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Abstract: In this work, we have proved some common fuzzy fixed point ltessatisfying rational contractive condition in the
consideration of different types of control function usedcaefficients in contractive condition. The results in {héper generalizes
some results already proved in literature. Examples aengivthe support of our constructed results.
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1 Introduction for rational contraction have been further extended by

several mathematicians in different concepts of spaces.
Fixed point theory is an extensive and attractive subjecDuring research on the generalization of rational
for research in both pure and applied mathematics. Thigontraction researchers realized that rational type
theory deals with the results regarding the existence and@ontraction is not meaningful in cone metric spaces where
uniqueness of fixed point which are very useful to find thevector division occurs.

solution to systems of differential equations, integral

equations and functional equations. With the passage of

time fixed point theory. It has been improved by proving  To overcome the problem to utilize rational type
results associated to fixed point for self and nonselfcontraction for vectors case Azaet. al established a
mappings in metric spaces. In 1922 Banach [1]special class of cone metric spaces and derived fixed point
established a contraction principle which plays a key roleresults by utilizing rational contractiorb]. This newly

to obtain unique fixed point in complete metric spaces.established class is known as complex-valued metric
Banach contraction principle is a strong tool for solving space, which became an attractive topic for further
linear and non linear differential equations of both classi research. Several researchers generalized the initidd wor
and fractional calculus. For instance we refer to thein complex-valued metric space by changing the
articles R4,25]. It is based on iteration, so it can be contractive condition for self and nonself mappings and
applied on computers. Due to the simplicity of Banach obtained common fixed point results in complex-valued
contraction principle, fixed point theory has gained moremetric space, for instance, se®& 16,18]. Afterwards in
attention and importance of researchers. Severa]l7] the aforementioned results of Azamt. al was
researchers have been extended this contraction principlienproved by Sintunavarat and Kumam by substituting the
for different type of linear contraction in different space constant coefficients in contractive condition by point
like cone metric spaces, G metric spaces, quasi metriclependent control functions. Besides of these, fixed point
spaces etc (for details se6,9,15,21]). Particularly in  results are also obtained by mathematicians for
[10] the authors established rational type contraction andnultivalued mappings involving control functions as
obtained fixed point results satisfying rational type coefficients in contractive inequality, for instance weeref
contraction in complete metric space. Fixed point resultsto [1,3,14].
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Zadeh improved the mathematical framework by is a subbasis for a Hausdroff topologyon X.
introducing the notion of fuzzy set2€. The classical Definition 2.4[1] Let (X,d) be complex-valued metric
work of Zadhe has a great interest in mathematics andgpace. Let us denote the collection of all non-empty
other sciences having mathematical techniques forclosed bounded subsets of complex-valued metric space
research. The notion of fuzzy mappings was establishedX,d) by €5 (X) then forp e ¢
by Weiss and Batnario2p] and Hilpern proved fixed
point theorem for these mappings in complete metric s(p)={qe¥:p=q}
spacel 3. Further the said fixed point theorem for fuzzy
mappings were extended by many mathematicians irand form, € X and Ne ¢B(X).
complete metric spaces for instan&4,7,11,12,20,23,
27]. In this paper we have derived common fixed point
results for fuzzy mappings by generalizing the work of s(my,N) = | J s(d(my,m)) = | J {q€ € :d(m,m)=q}.

[17]. An appropriate example is demonstrated to validate neN meN
our main result. In addition we have obtained multivalued
results as application of our results. For M,N € ¢%(X), we denote
L S(M,N) = ([ s(mi,N))(Y( [ s(n,M)).
2 Preliminaries meM neN
Throughout this papef” will represent the set of complex LetK : X — ¢B(X) be a multivalued mapping, fare
numbers. Xand Me &3 (X) we define
Definition 2.1.[5] For g, j € € the partial orders on%’ is
defined by: Wy(M) = {d(u,m;) :my € M}.
93 <= Reg) <Regj)andim(g) < Im(j). Thus foru,v € X
<] R < Rqgj)andIim(g) < Im(j). )
Notg thé\t < Reg) <Rq(j) (9) <Im(j) Wu(Kv) = {d(u,v) : ve Kv}.

i) p1, P2 € Randpy < p2 = p1g 3 pog, forallge %

Lemma 2.5[21] Assume tha{X,d) is a complex-valued
metric space.
i) Letwy,wp € €. If wy < wp, thens(wy) C s(ws).

i)03g3 =19 <ljl,forallg,je?;

ii)gzjandj<j*=g=<j* forallg,j,j*€?.
Definition 2.2[5] Let X be a non-empty set and let a
mappingd : X x X — ¢ satisfying the following axioms:

i) 0 2d(91,02), for all g1,92 € X andd(g1,92) = 0 if
and only ifg; = gp;

i) Letwy € X andF € N(X). If 9 € s(wy,F), then
wp € F.

i) Let wg € ¥,M,N € ¢B(X) and m € M. If
wy € s(M,N), thenw, € s(m,N) for all mp € M or
W, € S(M,ng) forallng € N.

”I) d(g].792) j d(gla g3) + d(g3792)’ v 01,92,03 € X. (I:Doerfrl]gl::é?(rjva|iS(j[?g]ethgtspggg’ d)baendgae }Sg??#eer?ce "

i) g is known as a limit point of{g,} if for every
j € € with j > 0 there existsrg € .4 such that
d(gr,9) = j forall r > rp and we write lim_. gr = g.

i) d(91,092) = d(g2,01), forall 1,02 € X;

Then (X,d) is said to be a complex-valued metric
space.
Definition 2.3[5] If (X,d) is a complex-valued metric
space. A poinu € X is known as interior point of a set

M C X. if there exists O< £ ¢ % such that i) {gr} is said to be a Cauchy sequence if for any

j € € with j = 0 there existsrg € .4 such that

Bu,e) = {ve X:d(uv) < £} C M. d(9r,9r+s) < j forallr = rowherese 1.
A pointu € X is known to be a limit point oM if for 0 < & iii) (X,d) is known as complete complex-valued
metric space if every Cauchy sequence is convergent in
Z(u.e)N (M\ {u}) # @, whereg € (X,d).

Definition 2.7[2] Let (V,d) be a metric linear space. A
M is called open if every member df is an interior point ~ function Q in V define by Q : V. — [0,1] is called
of M. Further, if Z C X then% is known as closed if it membership function, which assigns a grade of

contains all its limit points. The family membership to each value &f. A set consisting the
tuples of elements oV together with their grade of
G={%(u¢e):ueX0=<¢} membership is called a fuzzy set. For simplicity we
@© 2018 NSP
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denoteQ as a fuzzy set. Tha-level set ofQ denotes by
[Q]« and it is defined as below,

[Qla ={w:Q(w) >a} if ae€(0,1],

[Qlo = {w: Q(w) > 0}.

HereQ represents the closer of the €t

Suppose (%) be the family of all fuzzy sets in a metric
space?. For T,U € F (#),T C U means Tw) < U(w)
for everywe %'.

Definition 2.8[13] Assume thaWV is an arbitrary set and

(Y,d) be complex-valued metric space. The mapping

K:W — r(Y) is called a fuzzy mapping. A fuzzy
mappingK is a fuzzy subset ow x Y with a membership
function K(w)(y). The functionK(w)(y) is the grade of
membership of in K(w).

