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Abstract: This paper deals with the study of unsteady microstretch Couette and Poiseuille fluid flows between two infinite parallel
plates. Analytical expressions for the velocity, microrotation and microstretch of the fluid flows are obtained using Laplace transform
together with state space approach. The slip boundary conditions for both velocity and microrotation are applied at theboundaries. The
inversion of Laplace transform of the flow field is obtained numerically using a standard numerical technique developed by Honig and
Hirdes. The effects of the physical parameters on the velocity, microrotation and microstretch are discussed through graphs.
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1 Introduction

Microcontinuum field theory was introduced by Eringen
[1] in 1964 to explain the concept of the motion of
micro-elements taking into consideration the internal
characteristics of the substructure particles. Microstretch
fluids are a subclass of simple microfluids. These fluids
have seven degrees of freedom, three for translation, three
for rotation and one for stretch. Microelements of these
fluids can stretch or contract in addition to being
micropolar. Physically, the theory of microstretch fluid
could have rich applications in many fields such as
slurries, paper pulps, insect colonies, blood and other
biological fluids [2].

The classical no-slip boundary conditions are applied
to the Navier-Stokes equations assuming that the liquid
molecules adjacent to the solid are stationary relative to
the solid. This condition is not appropriate for the fluids
with microstructure such as micropolar, microstretch, etc.
A new boundary condition, which is named slip condition
has been proposed by Navier [3]. This condition depends
on the shear stress and permits the fluids to slip at a solid
boundary. In other words, the tangential velocity of fluid
relative to the solid at a point on its surface is proportional
to the tangential stress at the point. The constant of
proportionality between these two quantities may be
termed as a coefficient of sliding friction, it is assumed to
depend only on the nature of the fluid and solid surface.

The slip boundary condition was used by several
researchers in the classical Newtonian fluids [4,5,6,7], in
the micropolar and microstretch fluids [8,9,10,11].

In recent years, many authors have discussed the
micropolar fluid flow problems between two parallel
plates. Faltas et al [13] discussed the problem of unsteady
unidirectional Poiseuille flow with no-slip and no-spin
boundary conditions. Solutions of steady micropolar
Couette and Poiseuille flow can be found in 1968 [12].
The problem of Couette flow bounded by two infinite
parallel plates was considered by Ashmawy [14],
assuming a linear slip boundary condition on the upper
and lower plates. However, the microstretch fluids flows
have received a little attention from researchers. Ariman
[15] discussed the poiseuille flow between parallel plates
in microstretch fluid. Iesan derived a uniqueness theorem
for an incompressible microstretch fluid [16]. Eringen
studied the steady flow of an incompressible microstretch
fluid in circular arteries [17]. The state space approach is
a mathematical model of a physical system and it is
applicable to solve some problems in fluid dynamics. The
state space approach was employed by Devakar and
Iyengar [18] to discuss the Stokes first problem of a
micropolar fluid with no-slip and no-spin conditions.
They also used the same technique in [19,20] to
investigate the Couette and Poiseuille motion of
micropolar fluid assuming that one of the plate moves
suddenly while the other is at rest. Slayi and Ashmawy
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applied this technique to obtain the solution of velocity
and microrotation in Laplace domain to the unsteady slip
flow of a micropolar fluid bounded by two parallel plates
[21]. In 2016, time-dependent slip flow of a micropolar
fluid was studied in [22].
In this paper, we consider the problem of unsteady motion
of microstretch fluid flow through two infinite parallel
plates. Two different cases are discussed. First, we
suppose that the lower plate moves with some velocity. In
the second part, the motion of two parallel plates is
induced by the pressure gradient. The slip condition for
both velocity and microrotation is applied at the
boundaries. The problem has been solved in the Laplace
domain using state space approach method. The inverse
transforms are obtained using a numerical technique to
get the velocity, micro-rotation and microstretch in
space-time domain. The results are presented and
discussed graphically.

