

expressed or down-expressed.

Our goal is to mine all the maximal differential co-
expression biclusters using above gene co-expression rela-
tions definition in two real-valued gene expression datasets.
In the next section, we will show how our algorithm min-
ing maximal differential co-expression constant row bi-
clusters.

3. THE DRCLUSTER ALGORITHM

In this section, we will present how our algorithm finding
maximal differential co-expression biclusters in two real-
valued gene expression datasets. The DRCluster frame-
work has two steps as following:

1. Producing differential co-expressed genes in each
pair of samples in gene expression datasets, and construct-
ing a differential weighted undirected sample-sample rela-
tional graph.

2. Mining maximal DC constant row biclusters in the
above differential weighted undirected sample-sample re-
lational graph.

A. Construct the Differential Weighted Undirected Sample-
Sample Relational Graph

As mentioned in above, traditional algorithms [11,12]
to mine maximal DC biclusters needs to be double times
checking, which is less efficient and more time consum-
ing. In order to mine DC biclusters efficiently, DRCluster
generates maximal DC constant row biclusters from the
differential weighted undirected sample-sample relational
graph (DWUR Graph). [5] also uses the WUR Graph to
mine maximal bicluster in gene expression dataset. The
difference between WUR Graph in [5] and this paper is
that our DWUR Graph contains differential co-expression
genes and our DWUR Graph is produced by real-valued
gene expression dataset instead of discretized dataset. The
definition of DWUR graph is shown as following.

Definition 4. The DWUR Graph G = {E,S,W}, each
vertex Si in the graph represents an unique sample, there
exists an edge Eij between a pair of samples only if Si and
Sj have co-expressed genes which satisfy a pair of differ-
ential co-expression genes’ definition in the definition 3
and weighted item set Wij between Si and Sj samples is
the above differential co-expressed genes. For clarity, Wij

is denoted as SiSj .Geneset.

The merits of our constructed DWUR Graph being more
efficient than traditional differential pairs of genes, are shown
as following. (1) As we known, the number of genes in
gene expression dataset is much greater than the number of
samples. Therefore, using sample-growth method is more
efficient than gene-growth. However, if the number of genes
is less than samples, gene-growth approach may be more
efficient. In this paper, we assume that gene expression
dataset has more genes than samples. (2) Since it is possi-
ble for any a pair of genes to be positive co-expression and
negative co-expression under a set of samples. [11] can
only handle one relation between two genes, which may
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omit some biological information. Our DWUR Graph con-
tains both positive co-expression and negative co-expression
among genes. Therefore, our algorithm can mine both pos-
itive co-expression genes and negative co-expression genes
under the same set of samples.

According to definition 3, the pair of differential co-
expressed genes has two parts. One is that a set of genes are
co-expressed in Class A and have opposite co-expression
or non-expression in Class B. The other is that it is co-
expressed in Class B and has opposite co-expression or
non-expression in Class A. Therefore, the two parts are
not same. For clarity, above two parts of differential co-
expression genes are denoted as PGenes and NGenes,
respectively. For example, S1S2.PGenes is G1G2−G3−
G4 and S1S2.NGenes is G3G4G5 − G6 between Table
1 and Table 2. Fig.2 shows an example of DWUR Graph
which is constructed from Table 1 and Table 2.

S1

S2

S3 S4

S5

aG
1
G2
-G
3
-G
4

bG
4
G 5
-G
6

a
G
1
G
2
-G
3
-G
4

b
G
4
-G
6

a
G
1
G
2
-G
4

b
G
4
-G
6

a
G
1 G
2

b
G
5 -G

6

aG
1G
2 -G

3

bG
4G
5 -G

6

aG
1G
2

bG
5-G

6

aG1G2-G3

bG4G5-G6

aG1G2

aG
1
G2
-G
3

bG
4
-G
6

a
G
1 G
2

b
G
5 -G

6

Figure 2 An example of DWUR Graph between Table 1 and
Table 2.

B. Mining Maximal Differential Co-expression Con-
stant Row Biclusters

In this section, we will show how our method finding
the maximal DC biclusters without candidate maintenance
in real-valued datasets. As mentioned above, our algorithm
infers biclusters in DWUR Graph, which is constructed by
merging the two original microarray datasets according to
definition 3. Since the total of conditions is far less than
the number of genes, so we generate DC biclusters by us-
ing sample-growth (also called condition-growth) method.
Before the DRCluster algorithm is presented, let’s discuss
the anti-monotonic of sample range support.