Definition 2.9[11] Let (X,d) be a complex-valued metric
space andK,L : X — [ (X) be fuzzy mappings. If
wy € [Kwy]g wherea € [0,1] andw; € X thenw; is
called a fuzzy fixed point oK andw; € X is known as
common  fuzzy fixed point of K,L Iif
Wy € [KWl]a N [LWl]a.

Definition 2.10[1] Let (X,d) be complex-valued metric
space. A fuzzy mappin& from X into 5 (X) is said to
have greatest lower bound property @8,d), if for any
ue X anda € (0,1], greatest lower bound &#,([Kv]q)
exists in% for all u,v € X. Here we mentior(u, [KV]q)
by the glb ofW([KV]q), i.€

d(u,[KVlg) =inf{d(u,v1) : v1 € [KV]g}.

3 Main results

Similarly we have

¢ (Wagi1) = @(W).

Hence proved.

Example 3.2LetX ={1,3,1, 2 1 ...} Letd : Xx X —

¢ be defined by

d(w,x) =ijw—x|,

then clearly (X,d) is a complex-valued metric space.
Assume that fuzzy mappings L are defined by

. 1
fo<a< —
es “b+2

1
it~ <a<l
Thr2 =0

a
Kw)(@) =4
2

ingagi

b+2

1
if — <t<1.
! b+2< -

a
Lw)(@) =4 4
3
Then[Kw]g = [Lw]g = [0, 535].

Setting the sequence  {Wm}
{Wm} = 7t1,m=0,1,2,---. Thenwp = 1 € X.

CIearIyW2m+1 S [KWZm]a andW2m+2 S [LW2m+1]a.

Consider a mapping3 : X — [0,1) defined by
(w) =g, forallwe X.

Obviously B(u) < B(w) and
B(v) < B(w),Y we X ue [Kwlg,v € [Lw]g for all

w, X € X.
Consider
1 1

B(Wzm) = 92m+ 1) < 9= B(Wo),

that isB(wom) < B(Wp),m=0,1,2---. Also consider

In this section, we first prove some lemmas that are

required to obtain our main fixed point results and then
considering different types of control function as
coefficients in rational contractive condition for fuzzy
mappings in the context of complex-valued metric space.
Lemma 3.1.Let (X,d) be complex-valued metric space, | arnma 3.3 Let

K,L:X — F (X) be fuzzy mappings angp € X. Define
a sequencéwg} by

W2q+1 € [KWZQ]Ch W2q+2 € [LW2q+1]C!7 v q= 07 17 27 ad)

1

B(W2m+l) = oo =

1
9@Zm+2) = g = Bw),

that is B(Womy1) < B(wp),m=0,1,2---. Hence Lemma

3.1 s verified.

(X,d) be complex-valued metric space,
K,L:X — r (X) be fuzzy mappings anap € X. Define a
sequencéwg} by

W2q+1 € [KWZQ]CH W2q+2 € [LW2q+1]C!7 v q= 07 17 27 )

1)

where [Kw]q,[LW] are non-empty closed and bounded yhere [Kw]q, [Lw]q are non-empty closed and bounded

subsets ofX. Assume that there exists a mapping sypsets

¢ : X — [0,1) such thatp (u) < ¢(w) for all u e [Kw]q
with ¢ (V) < ¢(w) V v e [Lw]g. Then
¢ (Woq) < ¢ (Wo) andg (Woq 1) < ¢ (Wi).
Proof. Letwe X andq=0,1,2,--- Then we have,
¢ (Wq) = P(Wq-2) for Woq—1 € [KWoq2]a,
= @ (Woq—4) For woq o € [KWaq_4la,
< =X (wo).

of X. Suppose there is a mapping
¢ : X x X = [0,1) such that¢(u,x) < ¢(w,x) for all
ue [Kwlg and¢(w,v) < ¢(w,x) for all ve [LX|q. Then

¢ (Wag,X) < @ (Wo,X) ande (W, Wog1) < @ (W, Wy ).

Proof. Letw e X andq=0,1,2,--- Then we have,

¢ (Wag,X) = @ (Woq2,X) for woq 1 € [Kwag 2]a,

= P(Woq-4,X)  fOr waq 2 € [KWoq-4]a,

= - 2 ¢ (Wo,X).
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Similarly, we have

O (W Woqi1) =< (Wwy).

Hence Lemma 3.3 is proved.

Example 3.4. In Example 3, let the mapping
B : X x X — [0,1) be defined by3(w,x) = § + {5, for all

w,x € X. Obviously B(ux) < pB(wx) and
Bw,v) < B(w,x),vYw € X,u € [Kw|q,V € [LX]g for all

w, X € X. Consider

1 X 1

X
e — —_— < — _— =
9(2m+1) * 1 * B(wo,x),

B(WZmay) = l — 9 11

that is 3 (Wom, X) < B(Wp,X),m=0,1,2---. Also consider

w 1 %
B(W,Womy1) = = + 11

9 " 11(2m+2) = Blwwa),

oW,
-9

that is B(w,woms1) < B(w,wi),m = 0,1,2---. Hence

Lemma 3.3 is verified.

Theorem 3.5. Let (X,d) be complete complex-valued
metric space and,L : X — f (X) be fuzzy mappings
satisfying greatest lower bound property, such that for

eachw € X there exists some € (0,1}, [KwW|q, [LW]y are
non-empty closed and bounded subsetsXoflf there
exists¢; : X — [0,1) i =1,2,3,4,5 such that
i) gi(u) 2 ¢i(w) i=1---5forallue [Kw]g, YwWeX;
i) ¢i(v) <¢i(w) i=1---5forallve [Lw]g, YWeX;
i) 52 pi(w) <1i=1.5;

By Lemma 2.5(iii ), we have

d(wo, [Kwo]q )d (w1, [Lwi]a)

$1(Wo)d(Wo, W1) + ¢2(Wo) 1+ d(wo,wq)

d(Wo7 [KWo]a)d(Wl, [LWl]a) "
1+ d(wo,wq)
d (W]_, [KWo]a)d (Wo, [LW]_]C{)
1+ d(wo,wr)
d(Wo, [KWo]a)
1+ d(wop,wq)

+ ¢3(Wo)

¢4(Wo)

+ ¢s5(Wo) € s(wi, [Lwia).

By definition there exists somg, € [Lw; |4 such that

d (wo, [Kwola )d (Wi, [Lwa]a)

¢1(Wo)d(Wo, W1) + ¢2(Wo) 1+ d(wo,w1)

d(wo, [Kwola)d (wy, [Lwi]a) N
1+ d(wo,wq)
d (Wl, [KWo]a)d (Wo, [LWl]a)
1+ d(wo,wq)
d(Wo, [KWo]a)
1+ d(wop,wr)

+ ¢3(wo)

¢4(Wo)

