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Abstract: This paper deals with the study of unsteady microstretche@ewand Poiseuille fluid flows between two infinite parallel
plates. Analytical expressions for the velocity, micratan and microstretch of the fluid flows are obtained usinglaee transform
together with state space approach. The slip boundary tonslifor both velocity and microrotation are applied atloendaries. The
inversion of Laplace transform of the flow field is obtainednauically using a standard numerical technique develogdddnig and
Hirdes. The effects of the physical parameters on the wglavicrorotation and microstretch are discussed througplug.
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1 Introduction The slip boundary condition was used by several
researchers in the classical Newtonian fluidi$]6,7], in

Microcontinuum field theory was introduced by Eringen the micropolar and microstretch fluids, 9,10, 11].

[1] in 1964 to explain the concept of the motion of In recent years, many authors have discussed the
micro-elements taking into consideration the internalmicropolar fluid flow problems between two parallel
characteristics of the substructure particles. Micréstre plates. Faltas et allB] discussed the problem of unsteady
fluids are a subclass of simple microfluids. These fluidsunidirectional Poiseuille flow with no-slip and no-spin
have seven degrees of freedom, three for translation, threoundary conditions. Solutions of steady micropolar
for rotation and one for stretch. Microelements of theseCouette and Poiseuille flow can be found in 1962]]
fluids can stretch or contract in addition to being The problem of Couette flow bounded by two infinite
micropolar. Physically, the theory of microstretch fluid parallel plates was considered by Ashmawg4|[
could have rich applications in many fields such asassuming a linear slip boundary condition on the upper
slurries, paper pulps, insect colonies, blood and otheand lower plates. However, the microstretch fluids flows
biological fluids P]. have received a little attention from researchers. Ariman
The classical no-slip boundary conditions are applied[15] discussed the poiseuille flow between parallel plates
to the Navier-Stokes equations assuming that the liquidn microstretch fluid. lesan derived a uniqueness theorem
molecules adjacent to the solid are stationary relative tdor an incompressible microstretch fluidg. Eringen
the solid. This condition is not appropriate for the fluids studied the steady flow of an incompressible microstretch
with microstructure such as micropolar, microstretch, etc fluid in circular arteries17]. The state space approach is
A new boundary condition, which is named slip condition a mathematical model of a physical system and it is
has been proposed by Navi@].[This condition depends applicable to solve some problems in fluid dynamics. The
on the shear stress and permits the fluids to slip at a solidtate space approach was employed by Devakar and
boundary. In other words, the tangential velocity of fluid lyengar [L8] to discuss the Stokes first problem of a
relative to the solid at a point on its surface is proportlona micropolar fluid with no-slip and no-spin conditions.
to the tangential stress at the point. The constant ofThey also used the same technique iH9,pQ] to
proportionality between these two quantities may beinvestigate the Couette and Poiseuille motion of
termed as a coefficient of sliding friction, it is assumed to micropolar fluid assuming that one of the plate moves
depend only on the nature of the fluid and solid surface suddenly while the other is at rest. Slayi and Ashmawy
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applied this technique to obtain the solution of velocity microsretch scalar functionp denotes the pressure of

and microrotation in Laplace domain to the unsteady slipfluid at any point. The material constanis, (k, Ao, A1,

flow of a micropolar fluid bounded by two parallel plates ag) represent the viscosity coefficients ara (, Bo , Yo)

[21]. In 2016, time-dependent slip flow of a micropolar represent the gyro-viscosity coefficients.

fluid was studied in22].