2 Basic and constitutive equations of
microstretch fluid

The equations concerning the flow of an incompressible
microstretch fluid with no body loads are given by

∇ ·q = 0, (1)

ρ
dq
dt

= ∇(λ0ϕ − p)+κ∇×ν− (µ +κ)∇×∇×q, (2)

ρ j dν
dt =−2κν +κ∇×q− γ0∇×∇×ν +(α0+β0+ γ0)∇(∇ ·ν),

(3)

1
2

ρ j
dϕ
dt

= a0∇ ·∇ϕ +π0−λ0(∇ ·q)−λ1ϕ (4)

The constitutive equations for the stresses, couple stresses
and internal microstretch force density are given as

ti j = (λ qr,r +λ0ϕ − p)δi j + µqi, j +(µ +κ)q j,i−κεi jkνk
(5)

mi j = α0νr,rδi j +β0νi, j + γ0ν j,i − b0εi jkϕ,k (6)

mk = a0ϕ,k + b0εi jkνi, j (7)

whereρ and j represent the fluid density and gyration
parameters, respectively. They are assumed to be
constants. Also,δi j and εi jk are denoting, respectively,
Kronecker delta function and the alternating tensor. The
vectors q and ν are respresenting, respectively, the
velocity and microrotation of the fluid flow.ϕ denotes the

microsretch scalar function.p denotes the pressure of
fluid at any point. The material constants (µ , κ , λ0, λ1,
a0) represent the viscosity coefficients and (α0 , β0 , γ0)
represent the gyro-viscosity coefficients.

3 Unsteady Couette flow of microstretch fluid

Let us consider the incompressible microstretch fluid
bounded by two horizontal parallel plates separated by a
distance h. The motion is assumed to be unsteady.
Initially, The two plates are fixed. Whent ≻ 0, the lower
plate position changes and moves along the x-direction by
a time-dependent velocity of magnitudeU f (t) while the
upper plate is held fixed. Assuming that the pressure
gradient is zero. Using the Cartesian coordinates(x,y,z),
the components of velocity, microrotation and
microstretch, respectively, have the following forms
q = (u(y, t),0,0), ν = (0,0,ω(y, t)) andϕ = ϕ(y, t).

The proposed initial and boundary conditions are

u(y,0) = 0 ω(y,0) = 0 and ϕ(y,0) = 0. (8)

β1(u(0, t)−U f (t)) = τyx(0, t), ξ1ω(0, t) = myz(0, t)
(9)

β2(u(h, t)) =−τyx(h, t), ξ2ω(h, t) =−myz(h, t) (10)

ϕ(h, t) = ϕ(0, t) = 0 (11)

whereβ1 and β2 are the velocity slip parameters of the
lower and upper plates. Also,ξ1 and ξ2 represent the
microrotation parameters of the two plates. These
parameters are varying from zero to infinity and are
assumed to depend only on the nature of the fluid and the
material plates.
Let us introduce the following non-dimensional variables

ŷ =
y
h
, û =

u
U
, t̂ =

U
h

t, ω̂ =
h
U

ω , τ̂yx =
h

Uµ
τyx,

m̂yz =
h2

β0U
myz, m̂k =

mk

π0h
, ϕ̂ =

a0

π0h2 ϕ

Using the above variables and dropping hats for
convenience, the differential equations (1-4) become

R
∂u
∂ t

= m
∂ω
∂y

+
∂ 2u
∂y2 (12)

R
n2

∂ω
∂ t

=−2nω − n
∂u
∂y

+
∂ 2ω
∂y2 (13)
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Rm1

n2

∂ϕ
∂ t

=−m2ϕ +1+
∂ 2ϕ
∂y2 (14)

where

R=
ρuh

(µ +κ)
, n2=

2+K
2(1+K)

, m=
K

1+K
, n=K

h2

γ0

K =
κ
µ
, m1 =

γ
2a0

, m2 =
λ1h2

a0
.

The initial and boundary conditions(8− 11) in terms of
dimensionless quantities can be written as

u(y,0) = 0 and ω(y,0) = 0 ϕ(y,0) = 0. (15)

α1(u(0, t)− f (t)) = τyx(0, t), η1ω(0, t) = myz(0, t)
(16)

−α2(u(1, t)) = τyx(1, t), −η2ω(1, t) = myz(1, t) (17)

ϕ(0, t) = ϕ(1, t) = 0 (18)

where

α1 =
hβ1

µ
, α2 =

hβ2

µ
, η1 =

hξ1

γ0
, η2 =

hξ2

γ0

And the expressions of the non-dimensional stress, couple
stress and microstretch inertia components are

