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Abstract: In this paper, the estimations of linear exponential distribution parameters and the acceleration factor in constant-stress

partially-accelerated life tests based on progressive type -II censoring are considered. Maximum likelihood estimations for the

considered parameters are obtained. Observed Fisher information matrix is used to construct asymptotic confidence interval to

estimate the model parameters through normal approximation. By using Lindley’s approximation and Markov chain Monte Carlo

(MCMC) method, approximate Bayes estimates under loss functions are obtained. Finally, the accuracy of the maximum likelihood

estimations and Bayesian estimations for the parameters is investigated through simulation studies.

Keywords: Constant-stress partially-accelerated life test, Progressive type -II censored, Linear exponential distribution, Maximum
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1 Introduction

In reliability analysis, life tests are performed to observe the life of experimental items during the test. In such a life test,
some surviving items are censored because of time and cost constraints or because of immediate needs of experimental
items for other purposes. The goal of accelerated life analysis is to utilize the test data to extrapolate a product’s life
distribution and its associated parameters at a normal stress level. In a constant stress accelerated test, each unit is run at
a prespecified constant stress level which does not vary with time and most products such as capacitors,
microelectronics, semiconductors, lamps . . . etc, run at a constant stress.
One way to accelerate failure is the constant stress where each item runs at either use or accelerated conditions only, see
Bai and Chung [8]. According to Nelson [27], the stress can be applied in various ways. Another way is step stress,
where one increases the stress applied to test product in a specified discrete sequence. In other words, as indicated by
Xiong and Ji [33], a test unit starts at a specified low stress. If the unit does not fail at a specified time, stress on it is
raised and held in a specified time. Stress is repeatedly increased and held, until the test unit fails or a censoring time is
reached.
Recently, Bayes and maximum likelihood methods of estimation are applied on Constant-Stress Partially-Acclelerated
Life Tests (CSPALT) to finite mixtures of distributions by AL-Hussaini and Abdel-Hamid [5,6]. Mohie El-Din et al. [26]
developed Bayes estimation for CSPALT to extension of the exponential distribution under progressive censoring. The
estimation of parameters from different lifetime distributions based on progressive type -I and type -II censored samples
are studied by several authors including Childs and Balakrishnan [14], Balakrishnan and Kannan [11], Mousa and Jaheen
[7], Balakrishnan, et al. [12] and Soliman [32]. Jaheen et al. [23] considered the CSPALT under progressive censoring
for generalized exponential distribution. Abdel-Hamid [2] considered CSPALT when the lifetime of units under use
condition follows Burr XII distribution. Also, Ismail [22] studied inference in the generalized exponential distribution
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under PALT with progressive type -II censoring. Guan et al. [18] obtained the optimal CSPALT with complete sample for
the generalized exponential distribution. Finally, EL-Sagheer [15] provided inferences in CSPALT based on progressive
type -II Censoring. Abdel Ghaly and Aly [4] provided different estimation methods for CSPALT under the family of the
exponentiated distributions. Based on progressive type -II censored samples. Ahmad and fawzy [3] studied non-Bayesian
estimation in CSPALT for linear exponential (LE) distribution with progressive type -II censoring.
In the Step Stress PALT (SSPALT), a test unit is first run at use condition and if it does not fail in a specified time, then it
is run at accelerated condition until failures occurs or the observation is censored. More details about the PALT are
considered by different author, Abd-Elfattah et al. [1]. Ismail [20] obtained the Bayesian estimates of the Pareto
distribution parameters under SSPALT with censored data. Ismail [21] estimated the parameters of Weibull distribution
and the acceleration factor from hybrid partially accelerated life test.
The main aim in this paper is to obtain the Bayesian Estimations (BEs) of the acceleration factor and the distribution
parameters and to compare them with the Maximum Likelihood Estimations (MLEs) counterparts by Monte Carlo
simulations. The squared-error loss function is considered to make the comparison more meaningful.
The integration of modern statistical approaches into oceanographic data assimilation is in its infancy. The integration
draws samples from the required distribution and then forms sample averages to approximate expectations; see Geman
and Geman [16] and Hastings [19].
The linear exponential distribution with the parameters θ > 0 and β > 0, will be denoted by LE(θ ,β ) distribution. Two
special cases of LE distribution are exponential distribution (when β = 0) and Rayleigh distributions (when θ = 0). The
corresponding cumulative distribution function (CDF), probability density function (PDF), survival function (SF) and the
hazard rate function (HRF) are given for t > 0, θ , β > 0, respectively, by

F1(t) = 1− exp
{

−(θ t + β
2

t2)
}

,

f1(t) = (θ +β t)exp
{

−(θ t + β
2

t2)
}

,

F1(t) = exp
{

−(θ t + β
2

t2)
}

,

h1(t) = θ +β t.















































(1.1)

The LE distribution has many applications in applied statistics and reliability analysis. The LE distribution was also used
by Carbone et al. [13] to study the survival pattern of patients with plasmacytic myeloma.