In this paper, we consider the problem of unsteady motion

of microstretch fluid flow through two infinite parallel

plates. Two different cases are discussed. First, we3 Unsteady Couette flow of microstretch fluid

suppose that the lower plate moves with some velocity. In

the second part, the motion of two parallel plates iS et us consider the incompressible microstretch fluid

induced by the pressure gradient. The slip condition forhoyunded by two horizontal parallel plates separated by a

both velocity and microrotation is applied at the gistance h. The motion is assumed to be unsteady.

boundaries. The problem has been solved in the Laplacitially, The two plates are fixed. When- 0, the lower

domain using state space approach method. The inversgate position changes and moves along the x-direction by

transforms are obtained using a numerical technique tQ; time-dependent velocity of magnitutlef (t) while the

get the velocity, micro-rotation and microstretch in ypper plate is held fixed. Assuming that the pressure

space-time domain. The results are presented angradient is zero. Using the Cartesian coordindiey, z),

discussed graphically. the components of velocity, microrotation and
microstretch, respectively, have the following forms

. o , q=(u(y.t),0,0), v=(0,0,w(y,t)) and¢ = ¢ (y.t).
2 Basic and constitutive equations of
microstretch fluid The proposed initial and boundary conditions are

The equations concerning the flow of an incompressible uy,00=0 w(y,00=0 and ¢(y,0)=0. (8)
microstretch fluid with no body loads are given by

0.q=0, 1) Br(u(0,t) U f(t)) = x(O,t), &1(0t) = myZ(Oatzg)

p?j—? =00 —p)+kOxv—(u+k)OxOxq, (2) Bo(u(h,t)) = —tx(h,t), &aw(h,t) = —my(h,t) (10)

& = —2cv+ kD 0x0 0 o(ht)=¢(0.1)=0 (11)
PG = —2kv +KOxq—ylxOx v+ (ao+ Bo+ yo)0( 8) where 3, and 3, are the velocity slip parameters of the

lower and upper plates. Alsd&; and &, represent the
microrotation parameters of the two plates. These
parameters are varying from zero to infinity and are
assumed to depend only on the nature of the fluid and the
material plates.

Let us introduce the following non-dimensional variables

.d¢
2Pl

The constitutive equations for the stresses, couple sigess
and internal microstretch force density are given as

=ad-O¢+m—2Ao(0-q) - 219  (4)

oy . u . U . h_ . h
tj = (At +A0f — P)&j + i j+(U+K)ai— ke Y= U TERL @=ge =yt
®)

h? my ao
i = aoVrrGij+ BoVij + YoVj.i — bo&ij 6 Ny=—— = —- =—
mij oVrrOij + Bovi,j + Yovj.i 0€ijkd (6) myz BoU Myz, Mk oh’ ¢ Tl{)h2¢
My = 800 -+ Do Vi @) Using the above variables and dropping hats for

. ] ) ~convenience, the differential equatioris4) become
wherep and j represent the fluid density and gyration

parameters, respectively. They are assumed to be Jdu dw d°u

constants. Alsogj and gjc are denoting, respectively, RE = md_y + 9y2 (12)
Kronecker delta function and the alternating tensor. The

vectors g and v are respresenting, respectively, the Riw ou d*w

velocity and microrotation of the fluid flowg denotes the m oot —2nw— "3y + Y3 (13)
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n—2 ot —m2¢+1+a—y2 (14)
where
puh 2+K K h?
(H+K) 2 20+K) 1+K’
KoK =Y oM
i 239 ao

The initial and boundary condition® — 11) in terms of
dimensionless quantities can be written as

uy,00=0 and w(y,00=0 ¢(y,00=0. (15)

nN1w(0,t) = my(0,t)

a(u(0,t) — () = 1x(0,1),
(16)

—a(u(Lt)) = tx(1,t), —naw(1,t) =my(1,t) (17)

¢(0t)=¢(1,t)=0 (18)
where
hB. hB. hé1 hé,
a1=—, QOy=—, =—, =—
1 T 2 I n Y% na %

And the expressions of the non-dimensional stress, couple

stress and microstretch inertia components are

where
Rmys
117)

a:(2n+|:—:) b=(m+ )

The boundary conditions are taking the forms

oy (0.5) ~ () = (1+K)T(0,9 +K@(0,5), (26)
ma0.s) = @09, §0.9=0  (27)
—ap(0(L,9) = (1+K)T(0,9) +Ka(Ls),  (28)
“MB(LY=@(19, F(Ls=0.  (29)