Theorem 1. The sample range support measure is anti-
monotonic.

Theorem 1 states that our sample range support satis-
fies the anti-monotonic property, which guarantees that we

can use Apriori-like efficient pattern mining framework to
discover biclusters. Therefore, our DRCluster algorithm
adopts Aprioir-like procedure to produce differential co-
expression constant row bicluster using sample-growth in
DWUR Graph. The following lemma can guarantee that
sample-growth is satisfied the range support definition.

Lemma 1. If Gi is co-expressed under SiSj , SiSp and
SjSp respectively, Gi must be co-expressed under SiSjSp.

Lemma 1 can guarantee using sample-growth method
can generate bicluster in real-valued gene expression dataset
without any information loss. Since our algorithm is based
on sample-growth method, so the current extending dif-
ferential co-expression bicluster under the same samples
may have two parts of differential co-expression genes.
Therefore, a differential co-expression bicluster can be de-
noted as Samples(aGenes, bGenes) where aGenes is
Samples.PGenes and bGenes is Samples.NGenes. In
above example, supposed the current extended sample set
is S1S2, the current extended DC constant row bicluster is
denoted as S1S2(aG1G2 − G3 − G4, bG3G4G5 − G6).
According to lemma 1, if one sample can be extended to
the current extending DC bicluster when mining the real-
valued microarray datasets, all the new generated edges
should be satisfied the following definition.

Definition 5. Supposed Si · · ·Sj−1Sj(aGx · · ·Gy, bGm · · ·
Gn) be the current extending DC bicluster between two
gene expression datasets and min G is the minimum num-
ber of genes in the DC bicluster. If one sample Sp is a can-
didate sample, it should be satisfied as following: | Si · · ·
Sj−1Sp.PGenes ∩ Si · · ·Sj−1Sj .PGenes ∩ SpSj .
PGenes | ≥ min G or | Si · · · Sj−1Sp.NGenes∩ Si · · ·
Sj−1Sj .NGenes ∩ SpSj .NGenes | ≥ min G.

Although above lemma and theorem guarantee our al-
gorithm can use Aprioir property to produce DC constant
row biclusters using sample-growth method, the mining
procedure is very time-consuming. In order to increase
the mining efficiency, our DRCluster algorithm generates
maximal DC constant row biclusters without candidate main-
tenance. Traditional efficient maximal pattern mining tech-
nique is backward checking [5]. If there existed another
extended priori candidate sample which can contain all
the information of the current candidate sample, the cur-
rent extended candidate sample would be pruned. How-
ever, above pruning technique can be used for mining max-
imal DC biclusters in discretized datasets, but it cannot
be used to infer maximal DC constant row biclusters in
real-valued datasets. For example, supposed the current
extending sample is S2, S3 is the current extended can-
didate sample and S1 is the priori candidate sample of
S2. Since S2S3(aG1G2 − G3 − G4, bG4 − G6) is the
subset of S1S2(aG1G2 − G3 − G4, bG4G5 − G6), so
S2S3(aG1G2−G3−G4, bG4−G6) can be pruned when
mining discretized datasets, but it cannot be used in real-
valued microarray datasets. The reason is that G3 is co-
expressed under S1 and S2, S2 and S3, respectively. But it
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is not co-expressed under S1 and S3. Therefore, although
S2S3(aG1G2 − G3 − G4, bG4 − G6) is the subset of
S1S2(aG1G2 −G3 −G4, bG4G5 −G6), there could not
generate a set of co-expressed genes under S1S2S3, which
is the superset of S2S3(aG1G2 − G3 − G4, bG4 − G6).
Therefore, the candidate sample S3 of S2 should not be
pruned. If S3 can be pruned, it must guarantee all the bi-
clusters which are generated by extending S2S3(aG1G2−
G3−G4, bG4−G6) are the subset of biclusters which are
generated by extending S1S2(aG1G2−G3−G4, bG4G5−
G6). Based on above observation and analysis, the fol-
lowing lemma can guarantee mining maximal DC con-
stant row biclusters without candidate maintenance in real-
valued microarray datasets.