1.1 Basic assumptions

1. The lifetime of an item tested at use condition follows LE distribution.
2. The HRF of an item tested at accelerated condition is given by h2(t) = ρh1(t), where ρ is an acceleration factor
satisfying ρ > 1. So, the HRF, CDF, PDF and SF under accelerated condition are given, for t > 0,θ ,β > 0 and ρ >
1,respectively, by

h2(t) = ρ(θ +β t),

F2(t) = 1− exp
{

−ρ(θ t + β
2

t2)
}

,

f2(t) = ρ(θ +β t)exp
{

−ρ(θ t + β
2

t2)
}

,

F2(t) = exp
{

−ρ(θ t + β
2

t2)
}

.















































(1.2)

3. The identically-distributed lifetimes Tji, j = 1,2, i= 1, ...,n j of items allocated to use condition ( j = 1) and accelerated
condition ( j = 2) are mutually independent.
According to CSPALT, group 1 consists of n1 items randomly chosen among n test items is allocated to use condition and
group 2 consists of n2 = n− n1 remaining items are subjected to an accelerated condition. Progressive type -II censoring
is applied as follows: In group j, j = 1,2, at the time of the first failure, R j1 items are randomly withdrawn from the
remaining n j1 surviving items. At the second failure, R j2 items from the remaining n j − 2− R j1 items are randomly
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withdrawn. The test continues until the mth
j failure at which time, all remaining R jm j

= n j −m j −R j1 −R j2 −R j(m j−1)

items are withdrawn. The R ji are fixed prior to the study, m j ≤ n j and

m j = np j −
n−1

∑
i= j

R ji (1.3)

There are many situations in life-testing and reliability studies in which the experimenter may be unable to obtain complete
information on failure times for all experimental items. There are also situations wherein the removal of items prior to
failure is pre-planned in order to reduce the cost and time associated with testing. The conventional type -I, and type -II
censoring schemes do not have the flexibility of allowing removal of items at points other than the terminal point of the
experiment. We consider here a more general censoring scheme, known as progressively type -II censoring, details of the
scheme are discussed in Balakrishnan and Aggarwala [10].
The rest of the paper is arranged as follows: In Section 2, the MLEs of the involved parameters are derived. in Section
3, approximate BEs for the parameters under consideration are derived using Lindley’s approximation and Markov chain
Monte Carlo (MCMC) methods. A simulation study is presented in Section 4. Finally, some concluding remarks are
introduced in Section 5.

2 Maximum likelihood estimation

Based on progressive type -II censored data under CSPALT model, the MLEs of the parameters θ ,β and ρ are obtained
in this section. Both point and interval estimations of the parameters are derived.
The ML method is used to obtain the estimates of the parameter of the population distribution. Let

T
(R j1,...,R jm j)

j1:m j :n j
< T

(R j1,...,R jm j)

j2:m j :n j
< ... < T

(R j1,...,R jm j)
jm j :m j :n j

, j = 1,2, be the progressive type -II censored data from two populations

whose SFs and PDFs are given by (1.1) and (1.2), with R j1, ...,R jm j
are the two progressive censoring schemes. In the

sequel, we use Tjm j :m j :n j
instead of T

(R j1,...,R jm j
)

jm j :m j :n j
. Also, let t j1:m j :n j

< t j2:m j :n j
< ... < t jm j :m j :n j

be the corresponding

observed values. The likelihood function, L(θ ,β ,ρ), based on the two progressively type -II censored samples when the
lifetimes of the tested units follow the LE distribution that is given by

L(θ ,β ,ρ) =
2

∏
j=1

[

C j

m j

∏
i=1

( f j(t ji:m j :n j
))[F(t ji:m j :n j

)]R ji

]

=
2

∏
j=1

[

C j

m j

∏
i=1

ρ j−1(θ +β t ji:m j :n j
)

[

exp

{

−ρ j−1

(

θ t ji:m j :n j
+

β

2
t2

ji:m j :n j

)}]1+R ji

]

, (2.4)

where j = 1,2 and C j = n j(n j − 1−R j1)(n j − 2−R j1−R j2)(n j −m j + 1−R j1−R j2 − ...−R j(m j−1)).