We now apply state space approach to the problem, and
then the differential equation2%25) can be expressed as
matrix form as

d — _ _

where
0001 0 u(y,s) 0
0000 1 0 w(y,s) 0
~|oo0000 15 . |6y | 5. | O
A(S) "I RsO00—mO ,V(y,S) - GV( 75) >B(S) - 0
0alOn 0 O W (y,s) 0
0 0b0 0 O d'(y,9) =

where V(y,s) denotes the vector that contains the
components of velocity, microrotation and microstretch

au(y,t
Tyx(Y,t) = (1+ K)% +Ka(y,t) (19)  and their derivatives. The formal solution of the system
y (30) takes the following form
Jdw(y,t - _
o (20 V(s = exdASMV(0.9) 1 HY.S)  (3D)
06 bgU 9w where
my = v’ = h3 av (21) y _
y Bh® dy H(Y.9) —exdAS)] [ exd-A9ZBls)dz  (32)
We now introduce the Laplace transform, defined by the =0
relation " To compute the matrix eXp(s)y], we compute first the
F_(y, S) = / e*s‘F(y,t)dt (22) characteristic equation of the matxs), then we get
0
The differential equationsl-14) reduce to, k®— (Rs+a—mn-+b)k*+ (Rs(b+a) +b(a— mn)k?— Rsab =0
20 0o Solving the above-mentioned characteristic equation, we
S tM—— —Rsu=0 (23) obtain the rootstk;, -k, and +ks. Then, we use the
ay ay Maclaurin series expansion of €Xgs)y] given by
v  du o [A(S)Y]'
Fri no.—aw= 0 (24) expA(s)y] = ZO [ (r!) ] (33)
%9 . 1 We apply the Cayley-Hamilton theorem to write the
0—y2 —bg+ s 0 (25 infinite series 83) in the following form
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expA(s)y] = L(y,s)
= ol 4 C1A+ CrA? + CaA3 + CiA* + CsA®
(34)

where | is the unit matrix of order §cy — cs5) are

parameters obtained in terms of the variables y and s.

Then, by replacing the matrix A with the rootsk;,+k;
and +ks which are obtained before in equatioB4),
hence we get the following system of linear equations
exp=ky]

= CotCiki £ Coki = C3ki cski cski 1=1,2,3.

After solving this system, we can evaluate the scalar

coefficient (co — ¢s), then we can obtain the entries
(Lij;i, ] = 1—6) of the matrixL(y,s) after substituting?,
A2, A3, A* andA® in equation 84). To obtain the explicit
solution of H(y,s), we compute the eXpA(s)y], and
then evaluate the integral in equati@®).

The Maclaurin series expansion of éxp\(s)y] is given

by
(=D [As)y]"
rl

[oe]

expg—A(s)y] = ;

Applying also here Cayley-Hamilton theorem to write the
higher powers of A in terms of I, AA?, A3, A* and A®,
then infinite series can be written in the following form

(35)

C5A5
(36)

expg—A(S)y] = ol — C1A+ oA — c3A3 4 gAY —

Then we can writexp[—A(s)y] in terms ofL;,i, j =1—6.
Hence, equation3(l) can be written in the form

u(y,s) = L110(0,s) + L12w(0,s) + L139(0,s) + L1407 (0,s)
+ L15w'(0,5) + L16¢"(0,5) + H1(Y,S)
(37)

W(Y,S) = L21U(0,S) + L220(0,S) + L23$ (0,s) + L2l (0,5)
+ L5 (0,5) + L2ed’(0,5) 4+ Ha(y, s)
(38)

é(y,8) = L31u(0,s) + L3200(0,s) + L33p(0,s) + L34 (0, )
+ L356I(07 S) + L36¢_’(0, S) + H3(y, S)
(39)

U (y,8) = La1u(0,) 4 La2w(0,s) + L43$(0,5) + Laall (0, s)
+ L456/(07 S) + L46$’(Oa S) =+ H4(y7 S)
(40)