τyx(y, t) = (1+K)
∂u(y, t)

∂y
+Kω(y, t) (19)

myz =
γ0

β0

∂ω(y, t)
∂y

(20)

my =
∂ϕ
∂y

, mx =
−b0U
π0h3

∂ω
∂y

(21)

We now introduce the Laplace transform, defined by the
relation

F̄(y,s) =
∫ ∞

0
e−stF(y, t)dt (22)

The differential equations (12-14) reduce to,

∂ 2ū
∂y2 +m

∂ω̄
∂y

−Rsū = 0 (23)

∂ 2ω̄
∂y2 − n

∂ ū
∂y

− aω̄ = 0 (24)

∂ 2ϕ̄
∂y2 − bϕ̄ +

1
s
= 0 (25)

where

a = (2n+
Rs
n2

) b = (m2+
Rm1s

n2
)

The boundary conditions are taking the forms

α1(ū(0,s)− f̄ (s)) = (1+K)ū′(0,s)+Kω̄(0,s), (26)

η1ω̄(0,s) = ω̄ ′(0,s), ϕ̄(0,s) = 0. (27)

−α2(ū(1,s)) = (1+K)ū′(0,s)+Kω̄(1,s), (28)

−η2ω̄(1,s) = ω̄ ′(1,s), ϕ̄(1,s) = 0. (29)

We now apply state space approach to the problem, and
then the differential equations (23-25) can be expressed as
matrix form as

d
dy

V̄ (y,s) = A(s)V̄ (y,s)+ B̄(s); (30)

where

A(s) =















0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Rs 0 0 0−m 0
0 a 0 n 0 0
0 0 b 0 0 0















,V̄ (y,s) =















ū(y,s)
ω̄(y,s)
ϕ̄(y,s)
ū′(y,s)
ω̄ ′(y,s)
ϕ̄ ′(y,s)















, B̄(s) =















0
0
0
0
0
−1
s















where V̄ (y,s) denotes the vector that contains the
components of velocity, microrotation and microstretch
and their derivatives. The formal solution of the system
(30) takes the following form

V̄ (y,s) = exp[A(s)y]V̄ (0,s)+H(y,s) (31)

where

H(y,s) = exp[A(s)y]
∫ y

z=0
exp[−A(s)z]B̄(s)dz (32)

To compute the matrix exp[A(s)y], we compute first the
characteristic equation of the matrixA(s), then we get

k6− (Rs+ a−mn+ b)k4+(Rs(b+ a)+ b(a−mn)k2−Rsab = 0

Solving the above-mentioned characteristic equation, we
obtain the roots±k1, ±k2 and ±k3. Then, we use the
Maclaurin series expansion of exp[A(s)y] given by

exp[A(s)y] =
∞

∑
r=0

[A(s)y]r

r!
(33)

We apply the Cayley-Hamilton theorem to write the
infinite series (33) in the following form
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exp[A(s)y] = L(y,s)

= c0I+ c1A+ c2A2+ c3A3+ c4A4+ c5A5

. (34)

where I is the unit matrix of order 6.(c0 − c5) are
parameters obtained in terms of the variables y and s.
Then, by replacing the matrix A with the roots±k1,±k2
and ±k3 which are obtained before in equation (34),
hence we get the following system of linear equations

exp[±kiy] = c0±c1ki±c2ki±c3ki±c4ki±c5ki i= 1,2,3.

After solving this system, we can evaluate the scalar
coefficient (c0 − c5), then we can obtain the entries
(Li j; i, j = 1−6) of the matrixL(y,s) after substitutingA,
A2, A3, A4 andA5 in equation (34). To obtain the explicit
solution of H(y,s), we compute the exp[−A(s)y], and
then evaluate the integral in equation (32).
The Maclaurin series expansion of exp[−A(s)y] is given
by

exp[−A(s)y] =
∞

∑
r=0

(−1)r[A(s)y]r

r!
(35)

Applying also here Cayley-Hamilton theorem to write the
higher powers of A in terms of I, A,A2, A3, A4 andA5,
then infinite series can be written in the following form

exp[−A(s)y] = c0I− c1A+ c2A2− c3A3+ c4A4− c5A5

.(36)