+ ¢s(Wo) € S(d(Wl,Wz)) ,
that is,

d(wi,Wz) < @1(Wo)d(Wo, W)+

iv)
d (Wo, [KWo]a)d (Wl, [LWl]a)
d(w, [Kw]q)d(x, [LX]q) pelto) 1+ d(wo, ws) i
P1(w)d(wx)+ f2(w) 1+d(wx) ba(Wo) d (wo, [Kwola ) d (ws, [Lwa]a )
3 (w)d (W, [Kw]g ) d (%, [LX] o) + @2 (w)d (¥, [KWlg ) d (W, [Lxq ) ( [1+ d](V\)/o,\(Nl) L)
1+d(w,x) d(wi, [Kwola ) d(Wo, [LWi]a
d(wKwla) _ oo + ¢aWo) 1+ d(Wo, W)
HO L g <KWl () d (wo, (Kol
_ *osto) 7y d(wo,w1) -
Then there exists somec X such thav € [Kv]gN[LV]q.
Proof. Letwp be an arbitrary point itk andw; € [Kwo)q, -
then from(ivo) with w = wp andx = w; we have By Definition 2.10, we have
dl (o, [KWola ) d (W, [Lwa] ) d(wy,w2) < @1(Wo)d(Wo,ws)
Fu{0)(o, W)+ @2(0) 1-+d(wo,w1) + 2(wo) d(vioivél()vc\j/év\\:\z;m
d(Wo, [KWo]a)d(Wl, [LWl]a) ’
T e w)  9s(o) d(vioivg()vcjévﬁ;v :
d(Wla [KWO]G)d(W07 [Lwl]cr) d d 7
Palo) = d o, wy) + 9a(vo) “T;VZ?WEYSSVZ)
d (Wo, [KWo]a) d ’
0T T oy S0l L0l  dst00) T
(@© 2018 NSP
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Taking absolute on both sides
|d(wi,Wa)| < ¢1(Wo)|d(Wo, W)

d(Wo, wa)d (wy, W) |
1+ d(wo,w1)

+ |falig) )
|d(wi, Wi )d(Wo, W2)
1+d(wo,w1)
d(Wo,Wl) ‘
1+ d(Wo,Wl) ’

+ ¢2(Wo)|

+ ¢a(Wo)

+ ¢s(Wo)|
which implies that
|d(wr,wa)| < da(Wo)|d(wo,wn)|+ ¢2(wWo

+ ¢3(wo)|d (Wi, Wa)| + ds5(wo
Thus we have

)| d(wi,wz))|
)|d(wo,w1)|.

¢ (Wo) + ¢s(Wo)
d(wg,wy)| < d(wg,wq)].
ld(ws, o)l 1—(¢2(Wo)+¢3(Wo))| (o, W)
SinceZ>  ¢i(w) < 1, sop = —¢3;,(2V2’330J§f§¢(svz’8v)0)) <1.So

d(wa,w2)| < pld(wo, wy)|. 2)
Now forw; € [Lw |, consider

d (Wz, [sz}a)d (W1> “—Wl]a)
1+d(wo,w)
d(wz,[KW2]a)d(W1,[|-W1]a)+
1+d(wo,wy)
d(wa, [Kwa]g)d(Wa, [Lwi]q)
1+ d(W27W]_)
d(wg, [Kwola)
1+d(wo,wy)

d1(w2)d(Wo, W) + o (Wo)

+ ¢3(wp)

da(w2)

+ @5 (w2) € s([Kwy]a, [Lwi]q).

Again by using Lemma 2.5ii ), we have
d (w2, [KWoq )d (Wi, [Lwiq)

1+ d(W27W1)
d (Wz7 [KWQ] q) d (W]_7 [LWﬂ g)
+ ¢3(W2) T+ d(vp.w)
pa(wo)d (Wi, [Kwo]q)d(Wo, [LWi]a)
1+d(wo,w1)

d(Wz7 [KWg]g)
+ ¢5(W2) 1+d(W27W1)

d1(w2)d(Wo, W) + o (Wo)

€ s([Kw] g, Wo).
By definition there exists somes € [Kws]q such that

d (W, [Kwa] g ) d (i, [Lwa] o)

91(we)d(Wa, W)+ $2(We) === <05

d (Wz, [KWZ]a)d (Wl, [LWl]a)
1+ d(wo,wy)

d (Wl, [KWz]g)d (Wz, [LW]_]G)

1+d(wo,wy)

d(Wz7 [KWZ]G)

1+ d(wp,wy)

+ ¢3(w2)

+ ¢a(wz)

+ ¢5(w2)

S S(W3,W2),

that is,

d(Wg,Wz) < ¢1(W2) (W2,W1)+
ofir) 2002 Klvf d()wZ(,vvvvll’) e

d (Wz, [KWZ]C{) d (Wl, [LW]_]G) i
1+ d(Wz,Wl)

d (Wl, [KWZ]O() d (Wz, [LWl]a)
1+ d(Wz,Wl)

+ ¢3(wz)

$a(w2)

d (Wz, [KWZ]C{)

+¢5(W2) 1—|—d(W2,W1) '

Using Definition 2.10, we get

d(wz,ws)d(wy, W)
1+ d(wo,wy)
P3(W2)d(Wo, W3 )d (W1, Wa) + ¢a(w2)d (W, Ws)d (W, Wp)
1+d(wo,wy)

d(ws,Wz) < ¢1(Wo)d(Wa, Wy ) + P2(Ws)

+

d(wa, ws)

e AT

taking again absolute on both sides. We obtain

d(W2>W3)d(Wl>W2) |
1-+d(wo,wy)
¢3(W2)d(W27W3)d(W17W2) + ¢4(W2)d(W17W3)d(W27W2)
1+ d(W27W1)

|d(wz,w2)| < d1(W2)|d(Wz, W1 )|+ 2 (W2)]

—+

d(wz,ws)

+¢5(W2)’m|7

which implies that

|d(ws, W2)| < $1(wa)|d(wa, wi) | + P2 (w2) |d(wa, ws))|
+ §3(W2) [d (W2, W3) | + 5(W2) |d (W, W3)|.
Using Lemma 3.1, we get
|d(ws,w2) | < @a(wo)|d(wz,w1)| + 2(wo) |d(wa, ws)|
+ ¢3(Wo) [d (W2, W3) | + ¢5(Wo) |d (W, W3)|.

This yields

¢1(Wo)
d(ws, o) d(wa,wq)|.
[dws, we)] < 1- (¢2(Wo)+¢3(Wo)+¢5(Wo))‘ (wa,wa)|
Sincezf 19 (W) < 1, 50—y gy < 1
Seto = 91(Wo) so

1—(¢2(wo)+¢3(Wo)+ds(Wo)) *

|d(wz,wa)| < o|d(wy,wy)|.

![Egtuctively we can construct a sequer{®,} in X such
Woq1 € [KWogla, Woqy2 € [LWogt1]a fOrq=0,1,2, ...,
|d(Waq1, Wag+2)| < p[d(Wag, Waq-1)],

|d(Wag+2, Waq3)| < 0|d(Wag1,Waqs2)]-

(@© 2018 NSP
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Consequently
|d(Wag1,Wagi-2)| < p[d(Wag, Woq1)|

< po|d(Wag-1,Waq)|

< pop|d(Wag—2,Waq—1)|

S e S p(po-)q|d(W07W1)|a
and
|d(W2q+2,Waq+3)| < Od(Waq1,Wag+2)]

< - < (po) ¥ d(wo, wi).
Soifl < K, then we obtain
d(War 1, Wak 1) = d(Wayy1,Wor12) + (W24 2,Wa143)

+ d(Woy 3, Wo 1 4) + -+ d(Wak , Wok11),
which yields
|d(Woi 11, Wor 1) | < [d(War g1, Warg2)| + |d(Waii2,Wa13)]
+ [d(War 3, Wara)| + -+ [d(Wax, Wox 1)

K—1
< [p > (b0 + <po>p} d(wo, )|
p=

Similarly, we have

K

p=T+1

K—1

s waei2) < [ 3 (G0 05 (00| [d(nows)]

T IM=

-1 K—1

dlva we) < | 5 (00 4P 3 (60 |t

- p=

r k-1 K—1
p
P p; (po) +p;+l(p0)

d(W2|+17W2K) < p] ‘d(Wo,W1)|.