6/()/, S) = L51U_(O, S) + L52(,1_)(07 S) + L53<17(O, S) + L54l7(0, S)
+ L556/(07 S) + L56¢_’(07 S) + H5(ya S)
(41)

d?’(y, S) = LellT(O, S)+ Lezé(o, S)+ Le3(17(0, S)+ L64G’(0, S)
+ L65Q_)/(O, S) + Lee(ﬁ’(o, S) + He(y, S)
(42)

We now apply the boundary conditions on the above
equations satisfied gt= 0, we get

$(0,5)=0 (43)
d0,5) (1+ KU (00{51)+Kw(0 ,S) f_(s) (44)
50,9 = 2109 (45)

n

After substituting the equationg&45) in the equations
(37-42), then we obtain the solution in terms of
u(0,s),a/(0,s) and ¢’(0,s). To obtain these three
components, we apply the remaining boundary conditions
given in equations 28-29) at y = 1 on the above
equations. Therefore, after some calculations and
rearrangement we get the derivatives in terms$ (@ and
Lilj’s, the values ofL(y,s) at y = 1. Finally, after
substituting the values af (0,s), w/(0,s) and¢’(0,s) in
equations37-42), we can obtain easily the expressions of
velocity, microrotation and microstretch and their
derivatives in Laplace domain.

4 The numerical inversion of Laplace
transform

The numerical inversion technique was developed by
Honig and Hirdes 11] to invert Laplace transfotm. The
components of the velocity, microrotation and
microstretch are obtained in the physical domain.
Utilizing this numerical technique, the inverse Laplace
transform of the functiorg(s) is approximated by the

formula
29()+Re<29(c+@) )1

where 0<t < 2T, i = v/—1, € is a small positive number
that corresponds to the degree of accuracy required and N
is sufficiently large integer chosen such that,

| <e

The parametet is a positive free parameter that must be
greater than real parts of all singularitiesgg$).

exp(ct)
T

a1

gt)=

exp(ct)Re [g‘(c ) g NI | <
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5 Numerical results and discussions

We apply the above mentioned technique to the obtained
results by assuming that the moving plate is suddenly
moved with constant velocityf;(t) = H(t), whereH (t) is

the Heaviside step function. From Fig 1, 2 and 3, we
observe that the velocity, microrotation and microstretch
increase in time t and the steady state is obtained at large
value of time. In fig.4, we study the effect of microstretch
parameter, we conclude that this parameter has no
significant influence on the velocity and microrotation
while as we increase the microstretch parameter, we find
that there is an increasing effect on microstretch function

Fig. 3: variation of microstretch versus distance oy = 10,

o(,t)

- 1=0.05

T T
01 02 03 04 05 06 07 08 09 1

Op=n1=n2—o,A1=1a=1y=>1andKk =1.

Fig. 1: variation of velocity versus distance fog = 10, a2 =
n=n—oA=1ap=1yp=1landKk =1.

o, t)

Fig. 4: variation of microstretch versus distance oy = 10,
Op=n1=n2—o,A1=1a=1yp=>1landKk =1.

Fig. 2: variation of microrotation versus distance foy = 10,
y=nN1=nN2—o,A1=1a=1p=LlandK=1.

6 Flow due to the induced pressure gradient

In this part, we assume that the incompressible
microstretch flow starts due to a sudden pressure gradient.
Using the Cartesian coordinates (x,y,z), the components
of velocity, microrotation and microstretch, respectyel
have the following forms, respectivelg,= (u(y,t),0,0),
v=(0,0,w(y,t)) andd = ¢ (y;t).

The initial and slip boundary conditions applied to the
problem are assumed to be

uy,0)0=0 w(y,00=0 and ¢(y,0)=0. (46)