Hence, the log-likelihood function, ℓ(θ ,β ,ρ) is

ℓ(θ ,β ,ρ) =C+m2 lnρ +
2

∑
j=1

m j

∑
i=1

{

ln(θ +β t ji:m j :n j
)−ρ j−1(R ji + 1)

(

θ t ji:m j :n j
+

β

2
t2

ji:m j :n j

)}

(2.5)

where C = lnC1 + lnC2.
Then we have the likelihood equations for θ ,β and ρ , respectively, by solving the following equations

∂ℓ(θ ,β ,ρ)
∂θ =

2

∑
j=1

m j

∑
i=1

{

1
θ+β t ji:m j :n j

−ρ j−1(R ji + 1)t ji:m j :n j

}

= 0,

∂ℓ(θ ,β ,ρ)
∂β =

2

∑
j=1

m j

∑
i=1

{

t ji:m j :n j

θ+β t ji:m j :n j

− 1
2
ρ j−1(R ji + 1)t2

ji:m j:n j

}

= 0

∂ℓ(θ ,β ,ρ)
∂ρ = m2

ρ −
m2

∑
i=1

(R2i + 1)
(

θ t2i:m2:n2
+ β

2
t2
2i:m2:n2

)

= 0.















































(2.6)

Now, we have a system of three non-linear likelihood equations in three unknowns θ ,β and ρ . It cannot be solved
analytically. An iterative method such as the Newton–Raphson is used to obtain the MLEs of the unknown parameters.
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3 Bayes Estimations

In this section, the squared error loss function is considered to obtain BE of the parameters and acceleration factor.
Unfortunately, in many cases, the BEs cannot be expressed in explicit forms. So, approximate BEs are obtained under
Informative Priors (INP) using Lindley’s approximation and MCMC methods.

3.1 Priors distributions

We shall consider two cases of informative priors of the parameters θ ,β and ρ
Case 1: θ and β are independent and ρ is unknown.
The parameters θ and β behave as independent random variables and ρ is unknown with the following prior PDF:

ν(θ ) = α exp{−αθ}, α > 0, θ > 0, (3.7)

ν(β ) = λ exp{−λ β}, λ > 0, λ > 0 (3.8)

and
ν(ρ) = ρ−1, ρ > 1. (3.9)

where α and β are assumed to be known. The joint prior PDF of θ , β and ρ , is

ν2(θ ,β ,ρ) = ν(θ )ν(β )ν(ρ) = ρ−1αλ exp{−αθ −λ β}, θ , β > 0. (3.10)

Case 2. θ and β are dependent and ρ is unknown.
Here, we assume the parameter θ to have the gamma prior

ν(θ ) =
1

γςΓ (ς)
θ ς−1

exp(
−θ

γ
) θ > 0, γ > 0, ς > 0, (3.11)

while the density function of β |θ has the gamma prior

ν(β |θ ) =
θ ε

Γ (ε)
β ε−1 exp(−θβ ), β > 0, ε > 0 (3.12)

and the density function of ρ is

ν(ρ) = ρ−1, ρ > 1. (3.13)

Then, the joint prior density of θ , β and ρ can be written as

ν3(θ ,β ,ρ) = ν(ρ)ν(θ )ν(β |θ ) = ρ−1θ ς+ε−1β ε−1 exp[−θ (β + γ)], θ > 0, β > 0,ρ > 1. (3.14)

3.2 Bayes estimation using Lindley’s approximation

Under a squared-error loss function, the Bayes estimator of a parameter is its posterior expectation. To obtain the posterior
mean and posterior variance of the acceleration factor ρ and parameters θ , β , an approximation due to Lindley [24] is
used. The approximation is evaluated at the MLEs of the parameters. Now, let Θ be a set of parameters Θ1, Θ2, ...,Θm,
where m is the number of parameters, then the posterior expectation of an arbitrary function u(Θ) can be asymptotically
estimated by:

E(u(Θ)|data) =

∫

Θ u(Θ)ν(Θ)elnL(data|Θ )dΘ
∫

Θ ν(Θ)elnL(data|Θ )dΘ

≈ [ûML +
1

2
∑
i, j

(u
(2)
i j + 2u

(1)
i ρ

(1)
j )σi j +

1

2
∑

i, j,k,s

L(3)
i jk

σi jσks
u
(1)
s ] ↓ Θ̂ML (3.15)

which is the Bayes estimator of u(Θ) under a squared-erorr loss function, where i, j,k,s = 1,2,···,m,ν(Θ) is the prior

distribution of Θ , û = u(Θ̂ML), L = L(Θ) is the likelihood function, ρ ≡ ρ(Θ) = logν(Θ), σi j are the elements of the
inverse of the asymptotic Fisher-information matrix of θ , β and ρ

u
(1)
i =

∂u

∂Θi

, u
(2)
i, j =

∂ 2u

∂Θi∂Θ j

, ρ
(1)
j =

∂ logν(Θ)