By definition there exists somg € [Lv|q such that

d(qu, [KWZq]or)d(Va [LV]G)

@1(Woq)d(Wag, V) + ¢2(Waq) 1+d(wxq, V)

d (Woq, [KWagla)d (v, [LV]a)
1+d(wq, V)

d(v, [KWag|a )d (Waq, [LV]a)
1+ (quv )

d (Wzq, [KWagla)

1—|—d(W2q, )

+ ¢3(Waq)

+ ¢a(Woq)

+ ¢5(Wxq) € s(d(Waq+1,Yq))

that is,

d(Wag1,Yq) = $1(Waq)d(Woq, V)
d ,[K a)d(v,[LV]a
+ $2(Woq) (v [1—vkviiq(]wzq,(vv) L)
(W2q)d (Wag, [Kwagla)d (v, [LV]a)
1+d(woq,Vv)
d(v, [KWag)a)d(Wog, [LV]q)
14d(woq,v)
d (W2q> [KWZq]a)
1-+d(wyg,v) -

+ ¢3

+ Pa(woq)
+ ¢5(Waq)
Using Definition 2.10, we have

d(W2q+1an) j ¢1(W2q)d(WZQ7 V)
d (W2q7 W2q+l) d (V ) yq)

Since (op) < 1 which implies that{wy} is a Cauchy + ¢2(Waq) 1+ d(Wag, V)
sequence iX. From the completeness &, there exists 20
v € X such thawg — v asq — . Now we have to show + dsw )d(W2q7W2q+1)d(V7Yq)
thatv € [Kv]q andv € [Lv]q, we get ST d (wag, v)
d (Wag, [KWog)a)d (v, [LV]a) d(v, Wag+1)d(Wag, Yg)
¢1(W2q)d(W2q’ V) + ¢2(W2q) 1+d(W2q, V) + ¢4(W2q) 1+ d(qu’ V)
d(wagq, [KWogla )d (v, [Lv]q) d(Waq, Wag 1)
+ 90 T ) 90 T G g )
+ ba(w )d(V7[KW2q}a)d(W2q7[LV]a)
4\ 1+d(woq,v) By triangular inequality, we get
d (W2q7 [Kwyg| a)
 #5(wag) T+d(Waqv) s([Kwaga, [LV]a)- d(v,yq) = d(v,waqs1) + d(Wagi1,Yq)
Sincewsyq 1 € [Kwagla, by Lemma 2.5iii ), we have = d(v,Waqi1) + 1(Waq)d(Woq, V)
d (Wag, Wog1)d(V, Yq)
d(wagq, [KWogla ) d (v, [LV]q) 2q; Wog+1 Y
P1(Waq)d(Wag, V) + h2(Woq) 4 1+dq(\f\{/2q,v) . + §2(Wag) 1+ d(waq, V)
d (Wzq, [KWagla)d(v,[LV]a) + Ba(w: d(Wag, Waq1)d(V,Ya)
+ ¢3(W2q) 1+d(W2q,V) ¢3( Zq) 1+ d(WZq,V)
d(v, [KWagla ) d (Wag, [LV]«) d(v, Waq+1)d(Weg, Yq)
+ d4(woq) 1+ d(Waq, V) + ¢a(Wzg) 1+d(waq, V)
d (Wag, [KWagla ) d(Wag, Woq+1)
+ ¢5(W2q)m € s(waqi1,[LV]a). + ¢5(WZQ)71+d(W2q7V) :
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Using Lemma 3.1, we get
[d(v,yg)| < [d(v,Wagi1)| + ¢1(Wo)|d(Waq, V)|
|d(Wag, Wag+1)d (v, ¥q) |

+ ¢2(Wo)

14 |d(waq, V)|
e e
+ gty (A e 10 o)
+¢5(%)%.
Let q — o, the above inequality implies that

|d(v,yq)| = 0. We haveyqg — v asq — . Since[Lv]q is
closed, sov € [Lv]q. By similar process we can obtain
thatv € [Kv]q. Thusv € [Kv]g N[LV]q.
Corollary 3.6. Let (X,d) be complete complex-valued
metric space, antk,L : X — £ (X) be fuzzy mappings
with glb property, such that for eaa € X related to
some a € (0,1] there exists[Kw]q,[LW]q non-empty
closed bounded subsetsXfsuch that
d(w, [Kwg )d(x, [LXq)

1+d(w,x)
d(w, [Kwa)d(x, [Xa)

1+ d(w,x)
d(x, [KwWq)d (W, [LX]q)

1+d(w,x)
d(w, [Kwlq)
1+d(w,Xx)
where u,y,A,d,¢ are non-negative reals with

U+Yy+A+0d+¢ <1 Then there exists some € X
such thav € [Kv]gN[LV]g..

pd(w,x) + y-

+A

+ ¢

€ s([KWa, [LXa ),

Then there exists somee X such thav € [Kv]q.

Proof. By setting K = L. it can be easily proved in
Theorem 3.5.

Corollary 3. 8. Let (X,d) be complete complex-valued
metric space, an{ : X — [ (X) be fuzzy mapping with
glb property, such that for each € X related to some
a € (0,1] there exist§kw], a non-empty closed bounded
subset ofX such that for allw,x € X the following
conditions are satisfied,;

d (s [Kw]a )d (x, [

pd(w,x) + y 11 dowx)
A d(w, [Kwlg)d(x,[KXa)  d(x [Kwg)d(w,[KXq)
1+ dwx) T Irdwx)
d(w. [Kwla)

1T dwx) € s([Kwla, [KXa),

where u,y,A,d,¢ are non-negative reals with
U+Yy+A+0d+¢ <1 Then there exists some € X
such thav € [Kv]q.

Proof We can easily prove by applying Corollary 3.7 and
by setting
$1(W) = U, po(W) = ¥, p3(W) = A, ¢4 = ¢, p5(W) = 3.

In the following we have obtained fixed point results
for control functions defined fro{ x X to [0,1).
Theorem 3.9.Let (X,d) be a complete complex-valued
metric space LeK,L : X — f (X) be a fuzzy mapping
with glb property and forw € X, related to some
a € (0,1] there exists[Kw]q,[Lw]q non-empty closed
bounded subsets ofX. If there exists mappings
$i: XxX—=1[0,1), i=1,---,8suchthat w, xe X the

Proof. We can easily prove by applying theorem 3.5 andfollowing conditions are satisfied} ¢i(u,x) < ¢i(u,x) for

by setting
$1(W) = U, p2(W) =y, p3(W) = A, da(W) = 9, p3(W) = G.
Corollary 3.7. Let (X,d) be complete complex-valued
metric space, anl : X — [ (X) be fuzzy mapping with
glb property, such that for eaclh € X related to some
a € (0,1] there exisfKw]q a non-empty closed bounded
subset ofX. If there existsg; : X — [0,1), i=1,---,5
such that

i) ¢i(u) < Bi(w),i
we X,
i) 52, i (w) <1;

ii )
Bawd(nx) + gow) S [Klv:]_ ag(lj\it)[Kx]a)
d(w, [Kw]a)d(x, [KXq)
1+ d(w,x)
d(x, [Kwlq )d(w, [KXq)
1+d(w,Xx)
d(w, [Kwa)
1+d(wx)

1,---,5. for all u e [Kw]y for all

+ ¢3(w)

+ Pa(w)

+ ¢s(w) € s([Kwq, [KXq)-

all u e [Kw]gandgi (w,v) < ¢i(w,x) Vv e [LW]q;
i)

$1(W, X)d (W, X) + $2(W, X)d(W, [LX] o )

+ ¢3(w,x)d(x, [KWa ) + da(w, X)d (W, [KW]q )

+ ¢s(w,x)d(x, [LX]a )

¢ el o)

d(W, [LX)o ) [1+d(W, [KW]q)]
1+d(w,x)

d(w, [LX] o) [14d(x, [KWa)]
14+d(w,x)

X
X

)

+ ¢7(W.X)

+ Pg(W,X)

€ s([KWa, [LXa ),
3)

where ¢1(w,x) + 336 (W X) + 2[$2(w.X) + d7(WX) +
#s(W,X)] < 1. Then there exists some € X such that
v € [KV]g N[LV]a.