(@© 2018 NSP
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B1u(0,t) = 1x(0,t), &1w(0,t) =m,(0,t)  (47) —N20(1,8) = @'(0,5),$(1,5) =0 (56)
where
BZ(u(hat)) = _Tyx(hat)v EZw(hat) = —myz(hvt) (48) al — %7 02 — @7 ’71 _ @’ ’72 _ @
u H ¥ ¥
¢(h,t)=¢(0,t)=0 (49)  Following the state space technique as is used before, and

where 31 and 3, are the velocity slip parameters of the then the equation$(0-52) can be written in matrix form

lower and upper plates. Alsd&; and &, represent the d— _ _
microrotation parameters of the two plates. These d—V(y,S)ZD(S)V(%S)ﬂLE(S): (57)
parameters are varying from zero to infinity and are y
assumed to depend only on the nature of the fluid and thavhere

material plates. 00010
We now define the dimensionless quantities as 000010
Dg— 000001
h ( ) ~|s000-10
g—Y =2 g=_P g (HHK 0d0of 00
A~ pkh? ~ _ ph? ~ _ pkh3 u(y,s) 0
O T N (L ™ T a(y,9) 0
— D(y,s 0
V(y7s) = 3%,8% 7E(S) = _(p_(s)
b P =™ s By @(y.s) 0
(H+K)2™ Toh’ moh? §'(y.9) <

Using the non-dimensional variables, dropping hats forwhere V(y,s)denotes the vector that contains the

convenience and after introducing the Laplace transformcomponents of velocity, microrotation and microstretch

the differential equationsl{4) become and their derivatives. The formal solution of the matrix
_ _ _ differential equation§0-52) can be written as

0’0 dw < ap

o oy M0 (50) V(y.s) =exD(9)yN (0.9 + G(y.9  (58)
25 T where
Z—‘;’—f?—dazo (51) , -
oo G(y.s) —exiD(s)] [ exp-D(9ZE(.dz  (59)
%9 . 1 0
9y2 &+ s 0 (52) Here, we use the same strategies as before. First, we find
where the characteristic equation of the matiixs) given by
d=(g+ws), e=(mp+mws), 6 4 5
9°—(s+d—f+e)d*+(s(e+d)+e(d—f))I°—sde=0
K2h? 2kh? (H+K) . _ . -
f= m, =) W=—"-7"], After solving the above-mentioned characteristic
YolH Yo Yo equation, we can obtain the rootsd;, +39, and +3J;.
Ko Ko G The Maclaurin series expansion of éRps)y] is given by
- u b) l - 2a07 m2 - ao b © ;
. . - . _ < D9y
The non-dimensional boundary conditiond749) in expD(s)y] = on (60)
£ !

Laplace domain are
Then, afterwards, we apply the Cayley-Hamilton theorem

a,U(0,8) = (1+K)[U(0,5) + wx(0,9)], (53) {0 write the infinite seriesgQ) in the following form
Mmw(0,s) = &'(0,s), $(0,5)=0. (54) exiD(s)y] = £(,9)
= dol + d1D+ d2D2 + d3D3 + d4D4 + d5D5
—ap(u(l,s)) = (1+K)[U'(Ls)+@(l,s)],  (55) - (61)
(@© 2018 NSP
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where | is the sixth order unit matrix andyo — ds) are We now apply the boundary condition©354)
parameters depending on y and s. The characteristic rootatisfied ay = 0, B
+391,+9, and +93 satsify the equation6(l), hence, by $(0,s)=0 (69)
replacing the matrix D with its characteristic roots, we
obtain the following system of linear equations 1K) )
exptdiy] = do+ di 8 £ dp9i £d3d £ dgd £ dsd 1 =1,2,3. ay

_ ' (0,s
After solving this system, we can evaluate the scalar w(0,s) = 05 (71)
coefficient dg — ds, then we can obtain the entries m
(4ij;i, ] = 1—6) of the matrix{(y,s) after substitutindD, After substituting the equations above in the equations

D?, D3, D%, D® in equation 61). The explicit solution of ~ (63-68), then we obtain the solution in terms of
G(y,s) can be determined by using the Maclaurin seriest(0,s),&/(0,s) and ¢’(0,s). To obtain these three
expansion of exfp(s)y] and then by computing the cOomponents, we apply the remaining boundary conditions

integral in equationg?). given in equations §5-56) at y = 1 on the above
The Maclaurin series expansion of éx(s)y] is given ~ equations. Therefore after some calculations and
by rearrangement we get the derivatives in term&-lpé, the
2 (=1)'[D(s)y values of/(y,s) aty = 1. Finally, after substituting the
eXp[_D(S)Y]:rZO r! values of U'(0,s), «'(0,s) and ¢’(0,s) in equations