Lemma 2. Given P be the current extending DC bicluster,
M is the candidate sample set of P and N is the priori
candidate sample set of P . Supposed the current candi-
date sample is Mi(Mi ∈ M), and Nj is a priori candi-
date sample where Nj ∈ N . If PMi.PGenes should be
pruned, it is satisfied the following criteria. (1) PNjMi.PGenes
is the same as PMi.PGenes; (2) For each other candi-
date sample Mp in M , PNjMi.PGenes is the subset of
PNjMp.PGenes.

Lemma 2 states how to escape of producing non-maximal
DC biclusters without candidate maintenance. According
to above lemma, DRCluster algorithm exploits the follow-
ing pruning techniques to achieve mining maximal DC
co-expression biclusters without candidate maintenance in
real-valued microarray datasets.

Pruning 1. If the positive DC genes and the negative
DC genes of the current extended candidate sample are
both pruned based on Lemma 2, the current candidate sam-
ple would be pruned.

Pruning 2. If the positive DC genes of the current ex-
tended candidate sample is pruned based on Lemma 2 and
the negative DC genes of the current extended candidate
sample cannot be pruned, the positive DC genes of the cur-
rent extended candidate sample would be pruned.

Pruning 3. If the negative DC genes of the current ex-
tended candidate sample is pruned based on Lemma 2 and
the positive DC genes of the current extended candidate
sample cannot be pruned, the negative DC genes of the
current extended candidate sample would be pruned.

According to above lemmas and pruning techniques,
DRCluster algorithm is designed for mining maximal DC
biclusters without candidate maintenance in two real-valued
gene expression datasets, which is shown in Algorithm 1.
Fig.3 shows an example to illustrate the process of DR-
Cluster for mining the examples datasets which are Table
1 and Table 2. The minimum number of genes and samples
are both set to 2.

4. EXPERIMENTAL RESULTS

In this section, we will present several experiments to eval-
uate the effectiveness and efficiency of our algorithm in

Input: Two real-valued microarray datasets: D1 and D2;
the minimum number of genes in bicluster:
min G; the minimum number of samples in
bicluster: min S; WUR Graph: L; the current
extending DC bicluster: P .

Output: the maximal DC bicluster set.
Initialization: P = ∅; L = ∅;
Method: DRCluster (D1, D2, min G, min S, L, P )
if L = ∅ then

construct L;
end
scan L and find all the candidate set S of P ;
foreach candidate Si ∈ S do

if the DC biclsuter does not satisfy Pruning 1 and
Pruning 2 and Pruning 3, and the number of genes
in PSi is greater than min G then

P.Sample = PSi.Sample;
P.PGenes = P.PGenes ∩ PSi.PGenes;
P.NGenes = P.NGenes ∩ PSi.NGenes;
DRCluster (D1, D2, min G, min S, L, P );

end
else if PSi satisfies Pruning 2 then

P.Sample = PSi.Sample;
P.PGenes = P.PGenes ∩ PSi.PGenes;
P.NGenes = Null;

end
else if PSi satisfies Pruning 3 then

P.Sample = PSi.Sample;
P.NGenes = P.NGenes ∩ PSi.NGenes;
P.PGenes = Null;

end
end
if P is greater than any candidate bicluster of P and the
number of samples in P is greater than min S then

Output (P);
end
return;

Algorithm 1: DRCluster

real-valued microarray datasets. All approaches are imple-
mented in Visual C++ and evaluated on an Intel(R) Core(TM)2
2.53GHz Duo CPU and 4G RAM running Windows 7.
The performance of DRCluster algorithm will be com-
pared with SDC [12] to produce maximal DC constant row
biclusters in two real-valued microarray datasets. SDC al-
gorithm uses SDC support to control the number of pro-
duce SDC biclusters. Low value of SDC support can pro-
duce more SDC biclusters and needs more time consum-
ing. High value can produce outstanding SDC bicluster.
Our implemented SDC bicluster algorithm only outputs
the maximal subspace differential biclusters. Due to orig-
inal SDC algorithm can only exploit SDC patterns in two
gene expression datasets, the detail of our implemented
SDC algorithm to mine DC constant row biclusters is de-
scribed as following. (1) Since constant row bicluster aims
to find the set of gene which has coherent expression val-
ues under the same set of experimental conditions, and
SDC algorithm adopts a width-growth method to gener-
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Maximal DC constant row bicluster