Proof. Let wp be arbitrary point inX andw; € [Kwo)q.
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From (3) withw = wp andx = wy, we get

¢1(Wo, W1 )d(Wo, W1) + ¢2(Wo, w1 )d (e, [Lwa]qa)
+ ¢3(W0,W1)d(W1, [KW()] )
+ ¢4(Wo,W1)d(Wo, [KWo)q)
+ ¢5(W0,W1)d(W1, [LW]_]C{)
+ d6(Wo, W) dws, [Lwlkg Eﬂl(vJ\r/od\Eva()) [Kwoor)]
© g S L 0 i)
+ dg(Wo, W) d(Wo, [Lwlkg Ell(vJ\r/od\Eva [Kwo]or)]

S S( [KWo] o> [LWl] a) .

By Lemma 2.5(jii ) we get

¢1(Wo, W1)d(Wo, W1) + ¢2(Wo, W1 )d (e, [LWa]a)
+ (1)3(W0,W1)d(W17 [KWo]a)
+ (1)4(W0,W1)d(Wo7 [KWo]a)
+ (1)5(W0,W1)d(W17 [LWl]a)
+ ¢6(Wo, W1) d(wl’ [Lwlioi: El(xod\svvll())’ [KWO]")]
+ d7(Wo, W) d(Wo, [Lwlkg Eﬂl(vJ\r/od\Eva()) [Kwo]or)]
s e i)

S S(Wl7 [LWl] a) .

By definition there exists some, € [Lw; |4 such that

that is,

+¢e(Wo, W1)
+¢7(wWo, W)

+¢g(Wo, 1)

d(wi,Wp) < ¢1(Wo, W )d(Wo, Wy
+¢2(Wo, w1)d(aw, [Lwi]a
+¢3(Wo, w1 )d(w, [Kwg
+¢a(Wo, w1 )d(Wo, [Kwo
+¢5(Wo, W )d(wa, [Lwy
d(ws, [Lwi]a) [1+d(wo, [Kwola)]
1+d(wp,w1)
d(wo, [Lwa]a) [1+d(wo, [Kw]q)]
1+d(wp,w1)
d(wo, [Lwi]a) [1+d(wi, [Kwola)]
1-+d(wp,w1) ’

)
)
la)
la)
Ja)

Using the glb property ok anL, we get

d(wi,w2) < ¢1

Wo,Wl)d(Wo,Wl) + ¢2(W0,W1)d(W0,W2)
Wo, W1 )d (W1, W1) + ¢a(Wo, W )d(Wo, W)
Wo, Wy )d (W, W)
) (Wl,Wz)[l—l— d(Wo,W]_]
1+ d(Wo,Wl)
d(Wo,Wz)[1+ d(Wo,Wl]
1+ d(Wo,Wl)
(Wo, Wz) [1 + d(Wl, Wl]
Y14 d(wo, wi)d(wy, wy)
wi)d(Wo, Wi) + $2(Wo, ws )d(Wo, Wa)
1)d(Wo, W1) + ¢5(Wo, Wi )d (Wi, Wp)
1)d (W1, W2) + ¢7(Wo, Wi )d(Wo, W)
1)d(Wo, W)
d(

+ @3
+ ¢s

+ Ps

—~ —~~ —~

Wo, W1

+ ¢7(Wo, W)

+ ¢8 Wo, W

= ¢1(Wo,

+ @a(Wo, W
+ ¢s(Wo, W
+ ¢g(Wo, W

(
(
(
(
(
= ¢1(Wo, W1
(
(
(
(
(

Wo, W.
Wo, W1)

[d(wo, w1) +d(wy, W2)]
d(wo,W1) + @s(Wo, Wy )d (W1, Ws)

=

+ ¢2(Wo, W1
+ ¢a(Wo, W1
+ @6 (Wo, w1 )d(Wi, W2)

+ ¢7(Wo, Wy )[d(Wo, Wy ) + d (Wi, Wy)]

+ ¢g(Wo, w1 )d(Wo, W1 ) + Pg(Wo, W1 )d(Wq, Wo).

\./\./\./\./\_/\./\./\./\./ \_/

The former inequality implies that

|d(wy,W2)| < @1(Wo, Wy )|d(Wo, W)

+ ¢2(Wo, wy)[|d(Wo, Wi)[ + [d(wy, Wp)]]
¢1(Wo,W1)d(Wo, Wy) + ¢2(Wo, Wy )d(an, [Lwiq) + ¢a(Wo, Wy )|d(Wo, W1 )| + ¢5(Wo, Wa)|d (W1, Ws)|
+ ¢3(Wo, w1)d (w1, [KwWola) + ¢6(Wo, W1 )[d (W, W2)|
+ @a(Wo, w)d(Wo, [KWola) + ¢7(Wo, wy)[|d(Wo, Wi)[ + [d(wy, W2)]]
+ ¢s5(Wo,Wa)d(wy, [Lwi]qa) + ¢g(Wo, W1 )|d(Wo, w1 )| + Pg(Wo, w1 )d (W1, Wy)
d(Wl,[LWﬂa)[l-l-d(Wo, [KWo]g)] < E|d(W07Wl)|7
+ @o(Wo, W) 1+ d(wop,w1) where E
d(wp, [LW]_]C{) [1—|—d(W0, [KWo]a)] == T <1
+ ¢7(Wo,wy) L dwowa) o 1-U
d(wo, [Lwi]a)[1 4 d(wi, [Kwolg)] E=TY ¢ (wo,wi), t=1,2,4,7,8
+ ¢g(Wo, W) 1+ d(wo.we) 2 91(Wo, W
€ s(wi,wy)), U= z ¢t (Wo,Wy), t=2,56,7,8.
(@© 2018 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.12, No. 4, 861-875 (2018)www.naturalspublishing.com/Journals.asp

869

N SS ¥

Now forw; € [Lwy]4, consider

d1 (W2, W1 )d(Wo, Wy) + o(Wo, We)d(Wa, [Lwi]q)
+ ¢3(wo, wa)d(Wi, [KWa]g) + da(wo, wr)d(Wa, [KWa]q)
+ ¢5(W2,W1)d(W1, [LW]_]G)
d(wy, [Lwi]q) [1—|— d(wa, [KWZ]O,)}
1+ d(Wz,Wl)
d(wy, [Lwi]q) [1+ d(wo, [KW2]O,)}
14 d(wp,wq)
d(wa, [Lwi]q) [1—|— d(wy, [KWZ]O,)}
1+ d(Wz,Wl)

+ Ps(W2, W)

+ ¢7(w2, W)