Then we can writeexp[−A(s)y] in terms ofLi j, i, j = 1−6.
Hence, equation (31) can be written in the form

ū(y,s) = L11ū(0,s)+L12ω̄(0,s)+L13ϕ̄(0,s)+L14ū
′(0,s)

+ L15ω̄ ′(0,s)+L16ϕ̄ ′(0,s)+H1(y,s)

(37)

ω̄(y,s) = L21ū(0,s)+L22ω̄(0,s)+L23ϕ̄(0,s)+L24ū′(0,s)

+ L25ω̄ ′(0,s)+L26ϕ̄ ′(0,s)+H2(y,s)

(38)

ϕ̄(y,s) = L31ū(0,s)+L32ω̄(0,s)+L33ϕ̄(0,s)+L34ū′(0,s)

+ L35ω̄ ′(0,s)+L36ϕ̄ ′(0,s)+H3(y,s)

(39)

ū′(y,s) = L41ū(0,s)+L42ω̄(0,s)+L43ϕ̄(0,s)+L44ū
′(0,s)

+ L45ω̄ ′(0,s)+L46ϕ̄ ′(0,s)+H4(y,s)

(40)

ω̄ ′(y,s) = L51ū(0,s)+L52ω̄(0,s)+L53ϕ̄(0,s)+L54ū′(0,s)

+ L55ω̄ ′(0,s)+L56ϕ̄ ′(0,s)+H5(y,s)

(41)

ϕ̄ ′(y,s) = L61ū(0,s)+L62ω̄(0,s)+L63ϕ̄(0,s)+L64ū′(0,s)

+ L65ω̄ ′(0,s)+L66ϕ̄ ′(0,s)+H6(y,s)

(42)

We now apply the boundary conditions on the above
equations satisfied aty = 0, we get

ϕ̄(0,s) = 0 (43)

ū(0,s) =
(1+K)ū′(0,s)+Kω̄(0,s)

α1
+ f̄ (s) (44)

ω̄(0,s) =
ω̄ ′(0,s)

η1
(45)

After substituting the equations (43-45) in the equations
(37-42), then we obtain the solution in terms of
ū′(0,s),ω̄ ′(0,s) and ϕ̄ ′(0,s). To obtain these three
components, we apply the remaining boundary conditions
given in equations (28-29) at y = 1 on the above
equations. Therefore, after some calculations and
rearrangement we get the derivatives in terms off̄ (s) and
L1

i j ’s, the values of L(y,s) at y = 1. Finally, after
substituting the values of ¯u′(0,s), ω̄ ′(0,s) and ϕ̄ ′(0,s) in
equations (37-42), we can obtain easily the expressions of
velocity, microrotation and microstretch and their
derivatives in Laplace domain.

4 The numerical inversion of Laplace
transform

The numerical inversion technique was developed by
Honig and Hirdes [11] to invert Laplace transfotm. The
components of the velocity, microrotation and
microstretch are obtained in the physical domain.
Utilizing this numerical technique, the inverse Laplace
transform of the function ¯g(s) is approximated by the
formula

g(t)=
exp(ct)

T

[

1
2

ḡ(c)+Re

(

N

∑
k=1

ḡ

(

c+
ikπ
T

)

exp(
ikπt

T

)]

where 0< t < 2T , i =
√
−1, ε is a small positive number

that corresponds to the degree of accuracy required and N
is sufficiently large integer chosen such that,

exp(ct)Re

[

ḡ(c+
iNπ
T

)exp(
iNπt

T
)

]

< ε,

The parameterc is a positive free parameter that must be
greater than real parts of all singularities of ¯g(s).
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5 Numerical results and discussions

We apply the above mentioned technique to the obtained
results by assuming that the moving plate is suddenly
moved with constant velocity;f (t) = H(t), whereH(t) is
the Heaviside step function. From Fig 1, 2 and 3, we
observe that the velocity, microrotation and microstretch
increase in time t and the steady state is obtained at large
value of time. In fig.4, we study the effect of microstretch
parameter, we conclude that this parameter has no
significant influence on the velocity and microrotation
while as we increase the microstretch parameter, we find
that there is an increasing effect on microstretch function.

Fig. 1: variation of velocity versus distance forα1 = 10, α2 =
η1 = η2 → ∞, λ1 = 1, a0 = 1, γ0 = 1 andK = 1.