∂Θ j

and L
(3)
i jk =

∂ 3lnL(x|Θ)

∂Θi∂Θ j∂Θk

.
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Such an approximation is easy to use and does not require innovative programming and extensive computer time. The
linear Bayes estimator in (3.15) is a practical approximation of multi-dimensional integrals, according to Green [17]. It
has led to many useful applications Sinha [30]. However, if the domain of the parameters is a function of the parameters,
Bayes estimators using Lindley expansion are not obtainable unless the MLEs exist Sinha and Sloan [31].
Let the subscripts 1, 2, 3 refer to θ , β and ρ , respectively. Therefore, the posterior means (Bayes estimators) of θ , β and
ρ , can be obtained as follows:

θ ∗ = E(θ |data) =

[

âML −

(

σ11

θ
+

σ12

β
+

σ13

ρ

)

+
1

2
(σ11D1 +σ12D2 +σ13D3)

]

↓Θ=Θ̂ML

, (3.16)

β ∗ = E(β |data) =

[

β̂ML −

(

σ21

θ
+

σ22

β
+

σ23

ρ

)

+
1

2
(σ21D1 +σ22D2 +σ23D3)

]

↓Θ=Θ̂ML

(3.17)

and

ρ∗ = E(ρ |data) =

[

ρ̂ML −

(

σ31

θ
+

σ32

β
+

σ33

ρ

)

+
1

2
(σ31D1 +σ32D2 +σ33D3)

]

↓Θ=Θ̂ML

. (3.18)

where

D1=∑
i, j

σi jL
(3)
i j1 ≡ σ11L

(3)
111 +σ12L

(3)
121 +σ13L

(3)
131 +σ22L

(3)
221 +σ23L

(3)
231 +σ33L

(3)
331,

D2=∑
i, j

σi jL
(3)
i j2 ≡ σ11L

(3)
112 + 2σ12L

(3)
122 + 2σ13L

(3)
132 +σ22L

(3)
222 + 2σ23L

(3)
232 +σ33L

(3)
332

and

D3=∑
i, j

σi jL
(3)
i j3 ≡ σ11L

(3)
113 + 2σ12L

(3)
123 + 2σ13L

(3)
133 +σ22L

(3)
223 + 2σ23L

(3)
233 +σ33L

(3)
333, i, j = 1,2,3.

To compute the posterior means of the three parameters θ , β and ρ , both second and third derivatives of the natural
logarithm of the likelihood function must be obtained. The log-likelihood function is shown in (2.5). As for the third
derivations of the natural logarithm of the likelihood function are given by

L
(3)
111 =

∂ 3ℓ

∂θ 3
=

m1

∑
i=1

2

(θ +β t1i:m1:n1
)3

+
m2

∑
i=1

2

(θ +β t2i:m2:n2
)3
, (3.19)

L
(3)
222 =

∂ 3ℓ

∂β 3
=

m1

∑
i=1

2t3
2i:m1:n1

(θ +β t1i:m1:n1
)3

+
m2

∑
i=1

2t3
2i:m2:n2

(θ +β t2i:m2:n2
)3
, (3.20)

L
(3)
333 =

∂ 3ℓ

∂ρ3
=

2m2

ρ3
, (3.21)

L
(3)
112 = L

(3)
121 = L

(3)
211 =

∂ 3ℓ

∂θ 2∂β
=

m1

∑
i=1

2t1i:m1:n1

(θ +β t1i:m1:n1
)3

+
m2

∑
i=1

2ti:m2:n2

(θ +β t2i:m2:n2
)3
, (3.22)

L
(3)
221 = L

(3)
212 = L

(3)
122 =

∂ 3ℓ

∂β 2∂θ
=

m1

∑
i=1

2t2
1i:m1:n1

(θ +β t1i:m1:n1
)3

+
m2

∑
i=1

2t2
i:m2:n2

(θ +β t2i:m2:n2
)3
, (3.23)

and

L
(3)
113 = L

(3)
131 = L

(3)
311 = L

(3)
223 = L

(3)
232 = L

(3)
322 = L

(3)
331 = L

(3)
313 = L

(3)
133 = L

(3)
332

= L
(3)
323 = L

(3)
233 = L

(3)
123 = L

(3)
132 = L

(3)
213 = L

(3)
231 = L

(3)
312 = L

(3)
321 = 0. (3.24)
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3.3 Bayesian estimation using MCMC

In this section, we consider the MCMC method to generate samples from the posterior distributions and then compute
the Bayes estimates of θ , β and ρ under constant PALT for LE distribution using progressive type -II censored. A
wide variety of MCMC schemes are available, and it can be difficult to choose among them. An important sub-class
of MCMC methods are Gibbs sampling and more general Metropolis-Hastings (MH)-within-Gibbs samplers, see, for
example, Robert and Casella [29] and Recently, Rezaei et al. [28].