+ Pg(Wz, W)
S S([KWZ]G, [LWl]a) .
Again by using Lemma 2.5ii ), we have

d1 (W2, W1 )d(Wo, Wy) + o(Wo, We)d(Wa, [Lwi]q)
+ ¢3(wo, wa)d(Wi, [KWa]g) + da(wo, wr)d(Wa, [KWa]q)
+ ¢5(W2,W1)d(W1, [LWl]a)
d(wy, [Lwi]q) [1—|— d(wo, [KWZ]O,)}
1+ d(Wz,Wl)
d(Wz, [LWl]a) [1—|— d(Wz, [KW2]O,)}
1+ d(Wz,Wl)
d(wa, [Lwi]q) [1—|— d(wy, [KWZ]O,)}
1+ d(Wz,Wl)

+ Ps(W2, W)

+ ¢7(w2, W)

+ Pg(W2,W1)
S S([KWz]a,Wz).
By definition there exists somes € [Kw;]q, such that

d1(W2, Wy )d(Wa, Wy) + P2 (Wa, Wy )d(Wo, [Lwy|q)
+ @3(w2,wa)d(Wi, [KWaq ) + @a(Wa, wi)d(Wo, [Kwa]q)
+ ¢5(Wo, Wy )d(w, [LWl]a)
d(wy, [Lwi]q) [1+ d(wo, [KW2]O,)}
1+ d(Wz,Wl)
d(Wo, [Lwa]g) [1+ d(Wo, [KWa]a)]
1+ d(wp,wy)
d(wy, [Lwi]q) [1+ d(wy, [KW2]O,)}
1+ d(Wz,Wl)

+ Ps(W2, W)

+ ¢7(w2, W)

+ Pg(Wa, W)
€ s(d(ws,wa)),
that is,

d(ws, W) =X ¢1(Wp,wq)d(wa,wy)
+ ¢o(Wo, Wi )d(Wo, [Lwi]a ) + ¢3(Wo, wq)d(we, [KWa]q)
+ @a(wz,wr)d(Wo, [KWola ) + @5 (W2, Wy )d(w, LWy ]q)

d(wy, [Lwi]a) [1+d(wa, [Kwo]4)]

1+d(W2,W]_)

d(wy, [Lwi]a) [1+d(Wo, [Kws]q)]
1+d(W2,W]_)

d(wa, [Lwi]q) [1+d(wi, [Kwa]q)]
1+d(W2,W]_) '

+ Ps(Wo,wy)

+ @7(wo,wy)

+ Pg(wo,wy)

Using the glb property ok andL we get

d(wa, W) =< @1(Wa2, W1)d(W2, W) + ¢2(Wa, Wy )d(Wa,W2)
+ @3(Wo,Wp)d(W1, Wa) + Pa(Wo, Wy )d(W2, Ws)
+ ¢s(wz, Wy )d(wy, W)
( )d(Wl,Wz)[1+d(W2,W3)]
1+ d(Wz,Wl)
d(Wz,Wz)[l—Fd(Wz,Wg)]
1+ d(Wz,Wl)
d(Wz,Wz)[1+d(Wl,W3]
1+d(W2,W1)

+ ¢e(W2, Wy

+ ¢7(w2, W)

+ ¢g(W2,W1)

)

further simplifying
|d(wa,w2)| < ¢1(Wa,wa)|d(wz,w1)|
+ Pa(wz,wa)|[d(wi, Wo) 4 d(wa, Ws)]|
+ a(Wo,wr)|d(W2,W3)| + ¢5(Wa, W1 )|d(Wa,Wo)|
+ (W, wi)|d(Wi,W2) | 4 de(Wo, W) |d(Wa, W3)].
Applying Lemma 3.3
|d(wz,W2)| < ¢1(Wo, w1
+ ¢3(Wo, Wy
+ @a(wo, Wy
+ ¢6(Wo, Wy
Finally we get
d(ws,wy)| < Qld (W, W),
where
$1(Wo,W1) + ¢3(Wo, W1) + @5(Wo, W1) + ¢6(Wo, Wa)
— (¢3(Wo,W1) + ¢a(Wo, W1) + pe(Wo, W1))

Inductively we can construct a sequer{eg,} in X such
that

Woq+1 € [KWogla,Wagi2 € [LWoqi1]q fOrq=0,1,2---
|d(Waq1, Wogi2)| < Z[d(Wag, Wag1)|

|d(Wag+2, Wag3)| < Qld(Waq1, Waq+2)]-

The former inequality implies that

|dl(wz,w1)|

|[d (w1, w2) +d(w2, wa)]|

|dl(W2, Wa)| + ¢5(Wo, W1 ) |d (W1, w2)|
|d(wi, W2) | + de(Wo, wr)|d(Wa, w3)|.

— ~— ~— ~—

Q= <1

|d(Waq1, Wogi2)| < Z[d(Wag, Wag-1)|

< ZQd(wzq-1,Wq)|

< ZQZ=|d(Wzq-2,Waq-1)|

< - < Z(2Q)%d(wo,wa)l,
and
|d(Waq2, Wags3)| < Q[d(Wagy1, Wogy2)|

< < (ZQ)%d(wo, Wi ).

Soifl < k, then

d(Waor 11, Wor 1) =< d(Wor41,Wa142) + d(Way 42, Woi13)
+ (W1 3,Wa14) + -+ 4 d(Wax, Wok11),
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which implies that

|d(Wai g1, Wakr1)| < |d(Wars1,Wary2)|
+ |d(War g2, War ¢3)| + [d(War 1 3,Wa1 14) |
+ o [d(Wok , Wok41)|

K

< [EZZT(EQ)MDZH(EQW} |d(wo, wi)]

Similarly, we obtain

r K K—1
diwa o) < | 3 (500425 (0P| fdlom)|.
L p=I p=I
rk—1 K—1
diwa,wa) < | 3 (20)°+2'3 (20| dwa.m)],
—| =
'pKfl F:<71
dunsse) < |23 (Z2+ S (20| dtu )|
L p=l p=I+1

Since(QZ=) < 1, thereforg{wgy} is a Cauchy sequence

in X. SinceX is complete so there existse X such that
Wy — v asq — . Now we have to show that € [Kv]q
andv € [Lv]q, we get

( )d(Wz )+¢2(W2q, )d(qu,[Lv]a)
+ P3(Wag, V)d(V, [KWaga) + @a(Wag, V)d(Wag, [KWag]a)
+ ¢5(W2q, v)d(v,[Lv]q)
BT PN
+ $7(Wag, V) d(wagq, [LV];)_EE‘("V\Z((]‘;V‘?’ [Kqu]a)}
o

€ s([Kwagla, [LV]a).
By Lemma 2.5iii ), we have

$1(Waq, v)d(Wag, V) + d2(Woq, v)d(Wag, [LV]a)

+ 3(Wog, V)d(V, [KWaga) 4 Pa(Wag, V) d(Wag, [KWag]a)
+ @5(Wog, v)d(V, [LV]q4)
oS

+ §7(Wag,V) d(Wyq, [LV]i)—EE—(FV\Z((:Vj?a [Kwagla)]

+ oz v) 220 [Lv]fl) Ejl<v+vzj,(:3[KW2q]a>]

€ s(Wogy1,[LV]a).