Fig. 2: variation of microrotation versus distance forα1 = 10,
α2 = η1 = η2 → ∞, λ1 = 1, a0 = 1, γ0 = 1 andK = 1.

Fig. 3: variation of microstretch versus distance forα1 = 10,
α2 = η1 = η2 → ∞, λ1 = 1, a0 = 1, γ0 = 1 andK = 1.

Fig. 4: variation of microstretch versus distance forα1 = 10,
α2 = η1 = η2 → ∞, λ1 = 1, a0 = 1, γ0 = 1 andK = 1.

6 Flow due to the induced pressure gradient

In this part, we assume that the incompressible
microstretch flow starts due to a sudden pressure gradient.
Using the Cartesian coordinates (x,y,z), the components
of velocity, microrotation and microstretch, respectively,
have the following forms, respectively,q = (u(y, t),0,0),
ν = (0,0,ω(y, t)) andϕ = ϕ(y, t).

The initial and slip boundary conditions applied to the
problem are assumed to be

u(y,0) = 0 ω(y,0) = 0 and ϕ(y,0) = 0. (46)
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β1u(0, t) = τyx(0, t), ξ1ω(0, t) = myz(0, t) (47)

β2(u(h, t)) =−τyx(h, t), ξ2ω(h, t) =−myz(h, t) (48)

ϕ(h, t) = ϕ(0, t) = 0 (49)

whereβ1 and β2 are the velocity slip parameters of the
lower and upper plates. Also,ξ1 and ξ2 represent the
microrotation parameters of the two plates. These
parameters are varying from zero to infinity and are
assumed to depend only on the nature of the fluid and the
material plates.
We now define the dimensionless quantities as

ŷ =
y
h
, x̂ =

x
h
, û =

ρh
(µ +κ)

u, t̂ =
(µ +κ)

ρh2 t,

ω̂ = ρκh2

(µ+κ)2 ω , τ̂yx =
ρh2

(µ+κ)2 τyx, m̂yz =
ρκh3

γ0(µ+κ)2 myz

p̂ =
ρh2

(µ +κ)2 p, m̂k =
mk

π0h
, ϕ̂ =

a0

π0h2 ϕ

Using the non-dimensional variables, dropping hats for
convenience and after introducing the Laplace transform,
the differential equations (1-4) become

∂ 2ū
∂y2 +

∂ω̄
∂y

− sū−
∂ p̄
∂x

= 0 (50)

∂ 2ω̄
∂y2 − f

∂ ū
∂y

− dω̄ = 0 (51)

∂ 2ϕ̄
∂y2 − eϕ̄ +

1
s
= 0 (52)

where

d = (g+ws), e = (m2+m1ws),

f =
K2h2

γ0(µ +κ)
, g =

2κh2

γ0
, w =

(µ +κ)
γ0

j,

K =
κ
µ
, m1 =

γ0

2a0
, m2 =

λ1h2

a0
,

The non-dimensional boundary conditions (47-49) in
Laplace domain are

α1ū(0,s) = (1+K)[ū′(0,s)+ ω̄(0,s)], (53)

η1ω̄(0,s) = ω̄ ′(0,s), ϕ̄(0,s) = 0. (54)

−α2(ū(1,s)) = (1+K)[ū′(1,s)+ ω̄(1,s)], (55)

−η2ω̄(1,s) = ω̄ ′(0,s), ϕ̄(1,s) = 0 (56)

where

α1 =
hβ1

µ
, α2 =

hβ2

µ
, η1 =

hξ1

γ0
, η2 =

hξ2

γ0

Following the state space technique as is used before, and
then the equations (50-52) can be written in matrix form
as

d
dy

V̄ (y,s) = D(s)V̄ (y,s)+ Ē(s); (57)

where

D(s) =















0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
s 0 0 0−1 0
0 d 0 f 0 0
0 0 e 0 0 0















V̄ (y,s) =















ū(y,s)
ω̄(y,s)
ϕ̄(y,s)
ū′(y,s)
ω̄ ′(y,s)
ϕ̄ ′(y,s)















