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Abstract: An automatic method is presented to extract edema around spontaneous intracerebral hemorrhage (SICH). A new way to
cluster edema based on region growing is proposed, with seeds derived from expectation-maximization algorithm, local grayscale
mean derived from adaptive local thresholding with varied window sizes, and growing rules that combines local grayscale mean and
grayscale information in the form of two-dimensional entropy. The algorithm has been validated on 36 patient datasets to achieve a
Dice coefficient of 0.79 in less than 3 minutes. It may provide a potential tool for neurosurgeons to quantify edema and guide therapy
of patients with SICH.
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1. Introduction
Spontaneous intracranial hemorrhage (SICH) is one of the
most common causes in adult acute neurologic injury, and
it attracts much research attention for its high mortality and
poor prognosis [1–3]. Cerebral edema is an important sec-
ondary brain injury after SICH. Major factors contributing
to the death in acute stage of SICH caused by edema are
intracranial hypertension and cerebral hernia [4]. Timely
and effective diagnose and control of cerebral edema could
help to reduce the mortality rate and prevent intracranial
hypertension and cerebral hernia.

The mechanism of edema formation after SICH has
not been fully understood [5]. Cerebral edema is present in
most patients with SICH when imaged within 6h of onset,
reaches the peak between 48h and 7 days, and is absorbed
after 4 to 6 weeks [6].

Computed tomography (CT) head scans remain the first
choice for diagnosing SICH. On head CT scans, it is diffi-
cult to delineate edema regions due to substantial overlap
of grayscale ranges between the edema and other brain tis-
sues (cerebrospinal fluid CSF and white matter WM) and
unclear image boundaries. The major regions of cerebral
edema candidates in patients with SICH are low grayscale

regions around SICH within 1 centimeter radius of the nor-
mal brain tissues and the mirror areas on the other side
[8]. Due to the importance to quantify edema, there have
been some efforts on automatic or semi-automatic seg-
mentation. Bardera et al. [7] proposed a semi-automated
method based on level-set theory to achieve a matching
ratio of 0.65. Bastian et al. [9] studied CT thresholds for
edema to be 5-33 Hounsfield units (HU) using manually
drawn hematoma from T2-weighted MRI. Sven et al. pro-
posed a fuzzy expert system [10] and a hierarchical seg-
mentation method [11] for edema segmentation. The last
two studies did not report accuracy. The poor accuracy re-
flected the complexity and difficulty to segment edema.
In this study, we propose an automatic algorithm to seg-
ment edema with better accuracy. It contains the follow-
ing components: confining the edema within the neigh-
borhood of hematoma, classifying edema by exploring the
grayscale distribution of edema and neighboring tissues,
and refining edema segmentation through combining lo-
cal grayscale mean and local threshold by exploring local
thresholding with adaptively varying window sizes. The
algorithm has been tested against 36 patients with SICH to
yield an average Dice coefficient of 79The rest are orga-
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Figure 1: Block diagram of the segmentation process.

nized as follow. In section 2, the method and materials are
presented. In section 3, the segmentation results are given
and compared with manual segmentations. Discussion and
conclusion are given at last.

2. Methods and Materials

There were 36 subjects from Linyi People’s Hospital for
this study. All the subjects were diagnosed with SICH and
imaged within 6h to 72h. The statistics of the patients were:
age range [18,83] with an average 57 years, 13 female
and 23 male. For each subject, an unenhanced head CT
scan was performed. All the CT images were axial and ob-
tained parallel to the orbito-meatal line. The image spac-
ing is 0.46 mm within axial slices, and the slice distance
is 4.8 mm. The manual segmentation was derived from
three radiologists for validation. Fig. 1 shows the flowchart
of the method. The proposed edema segmentation is ac-
complished in the following steps: 1) Preprocessing: De-
rive the brain and hematoma, and categorize the remaining
brain tissues (RBT) as CSF, edema, WM and gray matter
(GM) using k-means clustering. 2) Parameter estimation
and automatic selection of seeds: Estimate the parameters
of each normal distribution of the classified CSF, edema,
WM and GM using expectation-maximization (EM), and
select seeds using maximum likelihood clustering (MLC).
3) Region growing: Establish growing rules using local
contrast and entropy information to find edema region. In
the following subsections, details of the algorithm will be
described.

2.1. Preprocessing

In a CT image, edema is the transition region between
hematoma and normal tissue as shown in Fig. 2. Hematoma
is extracted based on local thresholding [13], while the
brain is derived from the head CT scan based on fuzzy
C-means clustering and morphological process [12]. The
RBT is first divided into dark and bright regions by local
thresholding [13], then the dark regions and bright regions
are further divided into initial CSF and edema, WM and
GM by k-means clustering with two clusters as shown in
Fig.3.