S1

S1S2

aG1G2-G3-G4

bG4G5-G6

S1S2S3

aG1G2-G4

bG4-G6

S1S2S3S4

aG1G2

S1S2S3S4S5

aG1G2

Pruning 2

S1S2S3S5

aG1G2

bG4-G6

Pruning 2

S1S2S4

aG1G2

bG5-G6

S1S2S5

aG1G2-G3

bG4G5-G6

Pruning 1

S1S3

aG1G2-G4

bG4-G6

Pruning 1

S1S4

aG1G2

bG5-G6

Pruning 1

S1S5

aG1G2-G3

bG4G5-G6

S2

Pruning 1

S2S4

aG1G2

bG5-G6

S3

Pruning 1

S3S4

aG1G2

Pruning 1

S4

Pruning 3

S2S3

aG1G2-G3-G4

bG4-G6

Pruning 1

S2S5

aG1G2-G3

bG4G5-G6

Pruning 1

S2S3S4

aG1G2

Pruning 1

S3S5

aG1G2-G3

bG4-G6

S4S5

aG1G2

bG5-G6

S1S2S4S5

bG5-G6

Figure 3 The process of DRCluster mining maximal DC constant row biclusters.

ate all the subspace differential patterns. Therefore, using
SDC algorithm to produce constant row bicluster needs
to infer all the coherent samples for each gene, which is
the first step of our implemented SDC algorithm. (2) We
use the differential sample range support to replace of dif-
ferential range support [12] to mine subspace differential
co-expression constant row biclusters. (3) Using the def-
inition of subspace differential support shown in [12] to
infer differential co-expression bicluster needs to be modi-
fied. Since the samples in bicluster may not be all the sam-
ples in the gene expression dataset. Therefore, we detect
subspace differential co-expression biclusters whose genes
show highly corrected co-expression under one set of sam-
ples in one dataset but not under the same set of samples
in the other.

We used the real-valued gene expression datasets from
AGEMAP [14], which is a large resource database that
catalogs changes in gene expression as a function of age
in mice. AGEMAP includes 8,932 genes and a number of
16,896 cDNA clones in 16 tissues as a function of age [14].
For each tissues, there are five male and five female mice
aged 1, 6, 16, 24 month. In this paper, we will analyze
three tissues, which are Hippocampus, Heart and Gonads
respectively. Our purpose is to find potential co-expressed
genes which are age-related. In this paper, we only use one
male and one female mouse (denoted as ’c’ in AGEMAP)
aged 6 month and 16 month to evaluate our algorithm. The
number of conditions is 12.

A. Efficiency Comparison

In this section, we will compare the efficient perfor-
mance of DRCluster algorithm with SDC algorithm. We
applied them on different size of gene expression datasets
to show their performance. The genes in each dataset are
chosen by the order in AGEAMP. Since SDC algorithm
uses Apriori concept to produce DC bicluster, so the effi-
ciency is very low. As mentioned above, the larger of SDC
support can result in less time consuming and better re-
sults. Therefore, we set the SDC support is 1, which can
produce SDC bicluster efficiently and get outstanding re-
sults. Since our DRCluster produces DC biclusters with-
out any differential co-expression support relaxation, so
DRCluster is not set differential support. The minimum
number of samples and genes in DC bicluster produced
by above two algorithms are both set to 3. The minimum
sample range support threshold is 2.

Fig.4 to Fig.6 show the runtime of each above algo-
rithm with respect to various database sizes under vari-
ous self-assignment values. When the database size in-
creases, the runtime increases dramatically in each self-
assignment value. And the larger self-assignment value re-
sults in the longer running time. The reason is that larger
self-assignment value can get much greater scale of DC
bicluster, which would influence the efficiency. It is shown
DRCluster is more efficient than SDC for running time
on different database sizes under different self-assignment
values, except for when database has 100 and 200 genes
under self-assignment value α be 0.3. Since larger self-
assignment value may result in less overlap percent and
larger scale of DC bicluster. So when the database is smaller,

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



594 Miao Wang et al. : Efficient Mining Differential Co-Expression Constant Row Bicluster...

1000010000

SDCSDC

DRCluster

Database size (k genes)

Figure 4 The runtime of each algorithm on different size
database at α=0.1.
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Figure 5 The runtime of each algorithm on different size
database at α=0.2.
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Figure 6 The runtime of each algorithm on different size
database at α=0.3.

most of produced biclusters may be maximal. Our designed
pruning technique of DRCluster needs to check more times
for pruning but pruned less, which may influence a little
efficiency (however, the difference gap is within one sec-
ond).