• Posterior distribution in the informative priors

case I: θ and β are independent and ρ is unknown.
By using the prior distribution in (3.10), the joint posterior distribution of θ , β and ρ is given by

g∗2(θ ,β ,ρ |t) ∝ ρ−1αλ exp{−αθ −λ β}exp

{

2

∑
j=1

m j

∑
i=1

ln(θ +β t ji:m j :n j
)

−ρ j−1(1+R ji)

(

θ t ji:m j :n j
+

β

2
t2

ji:m j :n j

)}

. (3.25)

From (3.25), the conditional posterior distributions of θ , β and ρ are given, respectively, by

g∗21(θ |β ,ρ , t) ∝ exp

{[

2

∑
j=1

m j

∑
i=1

[ln(θ +β t ji:m j :n j
)−ρ j−1(1+R ji)t ji:m j :n j

]−α

]

θ

}

, (3.26)

g∗22(β |θ ,ρ , t) ∝ exp

{[

2

∑
j=1

m j

∑
i=1

[ln(θ +β t ji:m j :n j
)− 0.5ρ j−1(1+R ji)t

2
ji:m j :n j

]−λ

]

β

}

, (3.27)

g∗23(ρ |θ ,β , t) ∝ ρm2−1 exp

{

−ρ
m2

∑
i=1

(1+R2i)
(

θ t2i:m2:n2
− 0.5β t2

2i:m2:n2

)

}

. (3.28)

case II: θ and β are dependent and ρ is unknown.
By using (3.14), the joint posterior distributions of θ , β and ρ are given, respectively, by

g∗3(θ ,β ,ρ |t) ∝ ρ−1πθ ς+ε−1β ε−1 exp[−θ (β + γ)]exp

{

2

∑
j=1

m j

∑
i=1

ln(θ +β t ji:m j :n j
)

−ρ j−1(1+R ji)

(

θ t ji:m j :n j
+

β

2
t2

ji:m j :n j

)}

. (3.29)

where π−1 = Γ (ς)Γ (ε + 1)γς .
Then the conditional posterior distributions of θ , β and ρ by using (3.29), are given respectively, by

g∗31(θ |β ,ρ , t) ∝ θ ς+ε−1 exp

{[

2

∑
j=1

m j

∑
i=1

[ln(θ +β t ji:m j :n j
)−ρ j−1(1+R ji)t ji:m j :n j

]+ (β + γ)

]

θ

}

, (3.30)

g∗32(β |θ ,ρ , t) ∝ β ε−1 exp

{[

2

∑
j=1

m j

∑
i=1

[ln(θ +β t ji:m j :n j
)− 0.5ρ j−1(1+R ji)t

2
ji:m j :n j

]−θ

]

β

}

, (3.31)

g∗33(ρ |θ ,β , t) ∝ ρm2−1 exp

{

−ρ
m2

∑
i=1

(1+R2i)
(

θ t2i:m2:n2
− 0.5β t2

2i:m2:n2

)

}

. (3.32)

Remark

It can be seen that Equations (3.28) and (3.32) have a gamma density with shape parameter m2 and scale parameter
m2

∑
i=1

(1+R2i)
(

θ t2i:m2:n2
− 0.5β t2

2i:m2:n2

)

and, therefore, samples of ρ can be easily generated using any gamma-generating

routine. However, in our case, the conditional posterior distribution of θ in Equations (3.26) and (3.30) and conditional
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posterior distribution of β in Equations (3.27) and (3.31) cannot be reduced analytically to well known distributions and
therefore it is not possible to sample directly by standard methods, but it plot shows that it is similar to normal
distribution. So, to generate random numbers from this distribution, we use the MH method with normal proposal
distribution.
Now, we propose the following scheme to generate (θ ,β ,ρ) from the posterior density function and in turn obtain the
Bayes estimates and the corresponding credible intervals.

Algorithm (1)

1. Start with an (θ (0),β (0)).

2. Set y = 1.

3. Generate ρ (y) from Gamma

(

m2,
m2

∑
i=1

(1+R2i)
(

θ t2i:m2:n2
− 0.5β t2

2i:m2:n2

)

)

.