Consider the RBT in which g(x,y) ∈ [0,255] is the
grayscale of a pixel at location (x,y). In local adaptive
threshold methods [13], the aim is to computed a threshold
thr(x,y) for each pixel such that

lable(x,y) =
{

0, g(x,y)> thr(x,y),
255, otherwise, (1)

The threshold thr(x,y) is computed using the grayscale
mean m(x,y) and standard deviation s(x,y) in a window
centered on the pixel(x,y):

thr(x,y) = m(x,y)[1+ k(
s(x,y)

R
−1)] (2)

where R is a constant, and k is a parameter which takes
positive value in the range [0.2,0.5]. We enhance the orig-
inal local thresholding scheme to calculate the loacl mean
with varied window sizes such that the grayscale standard
deviation reaches maximum.

2.2. Parameter estimation and seed selection

Grayscales of edema change with bleeding time. In our ex-
perimental data, edemas around hematoma generally have
low density with unclear boundary. The grayscale rang of
the manually drawn edema is from 12 to 50 HU, with an
average and standard deviation of 29.3 and 5.9 HU, respec-
tively. Through experiments we found that the histogram
of edema accords well with normal distribution model. We
compared three and four normal distributions to approxi-
mate the grayscale distribution of these four tissues respec-
tively. Modeling the RBT by three normal distributions
leads to disappearance of edema (Fig. 4(b)), while four
normal distributions fit the original histogram well (Fig.
4(a)). Thus, the model adopted for RBT is a mixed Gaus-
sian model of 4 normal distributions. The total probability
density function of the mixture is given by

f (x,y) =
4

∑
l=1

ωl fl(x,y) (3)

where l is the class number of the RBT, f (x,y) is the
grayscale value at pixel(x,y), and ωl is the class proportion
which sums to unity, fl(x,y) follows a normal distribution
with mean µl and standard deviation σl .
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Figure 2: CT scans with edema surrounding the hematoma.

Figure 3: In the first row from left to right shows respectively, the extracted brain, initial regions of CSF, and edema; and
the second row shows respectively, the hemorrhage region, the initial region of WM, and GM. Here k = 0.25, and R =
2.0xSdmax, where Sdmax is the maximum grayscale standard deviation of all pixels within the RBT

The parameters µl , σl , ωl of each single normal distri-
bution can be approximated and pixels of edema class can
be classified by MLC. The class label of the edema class
is denoted as G2, while those of CSF, GM and WM are
G1, G3 and G4, respectively. We extract the edema seeds
according to MLC. A pixel(x,y) belonging to the edema
class should satisfy the following conditions:

–Its position should be near the hematoma.
–Its probability should be greater than the sum of other
classes’ probability

ω2 f2(xi,yi)> ωl fl(xi,yi), l = 1,3,4 (4)

We estimate the 12 parameters using EM algorithm.
The update equations are given by

ωk+1
l =

1
n

Imax

∑
i=0

h(i) fl(Gl |i), l ∈ [1,4] (5)

µk+1
l =

∑Imax
i=0 h(i) fl(Gl |i)
∑Imax

i=0 fl(Gl |i)
, l ∈ [1,4] (6)

(σ2
l )

k+1 =
∑Imax

i=0 (i−µk+1
l )2h(i) fl(Gl |i)

∑Imax
i=0 fl(Gl |i)

, l ∈ [1,4] (7)

where N is the total number of pixels in the RBT, Imax
the maximum grayscale in the RBT, h(i) the frequency of
grayscale i, and fl(Gl |i) the posteriori probability of the
grayscale i that belongs to class Gl .

The first step is to calculate the initial parameters, which
are set according to Table 1.

According to the Bayesian formulation, the posterior
probability of the pixel(x,y) with true label l is given by

f (Gl |x,y) =
ωl fl(x,y)

f (x,y)
, l ∈ [1,4] (8)
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Figure 4: The left shows the RBT and the statistical model fitting result, The right shows edema and GM/WM and the
model fitting result

Table 1: Initial values of the parameters are approximated through histogram analysis

Parameter Value

µ init
1 /µ init

2 /µ init
3 /µ init

4 grayscale mean of the initial class of CSF/edema/WM/GM
(σ2

1 )
init/(σ2

2 )
init/(σ2

3 )
init/(σ2

4 )
init calculated using MLE from the samples of CSF/edema/WM/GM

ω init
1 /ω init

2 /ω init
3 /ω init

4 proportion of initial CSF/edema/WM/GM in RBT

For a given pixel(x,y), the item f (x,y) in Eq. (8) is
invariant for each class. The Eq. (8) can be rewritten as

f (Gl |x,y) = ωl fl(x,y), l ∈ [1,4] (9)

The posterior probability is calculated by Eq. (9) and
a pixel(x,y) is labeled according to maximized posterior
probability.