Due to the efficient pruning technique of DRCluster,
it can produce all the maximal DC constant row biclusters
within 90 seconds when the database size is not greater
than 1500 when α is 0.1, which is shown in Fig.4. On 1500
genes, DRCluster(87.71s) is almost 534 times faster than
SDC(46893.17s). Due to the less efficiency of Apriori-like
concept in SDC bicluster algorithm, it cannot terminate
when mining 2000 genes or more. When the database is
increased to 3000 genes, DRCluster can terminate within
700 seconds. As discussed in above, larger self-assignment
value α may produce greater scale of biclusters. As shown
in Fig.5 and Fig.6 SDC algorithm cannot terminate when
the number of genes is greater 1000 when α is 0.2 or
0.3. However, DRCluster can produce all the maximal DC
constant row biclusters without candidate maintenance in
memory, so it can terminate on mining 3000 genes datasets
in Fig.5 and Fig.6.

B. Significance of DC Biclusters Using MSE Tests
In this section, we measured the coherence of each

SDC patterns using the MSE score. The mean squared er-
ror (MSE) has been proposed by [1] to measure the co-
herence of expression levels of a subset of genes across
a subset of experimental conditions. MSE can be used to
capture the coherence of expression levels of a subset of
genes across a subset of experimental conditions. If I and
J are the set of genes and samples in one bicluster, and Dij

is the expression value of ith gene under jth sample, The
MSE score is defined as M(I, J) = 1

|I||J|
∑

i∈I,j∈J

(Dij −

DiJ −DIj+DIJ)
2, where DiJ = 1

|J|
∑
j∈J

Dij and DIj =

1
|I|

∑
i∈I

Dij are the means of the values in the ith row and

jth column respectively, while DIJ = 1
|I||J|

∑
i∈I,j∈J

Dij

is the overall mean of the bicluster. The minimum value
of MSE is obtained when the bicluster is constant row or
column bicluster. MSE can also be used to measure the
differential co-expression constant row bicluster. If the co-
herence of expression levels of all the genes of one DC
bicluster under subset of experimental conditions in one
microarray dataset is very higher (lower MSE score) and
lower (higher MSE score) in the other microarray dataset,
we claim this DC bicluster is significant.

We will test the potential age-related biclusters which
are differential co-expression between 6 month and 16 month
in the following paper. Since all the cDNA clones in AGEMAP
cannot be potential age-related, [13] collected a list of 305
cDNA clones that are age-related in multiple mouse tis-
sues. In the following experiments, we analyze the differ-
ential co-expression biclusters discovered by above two
algorithms on these 305 cDNA clones. All the minimum
sample range support of the following evaluated DC con-
stant row bicluster is 1.5 and the differential support of
SDC is 1 which can mine the most outstanding results.

Due to the limitation of paper space, we only show the
distribution of MSE scores of DC constant row biclusters
at self-assignment value α = 0.1. The minimum number
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Figure 7 The MSE scores distribution of DC constant row bi-
clusters produced from 6 month to 16 month in 6 month microar-
ray.
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Figure 8 The MSE scores distribution of DC constant row bi-
clusters produced from 6 month to 16 month in 16 month mi-
croarray.

of genes and samples are both 3. The MSE distribution
of DC constant row biclusters that were produced from
6 month to 16 month in Fig.7 is evaluated in 6 month
microarray. It means that the genes in bicluster are co-
expressed in 6 month and not co-expressed or opposite co-
expressed in 16 month. If the MSE scores are more lower-
valued, the evaluated biclusters are better significance. It
can be clearly seen that DRCluster can produce more and
lower MSE-valued DC constant row biclusters than SDC
algorithm in 6 month microarray dataset. Fig.8 shows the
MSE score distribution of DC constant row biclusters in
16 month microarray. If the values are higher, it can be
seen as significance. It can be seen from Fig.8, DRClus-
ter can produce more totals and lower MSE-valued DC
constant row biclusters than SDC algorithmin in 16 month
microarray dataset. Fig.9 and Fig.10 show the MSE distri-
butions of DC constant row biclusters that were produced
from 16 month to 6 month are evaluated in 6 month gene
expression data and 16 month gene expression data. Since
such biclusters were inferred from 16 month to 6 month,