By definition thee exists somg € [Lv]q, such that
$1(Wag, V)d(Waq, V) + $2(Waq, V)d(Waq, [LV]a)

+ @3(Wag, vV)A(V, [KWagla ) + @a(Wag, V)d(Wag, [KWag]a)
+ ¢5(Waq, V)d(V, [LV]a)

ot En R
+ ¢7(W2q, V) d(WZQv [LV];)_EE—(FV\ZS’N&; [KWZQ]C!)}
+ Pl v) L2 [Lv]ﬁ) [c11<v+vzj,(:3[KWZQ]a)]

S S(d (W2q+17 yq)) )

that is,

d(Woq11,Yq) = ¢1(Wag, V)d(Wq, V)

+ ¢2(Waq, V)d(Wag, [LV] o) + ¢3(Wag, V)d(V, [KWog]a)
+ Pa(Wag, V)d(Wag, [KWagl o) + @5(Wag, vV)d(V, [LV]4)
o

d(Wag, [LV]a) [14 d(Waq, [KWogla)]
1+d(wyq, V)
d(Wog, [LV]a) [1+d(v, [KWogla)]
1—|—d(W2q, V) '

+ ¢7(Woq, V)

+ Pg(Woq, V)

By using the glb property dk andL, we find

d(Wag+1,Yq) = ¢1(Wag, v)d(Woq, V)
+ ¢2(Wag, V)d(Wag, Yq) + $3(Woq, v)d(V, Woq+ 1)
+ @a(Waq, V)d(Woq, Woq 1) + ¢5(Wag, V)d(V,Yq)
)d(v,yq)[l—kd(wzq,wzqﬂ)]
d(Waq, Yq)[1 4 d(Wag, Wog+1)]
d(Wzq,Yq)[1+d(V,Waq+1)]
1+d(wag, V) '

+ ¢e(Wog, v

+ ¢7(Woq, V)

+ ¢g(Waq, V)

Utilizing the triangular inequality, we obtain

d(v,yq) = d(v,Wzq1) +d(Wag+1,Yq)
= d(v,Waqi1) + ¢1(Wag, vV)d(Woq, V)
+ @2(Waq, V)d(Wag, Yq) + P3(Waq, V)d(V,Woq 1)
+ @a(Wog, v)d(Waq, Waqr1) + Ps5(Waq, V)d(V, Yqg)
d(v,Yg)[1+ d(Wag, Wog+1)]
1+d(wyq, V)
d(Wag, Yg) [1 + d(Wag, Wog1)]
1—|—d(W2q, V)
d(Wag, Yg) [1+d(V, Wog+1)]
1+ d(qu, V) '

+ ¢6(Waq, V)

+ ¢7(Woq, V)

+ ¢g(Woq, V)
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Applying Lemma 3.3, we get

[d(v,yg)] < [d(v,waqi1)|+ $1(Wo, v)|d(Waq, V)|
+ ¢2(Wo, V)|d(W2anq)| + ¢3(Wo, V)|d(V,W2q+l)|
+ a(Wo, v)|d(Wag, Waq 1)| 4 5(Wo, v)[d(V, Yq)|
d(V, yg)[[1+ |d(Wag, Wag1) ]
1+ [d(woq, V)|
|d(Wagq, Yq)|[1 -+ [d(Wag, Woq 1) ]
1+ [d(woq, V)|
|d(Wag, Yo) | [1+ [d(V, Wag+1)]]
1+ |d(W2q,V)|

+ ¢6(Wo, V)

+ ¢7(Wo, V)

+ ¢g(wo,V)

Let g — o, the above inequality implies that

|d(v.Yq)| < [¢5(Wo, V) + ds(Wo, v)][d(V.¥g)].

Since ¢s(Wo, V) + ¢s(Wo,v) < 1, so[d(v,yq)| — 0. We
have y; — v as g — «. Since [Lv]q is closed, so
v € [Lv]g. By similar process, We can obtain that
v € [Lv]q. Hencev € [Kv]gN[LV]q.

Corollary 3.10. Let (X,d) be a complete complex-valued
metric space LeK : X — F (X) be a fuzzy mapping with
glb property and fom,w € X, related to somer € (0, 1]

there exist§Kw]q non-empty closed bounded subset of

Z. If there exists mappings
¢i : XxX—[0,1),i=1,---,8 such that' w,x € X the
following conditions are satisfied:

i))qbi(u,x) < pi(wx) Vue [Kwlg;

ii

d1(W, X)d (W, X) + ¢2 (W, X)d (W, [KX]q)
+ @3(W, X)d(X, [KW]q ) + d4(w, X)d (W, [KW]q )
+ s d(x, [KX o) [1+d(w, [Kw]q)]

1+d(w,x)
d(w, [Kxg ) [1+d(w, [Kw]q)]
1+d(w,x)
d(w, [Kxg)[1+d(x, [KW]q)]
1+d(w,x)

% [KXa) + ¢o(W;X)

+ ¢7(W,x)

+ ¢g(W,x)
€ s([Kwa, [KXq),

+ S wWX) + 2[da(wX) +
1. Then there exist some € X

where  ¢1(w,Xx
$7(W,X) + ¢g(W.X)]
with v € [Kw]q
Proof. By settingK = L in Theorem 3.9, it can be easily
proved.

)
<

4 Application

mappings with glb property such that for eaghx € X
i) ¢i(u) = ¢di(w),i=1.--5 VueKw, YweX;

i) gi(v) 2 gi(w),i=1---5Vvelw, YweX;

i) 91 6(w) < 1;

iv)

g(wW)d(w,x) + g2 (W) (KV;-KFV;—W

d(w, Kw)d(x, LX) + ¢4(w)d(x, Kw)d(w, Lx)
1+d(w,x)

+ ¢3(w)

d(w,Kw)

]_—I—T(\N,X) S S(KV\I7 LX)

+ ¢s5(w)
Then there exists sonm= X such thatz € KzNnlLz
Proof.LetS T : X — f (X) be fuzzy mappings defined by

Swe a if weKw
|0 ifwgKw

|

So for arbitrary a € (0,1],[SWa = Kw and
[TWq Lw. Since for every wx € X
S([SWa. [T¥a) = s(Kw, LX),
therefore, Theorem 3.5 can be applied to obtain a some
ze X such thaz € K(z) NL(2).

Corollary 4.2. Let (X,d) be a complete complex-valued
metric space and,L : X — ¢B(X) be multivalued
mapping with glb property such that for eagix € X

a ifwelw
0ifwégLw

d(w, Kw)d(x, Lx)
1+d(w,x)
Ad(w, Kw)d(x, Lx) + ¢d(x, Kw)d(w, LX)
+ 1+d(w,x)

Hd(W,X) + v

d(w: Kw) € s(Kw, Lx

1+d(w,x) (Kw, LX),

where u,y,A,0,¢ are non-negative reals, with
L+ y+A+ 0+ ¢ < 1 Then there exists sonzee X such
thatze KznLz

Proof It can be easily proved by applying Theorem 4.1 by
setting

$1(W) =, 2 (W) =y, ¢3(W) = A, Pa(W) = G, ¢5(W) = O
Remark 4.3.1) By settingA = d = 0 in Corollary 3.6,
we get theorem 12 of [12].

2) By settingy = & = 0 in Corollary 4.2 above corollary
we get theorem 12 of [9].