2.3. Parameter estimation and seed selection

Image entropy reflects the average amount of information
in the image. The one-dimensional (1D) entropy of image
represents the grayscale clustering characteristics of im-
age. Suppose Pi is the proportion of grayscale i, then the
1D entropy for an 8-bit image is given by

H =−
255

∑
i=0

PilnPi (10)

As 1D entropy cannot reflect space information of grayscale
distribution feature, a two-dimensional (2D) entropy to in-
corporate space information is proposed, which is com-
posed of the grayscale and space characteristic of the grayscale
distribution such as mean and variance.

We select grayscale mean value within the neighbor-
hood of pixel(x,y) as the space characteristic of grayscale
distribution. Then the mean value and pixel grayscale make
up the characteristic pair(i, j), where i is the grayscale of

pixel(x,y), and j represents the mean value within its neigh-
borhood. The proportion of the characteristic pair and the
2D entropy are given by

Pi j =
n(i, j)

N2 (11)

H =−
255

∑
i=0

255

∑
i=0

PilnPi (12)

where N is the number of pixels within RBT, n(i, j) the
occurrence frequency of pair(i, j).

Therefore, the rules of region growing are established
as following:

–The pixel grayscale value should be lower than the
local threshold derived from local thresholding with
adaptive window sizes;

–The pixel grayscale probability should be greater than
the sum of other classes’ probability as shown in Eq.
(4);

–The 2D entropy of the pixel should be within the two
peaks of 2D entropy histogram (Fig. 5). The peak 1
implies the pixels of the transit zone between edema
and WM, while the peak 2 implies the pixels of the
transit zone between edema and hematoma. The valley
between the two peaks implies the pixels of the transit
zone between edema and CSF.

Using these rules, the pixel can be classified as edema
and other tissues.
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Figure 5: (a) the RBT image and edema boundary noted blue, (b) the 2D entropy of RBT shown as 8-bit image, (c) the
2D entropy shown in 2D axis

3. Result

The algorithm was tested on CT datasets of 36 patients.
The visual comparison of the automatic method with the
manual segmentation is shown in Fig. 6, where the ground
truth (mannually drawn by 3 experts) is shown as the re-
gion within yellow boundaries on the original image.

False positive (FP), false negative (FN), matching ra-
tio (Mr) and Dice coefficient (Dice) are used to quantify
the performance of segmentation. They are calculated in
the following way:

FP =
Vol(A−G)

Vol(G)
(13)

FN =
Vol(G−A)

Vol(G)
(14)

Mr =
Vol(∩GA)

Vol(G)
(15)

Dice =
2∗Vol(∩GA)

Vol(G)+Vol(A)
(16)

where A and G represent the regions extracted by auto-
matic method and ground truth respectively, Vol(A) for the
number of pixels within region A. The statistics of Dice,
Mr, FP and FN for all tested datasets is given in Table 2.

4. Discussion and conclusion

4.1. Advantages

The image characteristic of cerebral edema may vary with
time and/or seriousness of SICH. Cerebral edema can be
divided into three levels according to water content clin-
ically: mild cerebral edema, when CT value is 4-8 HU

lower than the normal tissue; moderate cerebral edema,
when CT value is 8-16 HU lower than the normal; severe
cerebral edema, when CT value is more than 16 HU lower
than the normal tissue.

The main challenge to segment cerebral edema is that
the edema regions have unclear boundaries and have sub-
stantial grayscale overlap with other neighboring tissues.
Compared with existing methods, the advantages of our
method are listed below.

1) Automatic. A statistical model of RBT is established
by using image preprocessing such as adaptive threshold-
ing and K-means clustering, and the parameters of the model
can be estimated automatically by EM algorithm. The seeds
of cerebral edema region are found automatically. Region
growing rules combines grayscale and spatial information
without human intervention.

2) Adaptive. The local threshold and local grayscale
mean are computed adaptively by changing the neighbor-
hood window size to have maximum grayscale standard
deviation. Then, the initial regions of CSF, edema, WM
and GM are extracted and the 2D entropy of RBT is cal-
culated. We used fixed window size 25x25 for comparison
(Fig. 7). The Dice coefficient, Mr, FP and FN are respec-
tively 0.53, 0.49, 0.13 and 0.56 for the fixed window size
algorithm, and 0.82, 0.80, 0.19 and 0.14 for the proposed
method. We may thus argue that edema segmentation with
adaptive window sizes is superior to that with fixed win-
dow size.