, Ē(s) =















0
0
0

−ϕ̄(s)
0
−1
s















where V̄ (y,s)denotes the vector that contains the
components of velocity, microrotation and microstretch
and their derivatives. The formal solution of the matrix
differential equation (50-52) can be written as

V̄ (y,s) = exp[D(s)y]V̄ (0,s)+G(y,s) (58)

where

G(y,s) = exp[D(s)y]
∫ y

z=0
exp[−D(s)z] ¯E(s),dz (59)

Here, we use the same strategies as before. First, we find
the characteristic equation of the matrixD(s) given by

ϑ 6−(s+d− f +e)ϑ 4+(s(e+d)+e(d− f ))ϑ 2−sde= 0

After solving the above-mentioned characteristic
equation, we can obtain the roots±ϑ1, ±ϑ2 and±ϑ3.
The Maclaurin series expansion of exp[D(s)y] is given by

exp[D(s)y] =
∞

∑
r=0

[D(s)y]r

r!
(60)

Then, afterwards, we apply the Cayley-Hamilton theorem
to write the infinite series (60) in the following form

exp[D(s)y] = ℓ(y,s)

= d0I+ d1D+ d2D2+ d3D3+ d4D4+ d5D5

. (61)
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where I is the sixth order unit matrix and(d0 − d5) are
parameters depending on y and s. The characteristic roots
±ϑ1,±ϑ2 and±ϑ3 satsify the equation (61), hence, by
replacing the matrix D with its characteristic roots, we
obtain the following system of linear equations

exp[±ϑiy] = d0± d1ϑi ± d2ϑi ± d3ϑi ± d4ϑi ± d5ϑi i = 1,2,3.

After solving this system, we can evaluate the scalar
coefficient d0 − d5, then we can obtain the entries
(ℓi j; i, j = 1−6) of the matrixℓ(y,s) after substitutingD,
D2, D3, D4, D5 in equation (61). The explicit solution of
G(y,s) can be determined by using the Maclaurin series
expansion of exp[D(s)y] and then by computing the
integral in equation (67).
The Maclaurin series expansion of exp[−D(s)y] is given
by

exp[−D(s)y] =
∞

∑
r=0

(−1)r[D(s)y]r

r!

Applying Cayley-Hamilton theorem, the infinite series can
be written in the form

exp[−D(s)y] = d0I − d1D+ d2D2− d3D3+ d4D4− d5D5

.(62)

Then we can writeexp[−D(s)y] in terms ofℓi j, i, j =
1−6.

Hence, equation (58) can be written in the form

ū(y,s) = ℓ11ū(0,s)+ ℓ12ω̄(0,s)+ ℓ13ϕ̄(0,s)+ ℓ14ū
′(0,s)

+ ℓ15ω̄ ′(0,s)+ ℓ16ϕ̄ ′(0,s)+G1(y,s)

(63)

ω̄(y,s) = ℓ21ū(0,s)+ ℓ22ω̄(0,s)+ ℓ23ϕ̄(0,s)+ ℓ24ū
′(0,s)

+ ℓ25ω̄ ′(0,s)+ ℓ26ϕ̄ ′(0,s)+G2(y,s)

(64)

ϕ̄(y,s) = ℓ31ū(0,s)+ ℓ32ω̄(0,s)+ ℓ33ϕ̄(0,s)+ ℓ34ū
′(0,s)

= ℓ35ω̄ ′(0,s)+ ℓ36ϕ̄ ′(0,s)+G3(y,s)

(65)

ū′(y,s) = ℓ41ū(0,s)+ ℓ42ω̄(0,s)+ ℓ43ϕ̄(0,s)+ ℓ44ū
′(0,s)

= ℓ45ω̄ ′(0,s)+ ℓ46ϕ̄ ′(0,s)+G4(y,s)

(66)

ω̄ ′(y,s) = ℓ51ū(0,s)+ ℓ52ω̄(0,s)+ ℓ53ϕ̄(0,s)+ ℓ54ū
′(0,s)

= ℓ55ω̄ ′(0,s)+ ℓ56ϕ̄ ′(0,s)+G5(y,s)

(67)

ϕ̄ ′(y,s) = ℓ61ū(0,s)+ ℓ62ω̄(0,s)+ ℓ63ϕ̄(0,s)+ ℓ64ū
′(0,s)