4. Using Metropolis-Hastings (MH)-within-Gibbs samplers (see, Metropolis et al. [25]), generate θ (y) and β (y) from

g∗dk(θ |β ,ρ , t) and g∗dk(β |θ ,ρ , t) with the N(θ (y−1),σ2
1 ) and N(β (y−1),σ2

2 ) proposal distributions.

Where σ2
1 and σ2

2 are the variance obtained using variance-covariance matrix with d = 1,2,3 and k = 1,2.

5. Compute θ (y), β (y) and ρ (y).
6. Set y = y+ 1.

7. Repeat Steps 3 - 6 N times.

8. Obtain the Bayes estimates of θ , β and ρ with respect to SEL function as

θ̂MCMC = E(θ |t) =
1

N −M

N

∑
i=M+1

θi ,

β̂MCMC = E(β |t) =
1

N −M

N

∑
i=M+1

βi

and

ρ̂MCMC = E(ρ |t) =
1

N −M

N

∑
i=M+1

ρi .

where M is burn-in.

4 Simulation Study

In this section, we discuss results of a simulation study testing the performance of MLE for different sample sizes, and
censoring schemes. Using the algorithm presented in Balakrishnan and Sandhu [9], we have generated progressively type
-II censored samples of different sizes from LE distribution as follows.

Algorithm (2)

1. Specify the values of θ , β , ρ , n1, n2, m1, m2,α,λ , ε, µ , γ, ς .

2. Generate two independent random samples of sizes m1 and m2 from Uniform (0,1) distribution.

3. Specify the values of the censored scheme R ji, j = 1,2; i = 1, ...,m j .

4. Set E ji = 1/(i+
m j

∑
d=m j−i+1

R jd) for j = 1,2; i = 1, ...,m j.

5. Set U ji =V
E ji

ji for j = 1,2 and i = 1, ...,m j .
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6. For j = 1,2, obtain the two progressive type -II right censored samples,

(Wj1,Wj2, ...,Wjm j) from the Uniform (0,1) distribution, where W
1i

= 1 −
m1

∏
d=m1−i+1

U1d , i = 1, ...,m1 and

W
2i
= 1−

m2

∏
d=m2−i+1

U2d , i = 1, ...,m2

7. Using step 5, generate two random samples (t j1, t j2, ..., t jm j), from CDFs F1(t) and F2(t) given in (1.1) and (1.2)

respectively, as follows t1i = (−θ +
√

θ 2 − 2β log(1−W1i))/β and t2i = (−θρ +
√

(θρ)2 − 2β log(1−W2i))/ρβ ,
i = 1, ...,m j and j = 1,2.
and hence obtain the two ordered samples (t1:m1:n1

, ..., tm1:m1:n1
), and (t2:m2:n2

, ..., tm2:m2:n2
) which represent two

progressive type -II right-censored samples from linear failure rate distribution under CSPALT.

8. For each sample, the ML estimates of acceleration factor and the parameters of LE distribution (θ ,β ,ρ) are obtained
by solving the nonlinear equation (2.6).

9. The Bayes estimates of (θ ,β ,ρ) are computed based on squared error loss function.

10. Steps 2-9 were repeated 1000 times for different sample sizes.

11. The average of ML, Bayes estimates and mean square error (MSE) are computed.

Now, we compare several progressive type -II censoring schemes on these data. We consider the following three
sampling plans

scheme I : R ji = n−m; i 6= 1, j = 2

scheme II :

{

R ji = n−m; i 6= m+1
2

, j 6= m+1
2

i f m odd.
R ji = n−m; i 6= m

2
+ 1, j 6= m

2
+ 1 i f m even.

scheme III : R ji = n−m; i 6= m, j = 2

4.1 Simulation procedure

In this subsection the MLEs of the unknown parameters θ , β and ρ are computed. The Newton–Raphson technique is
connected for solving the nonlinear system and find the CIs. When the NIP distributionis used, we compute the Bayes
estimates of the unknown parameters by the MCMC method. The CIs are computed in view of 10000 MCMC tests.
Table 1 lists the different censoring SCs (n1 = n2 = n and m1 = m2 = m) and Table 2 lists the different censoring SCs (
n1 6= n2 and m1 6= m2), used in the simulation study, for different choices of sample sizes, n. Table 3 and Table 4 show the
MSE for θ ,β and ρ using the ML and MCMC methods under progressive censoring SCs listed in Tables 1, 2.