3) By settingA = & = ¢ = 0 in Corollary 4.2 we get

In this section we discussed applications of our derivedTheorem10 of [1].
results to multivalued mappings and demonstrate arTheorem 4.4.Let (X,d) be a complete complex-valued
appropriate example to show the validity of our main metric space andK : X — ¢3(X) be multivalued

results.
Theorem 4.1.Let (X,d) be a complete complex-valued
metric space and,L : X — ¢B(X) be multivalued

mapping with glb property such that for eagix € X
i) ¢i(u) < ¢i(w),i=1---5 VueKw, VweX;
i) ¢1(W) + P2(W) + d3(W) + Pa(W) + ps(W) < 1;
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iv)
dr(w)d(w.x) + ¢2(W)%W

¢3(w)d(w, Kw)d(x, Kx) + @ (w)d(x, Kw)d(w, Kx)
+
1+ d(w,x)

d(w,Kw)
1+d(w,x)

Then there exists sonze= X such thaz € Kz
Proof Let T : X — f (X) be fuzzy mapping defined by

+ ¢s(w) € s(Kw,Kx).

Twe a if weKw
| 0ifwgKw

Then for arbitraryo € (0,1] we have[Tw]q = Kw. Since
for every w,x € X, s([TWq,[TXa) = S(Kw,Kx),
therefore by applying TheoreBwe get some poirnt e X
such thatz € K(z).

Corollary 4.5 Let (X,d) be a complete complex-valued
metric space andK : X — ¢B(X) be multivalued
mappings with glb property such that for eagfx € X

d(w, Kw)d(x, Kx)
1+d(w,x)
Ad(w, Kw)d(x, Kx) + ¢d(x, Kw)d(w, Kx)
+ 1+d(w,x)

pd(w,x) +y

d(w,Kw)

1+d(w,x)
where u,y,A,0,¢ are non-negative reals, with
U+ y+A+d+¢ < 1; Then there exists sonzec X such
thatze Kz

Proof It can be easily proved by applying Theordnty
setting

$1(w) = 1, d2(W) = y,¢3(W) = A, pa(W) = ¢, ¢s5(W) = S
Theorem 4.6 Let (X,d) be a complete complex-valued
metric space. LetK,L : X — ¢B(X) be multivalued
mappings with glb property and for,x € X. If there
exists mapping®; : X x X — [0,1),i = 1,---,8 such that
for all w,x € X the following conditions are satisfied:
D di(ux) < @i(wx) Yu € Kw and
i(w,v) < ¢i(w,x) Vv € Lx;
i)
d1(W, X)d (W, X) + d2(W, X)d (W, LX) + d3(w, X)d(x, Kw)
+ @a(w,x)d (W, Kw) + ¢5(w, x)d(x, LX)
d(x,Lx) [1+d(w, Kw)]
1+d(w,x)
d(w,Lx) [1+d(w,Kw)]
1+d(w,x)
d(w,Lx) [14d(x, Kw)]
1+d(w,x)
where ¢1(WX) -+ 575 91 (W.x) + 2[g2(WX) + pr(WX) +
#s(w,x)] < 1. Then there exists uniquec X such that

€ s(K,KXx),

+ ¢s(W,X)

+ ¢7(w,Xx)

+ ¢s(w,x) € s(Kw, LX)

ze KznlLz
Proof. Assume that the fuzzy mappingsT : X — [ (X)
are defined as

Swe a if weKw
10 ifwegKw.

Twe a ifwelw
|loifw¢glw

Then for anya € (0,1],[Swq = Kw and [Twq = Lw.
Since for everyw,x € X, s([SWq,[TXa) = S(Kw, Lx)
therefore, by applying Theorefiwe obtain some € X
such thatz € K(z) NL(2).

Example 4.7.Let X = [0,1] andd : X x X — ¢ be
complex-valued metric space defined by

d(w,x) = |w—x|€' 5, for all w,x € X.

Let a € (0,1] andK,L : X — F (X) are fuzzy mappings
defined as follows:

ifa=0

. W

< —

if 0<a< 190
w

1
1
K()(@) =14 2
if — <
0 if 190<a71,
ifa=0

. w
<
if0<a< 100

=
o
N~—
L&
Il
O NI B

if w0,

if 0<

AloNlQwQ R
A
©
IN o

Let¢i: X —[0,1)i=1,---,5 be defined by
Pr(w) = Wwflad’z(w) 10, 93(W) = 35.05(W) =
%7 ¢4(W) = 50"
Then forw =0, [K0]1
[Kw]a = [0, &g
Clearly ¢i(u) <

ue [Kwlg,x€[0,1) and

for all

A
hss
B

’...757
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di(v) < gi(w),i =1,

It can be easily seen that far=w/60 € [Kw|q,

(W/60) + 1

d( 50 ) = ¢1( 3600)
= ¢1(w/3600+ 60/3600)
< $1(w/60+1/60)
= 01" = g
W
0 iIfx<—
d(x [Kwia) = w2
(x—@)e 5 if x> 50’
and
X
0 ifw< —
d(w [LXa) = N X
(w— Z—O)e’?; ifw> 20
alsod (w, [Kw]q) = (%N)ei%,
andd(x.[L4o) = (3¢5,
Moreover ifBxw € € such that

| WX o R
‘wa—‘Go 20‘\/5367

then
S([KW]OM [LX]O!) ={Peb: Pw =P}
Consider

|d(w; [Kw]a)[|d(x [LX]a )|

,5, forallve [Lw]q,x € [0,1).

B1(w)ld(wx)| + Go(w) =g
|d(w, [Kw]q){|d(x, [LX]a )|
+93(W) 1+d(w,x) +

[d(x, [KW]q)|[d(W, [LX]a)|
T+ [d(wx)| +s(w)

$a(w)

[d(w, [Kw])a|
1+|d(w,x)|

Clearly for ¢i(w) = % go(w) = %, d3(w) =

3. Bs(w) = 5. a(w) = 2.

AR e

60 20 10T+ Wox

| SIS i b w |
1+|w—x 301+ |w—x|’

(4)

Since, one can easily calculate that,

prwydwx) = " T x
o w+w o (wH1)x
= 60 60 |

‘WZ WX WX‘

60 60 60 60
WX w2 owx

60 60 60 80
‘ﬂ_i_%|

60 60 60
W x(1+w)‘
~ '60 60

_‘ﬂ_l

w
60 60|t‘60 20| P

All the remaining terms on the right hand side of (4)
are non-negative reals for alle X. Consequently one can
obtain
d(w, [Kw]q)d(x, [LX
ba(wd() -+ go(w) LTI
d(W7 [KW}U)d()@ [LX]C!)

T+ dwx) + ¢a(w)
d(w, [Kw))q
T+ d(wx) + d(x (LX)

therefore

d(X, [KW]a)d(W, [LX]O!)

+ ¢5(w)

= mw)ﬁ

() + go() S e e
d(w, [Kw]g)d(X, [LX]a)
1+d(w,x)

d(x, [Kw]g)d(w, [LX]4)
1+d(w,Xx)

d(w, [Kw]q)
1+d(w,x) +d(x, [LxX]«

Hence, all conditions of Theorem 3.5 are satisfiedware
0 remains fixed under the mappingsandL.

+ ¢3(w)

+ Pa(w)

+ ¢s(W) € s([KWq, [LX])q-

5 Conclusion

With the help of classical result due to W. Shataeal.,
sequence and distance between closed bounded sets due to
jamshecet al,, we have established adequate results for the
existence of fixed point for fuzzy mappings in the setup of
complex-valued metric space. Further the criteria has been
extended for multivalued maps for the considered results.
The established theoretical results have been demortstrate
by apropriate example. Hence a conclusion, we state that
aforementioned results play a basic role to the existence
of fixed point for fuzzy mappings as well as multivalued
mappings.
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