= ℓ65ω̄ ′(0,s)+ ℓ66ϕ̄ ′(0,s)+G6(y,s)

(68)

We now apply the boundary conditions (53-54)
satisfied aty = 0,

ϕ̄(0,s) = 0 (69)

ū(0,s) =
(1+K)[ū′(0,s)+ ω̄(0,s)]

α1
(70)

ω̄(0,s) =
ω̄ ′(0,s)

η1
(71)

After substituting the equations above in the equations
(63-68), then we obtain the solution in terms of
ū′(0,s),ω̄ ′(0,s) and ϕ̄ ′(0,s). To obtain these three
components, we apply the remaining boundary conditions
given in equations (55-56) at y = 1 on the above
equations. Therefore after some calculations and
rearrangement we get the derivatives in terms ofℓ1

i j ’s, the
values ofℓ(y,s) at y = 1. Finally, after substituting the
values of ¯u′(0,s), ω̄ ′(0,s) and ϕ̄ ′(0,s) in equations
(63-68), we can obtain easily the expressions of velocity,
micro-rotation and microstretch and their derivatives in
Laplace domain.

Fig. 5: variation of velocity versus distance forα1 = 10, α2 =
η1 = η2 → ∞, λ1 = 1, a0 = 1, γ0 = 1 andK = 1.

7 Numerical results and discussions

We have computed u(y,t),ω(y, t) andϕ(y, t) for different
values of parameters and we represent the results
graphically. We consider that the dimensionless pressure
gradient is given by

−∂ p
∂x

= H(t)

Where H(t) is the Heaviside unit step function.
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Fig. 6: variation of microrotation versus distance forα1 = 10,
α2 = η1 = η2 → ∞, λ1 = 1, a0 = 1, γ0 = 1 andK = 1.

Fig. 7: variation of microstretch versus distance forα1 = 10,
α2 = η1 = η2 → ∞, λ1 = 1, a0 = 1, γ0 = 1 andK = 1.

Fig. 8: variation of velocity versus distance fort = 0.5, α2 =
∞,η1 = η2 → ∞, λ1 = 1, a0 = 1, γ0 = 1 andK = 1.

In Figure 5, 6 and 7, we study the variation of velocity,
microrotation and microstretch with distance for different
times, we can conclude that their values increase

Fig. 9: variation of microrotation versus distance fort = 0.5,
α2 = ∞,η1 = η2 → ∞, λ1 = 1, a0 = 1, γ0 = 1 andK = 1.

Fig. 10:variation of microstetch versus distance fort = 0.5,α2 =
∞, η1 = η2 → ∞, λ1 = 1, a0 = 1, γ0 = 1 andK = 1.

Fig. 11: variation of microstretch versus distance forα1 = η2=
1, α2 = η1 → ∞, λ1 = 1, a0 = 1, γ0 = 1 andt = 0.5

monotonically with time. The velocity, microrotation and
microstretch distributions for different values of the
velocity slip parameter are discussed. We conclude that
this parameter does not affect microstretch in Fig. 10,
while it has a considerable effect on the velocity and
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microrotation in Figs.8 and 9. Finally we discuss the
effect of micropolarity parameter. In addition, we also
observe that this parameter has no effect on microstretch
as in Fig.11, but it has a considerable effect on velocity
and microrotation.

8 Conclusion

The unsteady motion of an incompressible microstretch
fluid flow between two infinite parallel plates is
investigated through the state space approach. Two cases
are studied; in the first case, the fluid motion is caused by
the time-dependent motion of the lower plate with no
pressure gradient while the upper plate is kept fixed. In
the second case, the fluid motion is induced by a constant
pressure gradient where the two plates are set stationary.
The slip boundary condition is applied for both velocity
and microrotation on the two plane boundaries. The
Laplace transform technique is employed to obtain the
flow field functions analytically in the Laplace domain
using state space method. The Laplace transform is
inverted numerically and the flow field functions are
represented graphically. The effect of the physical
parameters such as the slip parameters, micropolarity
constant and microstretch coefficients are discussed
numerically through graphs. The classical case of no slip
can be recovered as a special case of the present work
when the slip parameters approach infinity. In addition, it
is concluded that micropolarity parameter has a small
influence on the microstretch function while its effect on
the velocity and microrotation functions is remarkable.
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