Table 1 : Progressive censoring schemes used in the Monte Carlo simulation study at

n1 = n2 = n and m1 = m2 = m.

n Sc (R1, ...,Rm) Sc (R1, ...,Rm) Sc (R1, ...,Rm)
m

15 [I] R1= 6 [II] R5= 6 [III] R9= 6
9 Ri= 0, i 6= 1 Ri= 0, i 6= 5 Ri= 0, i 6= 9

50 [I] R1= 20 [II] R16= 20 [III] R30= 20
30 Ri= 0, i 6= 1 Ri= 0, i 6= 16 Ri= 0, i 6= 30

100 [I] R1= 40 [II] R31= 40 [III] R60= 40
60 Ri= 0, i 6= 1 Ri= 0, i 6= 31 Ri= 0, i 6= 60
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Table 2 : Progressive censoring schemes used in the Monte Carlo simulation study at

n1 6= n2 and m1 6= m2.

n1 m1 Sc (R1, ...,Rm1
) Sc (R1, ...,Rm1

) Sc (R1, ...,Rm1
)

n2 m2 (R1, ...,Rm2
) (R1, ...,Rm2

) (R1, ...,Rm2
)

20 12 [I] R1 = 8 [II] R7 = 8 [III] R12 = 8
Ri = 0, i 6= 1 Ri = 0, i 6= 7 Ri = 0, i 6= 12

25 15 R1 = 10 R8 = 10 R15 = 10
R j = 0, j 6= 1 R j = 0, j 6= 8 R j = 0, j 6= 15

50 30 [I] R1 = 20 [II] R16 = 20 [III] R30 = 20
Ri = 0, i 6= 1 Ri = 0, i 6= 16 Ri = 0, i 6= 30

60 35 R1 = 25 R18 = 25 R36 = 25
R j = 0, j 6= 1 R j = 0, j 6= 18 R j = 0, j 6= 35

100 60 [I] R1 = 40 [II] R31 = 40 [III] R60 = 40
Ri = 0, i 6= 1 Ri = 0, i 6= 31 Ri = 0, i 6= 60

120 72 R1 = 48 R37 = 48 R72 = 48
R j = 0, j 6= 1 R j = 0, j 6= 37 R j = 0, j 6= 72
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Table 3 : MSEs for the estimates of the parameters θ ,β and ρ with

(θ = 0.3, β = 1.3 and ρ = 1.1) and values of the prior parameters

(α = 1.2, λ = 0.9, γ = 1.1, ε = 0.95 and ς = 0.65)
with n1 = n2 = n and m1 = m2 = m.

(n,m) SCs MLE Bayes−Lindley Bayes−MCMC

θ̂ Prior 1 (θ̂ ) Prior 2(θ̂ ) Prior 1 (θ̂ ) Prior 2 (θ̂ )
β Prior 1 (β ) Prior 2(β ) Prior 1 (β ) Prior 2 (β )
ρ̂ Prior 1(ρ̂) Prior 2 (ρ̂) Prior 1 (ρ̂) Prior 2 (ρ̂)

(15,9) [I] 0.3503 1.8820 0.0645 0.0366 0.0581

1.0119 1.0719 1.3699 0.7216 0.3056

0.6145 0.8615 2.296 0.3327 0.5514

[II] 0.2725 0.4788 0.1769 0.0383 0.1299

1.4050 2.1199 2.6421 0.9041 0.8286

0.8370 1.3384 2.7432 0.4443 0.8038

[III] 0.2960 0.3598 0.0834 0.0576 0.0612

1.6753 2.4065 1.7393 0.8811 0.3067

0.6805 0.3502 0.667 0.3468 0.3681

(15,15) 0.2304 0.1136 0.0549 0.0286 0.0474

0.6569 0.4304 0.2822 0.1462 0.166

0.4435 0.2509 0.1364 0.2021 0.1629

(50,30) [I] 0.2328 0.3478 0.0636 0.0751 0.0476

0.6815 2.0567 0.3189 0.4893 0.2621

0.4510 0.3628 0.6031 0.2675 0.2087

[II] 0.2695 0.1484 0.0506 0.0436 0.0490

0.9141 1.5982 0.3849 0.7347 0.2964

0.5279 0.3754 0.6311 0.2304 0.2207

[II] 0.2483 2.9312 2.4969 0.0200 0.0438

1.2680 1.2977 1.8432 0.7848 0.2818

0.5789 0.4474 0.7902 0.2264 0.2566

(50,50) 0.1737 0.0703 0.0278 0.0171 0.0277

0.5097 0.2871 0.1708 0.1174 0.1522

0.2598 0.1005 0.1277 0.0987 0.0824

(100,60) [I] 0.1968 0.0952 0.0474 0.0298 0.0295

0.5603 0.4778 0.2097 0.6591 0.239

0.2907 0.1769 0.2511 0.1654 0.1205

[II] 0.2178 0.0708 0.0455 0.0703 0.0432

0.6756 1.3560 1.356 0.6631 0.2529

0.3644 0.2349 0.2594 0.1718 0.1344

[III] 0.1971 0.0993 0.0664 0.0405 0.0354

0.8645 1.0662 1.0137 0.8692 0.2762

0.3775 0.1809 0.2617 0.1495 0.1328

(100,100) 0.1474 0.058 0.0244 0.0191 0.0209

0.3790 0.3166 0.1094 0.0831 0.0728

0.2117 0.0823 0.0578 0.0482 0.0418
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Table 4 : MSEs for the estimates of the parameters θ ,β and ρ with