3) The neighborhood information constraint. The local
mean value is used to calculate the 2D entropy, which is
the main neighborhood information constrain in our method.
For comparison, we carried out edema segmentation with-
out neighborhood constrain to yield Dice coefficient of
0.36, Mr of 0.81, FP of 2.24 and FN of 0.37, while these
four metrics for our proposed method are respectively 0.83,
0.82, 0.06 and 0.12 for the case shown in Fig. 8. We may
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Figure 6: Comparative results of the automatic (white) and manual (regions within yellow boundaries) segmentation

Table 2: Statistics of the 36 tested datasets of the pro-
posed algorithm

Dice Mr FP FN

Range 0.73-0.85 0.70-0.83 0.15-0.39 0.13-0.28
Mean 0.79 0.76 0.29 0.21
SD 0.03 0.04 0.13 0.04

Table 3: Statistics of the 36 tested datasets of thresh-
olding range 5-33HU

Dice Mr FP FN

Range 0.19-0.76 0.46-0.96 0.10-7.08 0.01-0.55
Mean 0.54 0.80 1.83 0.20
SD 0.20 0.12 2.00 0.13

Figure 7: (a) the ground truth (region within yellow
boundaries), (b) the results of the fixed window size
method, (c) the result of our method

Figure 8: (a) the ground truth (region within yellow
boundaries), (b) the results without neighborhood in-
formation constraint, (c) the result of our method

argue that the neighborhood information in the form of 2D
entropy can enhance segmentation accuracy of edema.

4) Fast. The average time consumption of the method
is 2 minutes and is distributed as follow: 1.31 minutes in
preprocessing (mainly consumed on adaptive local thresh-
olding, even though we have adopted integral images to
speed up), 0.46 minutes in parameter estimation and seed
calculation and 0.33 minutes in region growing. This av-
erage time is much shorter than existing methods to meet
the real-time requirement for clinical use.

4.2. Sensitivity to parameters

Parameters k determine the initial class region. We change
the k in [0.2, 0.5] to yield almost the same segmentation.
Hence, the influence of their change on initialization can
be compensated. Based on experiments we choose k =
0.25.

The algorithm is sensitive to the range of 2D entropy.
The entropy of RBT has two peaks and the entropy of
edema derived by radiologists is located between the two
peaks (Fig. 5). The larger the range, the higher the value
of FP; the smaller the range, the higher the value of FN.
Choosing the range within the 2 peaks is a trade-off be-
tween FN and FP.

4.3. Comparison with existing methods

Existing methods except [7] did not provide quantification
results. Our method achieved a better accuracy (average
Mr of 0.76 vs 0.65) and shorter processing time (average
2 vs 4 minutes) than Bardera et al’s method [7].

For comparison purpose, we carried out region grow-
ing with fixed threshold range 5-33HU according to [9].
Dice coefficient declined and FP rose up significantly (Ta-
ble 3). We thus concluded that region growing with fixed
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Figure 9: Cases with large segmentation errors

thresholds performed less well than the proposed algo-
rithm.

4.4. Analysis of cases with large segmentation
errors

There are two cases to be discussed for large errors. The
first is the dataset with large hematoma (Fig. 9(a), (b)).
Large hematoma will generally break into ventricles and
make local contrasts higher than those of small hematoma,
yielding a high FP. Fortunately these patients are gener-
ally suitable for surgery and less accurate edema quantifi-
cation will not influence surgical indication.

The other one corresponds to subjects imaged after
48h, in which edema is in subacute or absorption period
to have very unclear boundary (Fig. 9(c), (d)). This leads
to a smaller edema regions with high FN. This problem is
difficult to solve as the ground truth is not well defined.

From Fig. 9a, it can be seen serum pixels in between
the two hematoma regions were misclassified by our algo-
rithm as edema due to its similarity to edema in grayscales.
This kind of segmentation error could be decreased by in-
corporation of anatomical knowledge.

4.5. Contributions and limitations

Our contributions are the following. First, we proposed to
combine the spatial information to grow edema by intro-
ducing 2D entropy. Second, we proposed a way to adap-
tively calculate the local grayscale characteristics with var-
ied window sizes.

The present study is not without limitations. Specifi-
cally, it cannot handle well cases when hematoma breaks
into ventricles to have an area contact between edema and
CSF. How to clearly define the boundary of edema and
CSF becomes difficult even for medical experts. The algo-
rithm performs less well when the hematoma is large or
at subacute/absorption stage, where the contrasts may be
high or low.

To conclude, we have proposed and validated an au-
tomatic algorithm to segment cerebral edema of patient
with SICH through a new way to cluster edema based on
region growing, with seeds derived from EM algorithm,

local mean derived from adaptive local thresholding with
varied window sizes, and growing rules that combine spa-
tial (local mean) and grayscale information in the form of
2D entropy. This algorithm could provide a potential tool
for neurosurgeons to quantify edema and guide therapy of
patients with SICH.
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