_ _ o _ (63-68), we can obtain easily the expressions of velocity,
Applying Cayley-Hamilton theorem, the infinite series can micro-rotation and microstretch and their derivatives in
be written in the form Laplace domain.

exp—D(s)y] = dol — d;D + dD? — dgD> + dsD* — dsD®
(62)

Then we can writexp[—D(s)y] in terms of4;j,i, j =
1-6.
Hence, equatiorb@) can be written in the form

u@y,t)

u(y,s) = £110(0,) + £12w(0,s) 4 (13 (0,S) + ¢14U0'(0,5)
+ (1500 (0,8) + £16¢"(0,5) + G1(Y, S)

(63) 0‘ 0‘1 0‘2 0‘3 G‘A 0‘5 0‘6 0‘7 0‘8 0‘.9 1‘
y
cﬁ(y, S) = 821U_(O, S) + fzgé(o, S) + [23(17(0, S) + 8246’(0, S)
Y 77
+ 2500 (0,5) + €269 (0,5) + G2(y; 9) Fig. 5: variation of velocity versus distance forn, = 10, a, =
(64) n=n—oA1=1a=1p=>LlandK=1.

$(y,5) = £310(0,8) + £3200(0,5) + £330 (0, ) + £340 (0, 5)
= (350'(0,8) + (360’ (0,5) + G3(Y,5)
(65)

U(Y,S) = La10(0,9) + £a200(0,) + La3$(0,5) + 44 (0,9)

= L45w (0,S) + {4667 (0,5) + Ga(y, s) _ _ _
66) 7 Numerical results and discussions

> — — e — We have computed u(y,td(y,t) and¢(y,t) for different
W) = £51u_(/0, ) +€52w£’0, S)+0539(0,9) +lsal (0,8) |0 L paprameteg a”a)lgwyd )we ?e(gre)sent the results
= 1550 (0,8) + (564" (0,5) + Gs(y, ) graphically. We consider that the dimensionless pressure
(67)  gradientis given by
¢’ (,S) = £61U(0,S) + L62w(0,S) + 63P (0,5) + Lgall (0,9) —9p_ (t)
= Lesw' (0,5) + 66d’(0,5) + Gs (Y, ) ox
(68)  Where H(t) is the Heaviside unit step function.
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— t1

t=0.2

© t=0.05

0014

89 w AT
5 o T T
s 2 0w
2 S ml|
g %
0 ggmm— y
- “ S Fig 1 Variation of microrotation versus distance
-2 T T T T T T T T T 1 at K=1, t = 0.5, a;=1000, n; =n, =
0 0.1 0.2 03 04 05 06 07 08 09 1 1000, 2; = 1,ap=landy = 1.
¥
Fig. 6: variation of microrotation versus distance foy = 10, Fig. 9: variation of microrotation versus distance foe 0.5,
=N =nNx—o,A1=1a=1ypw=1andK =1. Op=0.nN1=nNr—>0,A1=1a=1y=1landKk =1.

o0 t)

Y
Fig. 7: variation of microstretch versus distance fy = 10, Fig. 10: variation of microstetch versus distancetfer 0.5, o, =
ar=nN1=nNs—o, A =1,8=1y=1andK = 1. o, N =N2—oA=1a=1yp=1landk=1.

K=0.0001

o0 t)

u(y,t)

T T — T —
0 01 02 03 04 05 06 07 08 09 1
y

0 01 02 03 04 05 06 07 08 09 1

¥

Fig. 11: variation of microstretch versus distance éar=n2 =
lLap=n1—oA1=1,a=1yp=1andt=05

Fig. 8: variation of velocity versus distance for= 0.5, a, =

on=n;—oA=1a=1yp=1landKk =1.

monotonically with time. The velocity, microrotation and

microstretch distributions for different values of the
In Figure 5, 6 and 7, we study the variation of velocity, velocity slip parameter are discussed. We conclude that
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