(θ = 0.3, β = 1.3and ρ = 1.1) and values of the prior parameters

(α = 1.2, λ = 1.3, γ = 1.1, ε = 0.95 and ς = 0.65)
when n1 6= n2 and m1 6= m2.

(n1,n2) SCs MLE Bayes−Lindley Bayes−MCMC

(m1,m2) θ̂ Prior 1 (θ̂ ) Prior 2(θ̂ ) Prior 1 (θ̂ ) Prior 2(θ̂ )
β Prior 1 (β ) Prior 2(β ) Prior 2 (β ) Prior 2(β )
ρ̂ Prior 1 (ρ̂) Prior 2(ρ̂) Prior 1 (ρ̂) Prior 2(ρ̂)

(20,25) [I] 0.3388 2.4238 0.8459 0.0205 0.2376

(12,15) 4.2571 8.456 8.674 0.853 0.1978

1.6623 3.5058 6.2763 0.5819 0.6217

[II] 0.4269 5.5308 3.6111 0.0126 0.1831

1.18608 5.0631 8.5511 0.8156 0.1658

1.7185 3.5849 6.5872 0.5208 0.6808

[III] 0.4761 5.5895 0.9425 0.0084 0.1091

1.8669 7.9311 3.408 0.8121 0.1212

1.0224 2.8433 2.002 0.3369 0.5116

0.3295 1.1789 0.1395 0.0333 0.0722

(20,25) 0.8518 4.5531 5.5982 0.6459 0.1821

0.5425 0.3663 0.9138 0.2553 0.1784

(50,60) [I] 0.3452 0.0671 0.0713 0.0707 0.0905

(30,35) 0.9857 8.7653 7.3394 0.8191 0.2673

0.5771 0.5464 0.946 0.3337 0.3051

[II] 0.3852 0.1607 0.056 0.0181 0.0542

1.0432 4.7532 5.6799 0.7564 0.3001

0.6648 0.7115 1.2506 0.3688 0.4013

[III] 0.3570 1.3951 1.2646 0.0121 0.0411

1.3657 5.2120 4.9311 0.8593 0.2837

0.7434 0.6586 1.0144 0.3026 0.4003

0.2050 0.044 0.0399 0.0768 0.0373

(50,60) 0.4538 0.1374 0.1485 0.4283 0.1443

0.3196 0.1227 0.1637 0.1355 0.0941

(100,120) [I] 0.2386 0.0551 0.0535 0.0597 0.0493

(60,72) 0.6045 0.1491 0.2242 0.5285 0.2116

0.4009 0.2193 0.3185 0.1989 0.1508

[II] 0.2197 0.0597 0.0455 0.0492 0.0414

0.6349 0.2489 0.2222 0.6001 0.2197

0.4001 0.2146 0.3071 0.1865 0.147

[III] 0.2023 0.2195 0.2211 0.0271 0.0284

0.9256 2.6236 2.6698 0.8394 0.3069

0.4141 0.2067 0.2947 0.1457 0.1361

0.1562 0.0211 0.0235 0.1031 0.0234

(100,120) 0.3196 0.0742 0.0866 0.3634 0.0883

0.2214 0.0559 0.0671 0.0851 0.0479

5 Concluding Remarks

From the simulation study, we can conclude that:
1. Table 3 and Table 4 show that for small samples (< 30), MLE is better than Lindley’s approximation while for the
samples ( ≥ 30) Lindley’s approximation is better than MLE. Also, MCMC is the best in both two types of samples,
except for few cases. This may be due to fluctuations in data.
2. As the sample sizes n1 and n2 increase, the MSEs for estimating the parameters (θ , β , ρ) decrease in the cases of MLE
and BE.
3. For the sample sizes n1 and n2 and with increasing the censoring sizes m1 and m2, the MSEs for estimating the
parameters (θ , β , ρ) decrease.
Based on the above remarks, one can say that large sample sizes with large censored samples give better estimates, in the
sense of having smaller MSE.
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