0 120 12

0 06 DRCl t0 06S DRCluster

SDC

00

DC bicluster

Figure 9 The MSE scores distribution of DC constant row bi-
clusters produced from 16 month to 6 month in 6 month microar-
ray.
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DRCl tS DRCluster

SDC

00

DC bicluster

Figure 10 The MSE scores distribution of DC constant row bi-
clusters produced from 16 month to 6 month in 16 month mi-
croarray.

so the distribution is opposite to Fig.7 and Fig.8. If the
MSE score of bicluter is high in 6 month gene expression
data and low in 16 month, such bicluster shows the signif-
icant coherent differential co-expression. Fig.9 to Fig.10
shows DRCluster can find more totals and lower MSE-
valued DC constant row biclusters than SDC algorithm
in 16 month gene expression data, more and high MSE-
valued in 6 month. Therefore, based on Fig.7 and Fig.10,
it shows that our produced DC constant row biclusters are
more coherent than SDC algorithm’s at α = 0.1.

C. Biological Analysis
We will show how the biological significance of the

DC biclusters found by each algorithm is evaluated in this
section. We assess the DC bicluster quality by determining
the percentage of functionally homogeneous DC biclusters
among all identified DC biclusters. We used the Gene On-
tology (GO) [15] annotation to test our results. If the ratio
of one DC biclusters genes having the same known annota-
tions which belong to an annotated GO functional category
is greater than the user-defined threshold, this DC bicluster
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is claimed as biological interesting one [16]. In this sec-
tion, we analyze the differential co-expression biclusters
discovered by each algorithm on 305 potential age-related
cDNA clones. All the minimum sample range support of
the evaluated DC constant row bicluster is 2, the minimum
number of genes in bicluter is 4 and the differential support
of SDC is 1.

Fig.11 to Fig.13 show the number of DC biclusters
which are produced by each algorithm, evaluated by GO at
different GO homogeneous threshold under different self-
assignment value. We found that the number of enriched
GO categories in each algorithm decrease with homoge-
neous threshold. It can also be clearly seen from these
figures that, DRCluster can produce more GO-evaluated
DC constant row biclusters than SDC algorithm at each
homogeneous threshold under each self-assignment value.
We found that our DRCluster can find the number of GO-
evaluated DC constant row biclusters gap decreases with
self-assignment value. DRCluster can find almost 18 times
more than SDC when homogeneous threshold is 0.5 and
self-assignment value is 0.1.

e

DRCl t

e

DRCluster

SDC

00

0.3 0.4 0.5 0.6 0.7

Homogeneous threshold

Figure 11 The number of GO-evaluated DC constant row bi-
clusters comparison at α=0.1.

5. Conclusion
In this paper, we propose an algorithm, DRCluster, to mine
maximal differential co-expression constant row biclus-
ters in two real-valued gene expression datasets efficiently.
DRCluster can find maximal DC constant row biclusters
without candidate biclusters maintenance in memory. Com-
pared with the existing SDC bicluster mining algorithm, it
is shown that our algorithm is more efficient. The exper-
iments show our algorithm can produce more biological
significance. However, there remain several further inves-
tigations. We discuss some limitations of DRCluster algo-
rithm and our future work. (1) DRCluster mines DC con-
stant row biclusters in two gene expression datasets. Min-
ing differential co-expression biclusters in several microar-
ray datasets may be more interesting biologically. In the

700700
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Figure 12 The number of GO-evaluated DC constant row bi-
clusters comparison at α=0.2.
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Figure 13 The number of GO-evaluated DC constant row bi-
clusters comparison at α=0.3.

future, we plan to infer DC biclusters in several real-valued
gene expression datasets. (2) Our DRCluster cannot han-
dle any fault-tolerant biclusters. Gene expression dataset
has lots of noisy value. Biologically speaking, fault-tolerant
capability [17,18] is a key meteyard for bicluster algo-
rithms. Next, we also plan to extend our approach to infer
differential co-expression fault-tolerant biclusters in real-
valued gene expression datasets.
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