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Abstract: In this paper, we study the oscillation of the second-order nonlinear neutral generalizedα−difference equation of the form

∆α(ℓ)(a(n)∆α(ℓ)(x(n)+δ p(n)x(n− τℓ)))+ f (n,x(n−σℓ))−g(n,x(n−ρℓ)) = 0.

We obtain the oscillation criteria and provide some examples to illustrate the results.
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1 Introduction

Difference equations manifest themselves as
mathematical models describing real life situations in
probability theory, queuing models, statistical analysis,
genetics in Biology, economics, psychology, sociology
etc. These are only considered as discrete analog of
differential equations several times. In fact difference
equations appeared much earlier then differential
equations and were instrumental in paving the way for the
development of the later. Only recently, that difference
equations have started receiving the attention that they
deserve.

The conventional theory of difference equations is based
on the operator∆ is defined as

∆ [u(n)] = u(n+1)−u(n), n∈ N= {0,1,2,3, · · ·}. (1)

Many authors such as Agarwal [1], Mickens [12], Elaydi
[13] and Kelly [15] mentioned the same definition of the
difference operator∆ and given by

∆ [u(n)] = u(n+ ℓ)−u(n), n∈R, ℓ ∈ R−{0}, (2)

as the incremental factorℓ is different from unity,
researchers struggled to establish new results based on the

definition of ∆ given in (2). Recently, Manuel et al. [11]
considered operator in (2) and established some new
results and new properties related to the solutions of
difference equations involve∆ℓ, which is the notation
preferred by the authors to distinguish the operators,
defined in (1) and (2).

Popenda and Szmanda [4,5], introduced∆ as

∆α [u(n)] = u(n+1)−αu(n) (3)

and studied certain type of difference equations. Very
recently Kilicman et al. [8,9,10] introduced the new
operator as

∆α(ℓ)[u(n)] = u(n+ ℓ)−αu(n) (4)

named it as the generalizedα-difference operator since it
generalizes the previous operators which were defined in
(1), (2) and (3) and established many related results and
new properties on the behavior of solutions. The
generalized α-difference operator involves and
generalizes many difference equations asα−difference
equation. For further study one can refer to related
literature such as [3,6,7].
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Throughout this paper we use the following notations.
(a)N= {0,1,2,3, . . .}, N(a) = {a,a+1,a+2, . . .},
(b)Nℓ(a) = {a,a+ ℓ,a+2ℓ, . . .}.
(c) ⌈x⌉ upper integer part ofx.

(d) j = n−ni −
[

n−ni
ℓ

]

ℓ,ni ∈ [0,∞).

(e) λ = max{τ,σ ,ρ}.

In the present study, we consider nonlinear generalized
α−difference equations having the form

∆α(ℓ)(a(n)∆α(ℓ)(x(n)+ δ p(n)x(n− τℓ)))
+ f (n,x(n−σℓ))−g(n,x(n−ρℓ))= 0, (5)

where δ = ±1, n ≥ n0, a(n) > 0 with ∆α(ℓ)a(n) > 0,
p(n) > 0 bounded sequence,f (n,u) and g(n,v) are
continuous, andℓ,τ,σ ,ρ ∈ [0,∞).

Denoteλ = max{τ,σ ,ρ}, n1 = n0+λ ℓ,

L1[n0,∞) =

{

x(n),
∞

∑
s=n0

|x(s)|< ∞

}

.

The motivation is based on work by Wu et. al. [14] and
consider the following assumptions.

(H1)
∞

∑
s=n

1
αsa(sℓ)

= ∞ for all n≥ n0,

(H2)
f (n,u)

u
≥ q(n−σℓ)> 0 for u 6= 0 and

g(n,v)
v

≤ r(n−ρℓ) for v 6= 0,

(H3) 0<
f (n,u)

u
≤ q(n−σℓ) for u 6= 0 and

g(n,v)
v

≥ r(n−ρℓ)> 0 for v 6= 0,

(H4)
1

ασ−ρ r(n)−q(n)
is bounded forσ > ρ ,

(H5)
1

r(n)−αρ−σq(n)
is bounded forσ < ρ , wherer,q∈

C([n0,∞),R+).

Next, we recall the following definitions:

Definition 1.[7] The inverse operator∆−1
α(ℓ)

is defined if

∆α(ℓ)v(n) = u(n), then

∆−1
α(ℓ)[u(n)] = v(n)−α[ n

ℓ ]v( j) (6)

where n∈ Nℓ( j), j = n−
[

n
ℓ

]

ℓ.

In more general form is given in [11] by

∆−1
α(ℓ)[u(n)] =

[

n−a− j−ℓ
ℓ

]

∑
r=0

u(a+ j + rℓ)

α
⌈

a+ j+ℓ−n+rℓ
ℓ

⌉ +α⌈ n
ℓ ⌉u(a+ j),

(7)

for all n ∈ Nℓ( j), where j= n−a−
[

n−a
ℓ

]

ℓ.

Definition 2.[7] The solution of (5) is called oscillatory if
there exists an n2 ∈ Nℓ(n1) for n1 ∈ [a,∞), such that
x(n2)x(n2 + ℓ) ≤ 0. If all solutions are oscillatory then
equation known as oscillatory, Similarly, if not, then
equation non-oscillatory (i.e. x(n)x(n+ ℓ) > 0 for all
n∈ [n1,∞)).

2 Oscillation Criteria of ( 5) when δ =+1

In the next we prove some oscillation criterions whenδ =
1 and illustrate them with suitable examples.
Whenδ = 1, the equation(5) can be rewritten as

∆α(ℓ)(a(n)∆α(ℓ)(x(n)+ p(n)x(n− τℓ)))
+ f (n,x(n−σℓ))−g(n,x(n−ρℓ))= 0. (8)

Theorem 1.Let the conditions(H1), (H2) and (H4) be
held, and further q(n)> r(n), r(n) is bounded andσ > ρ .
Then(8) is bounded oscillatory.

Proof.Let x(n) be a bounded and non-oscillatory. Then
x(n) is an eventually positive solution. That isx(n) > 0
andx(n−λ )> 0 for n≥ n2. Let

z(n) = a(n)∆α(ℓ)(x(n)+ p(n)x(n− τℓ))

−
σ−1

∑
s=ρ

αs−ρr(n− sℓ− ℓ)x(n− sℓ− ℓ). (9)

From (8) and(H2) it follows that

∆α(ℓ)z(n)≤
(

ασ−ρ r(n−σℓ)−q(n−σℓ)
)

x(n−σℓ)< 0,
(10)

for n≥ n2.
Soz(n) is decreasing, and−∞ ≤ lim

n→∞
z(n) = c< ∞.

If c= −∞, from (9) and sincex(n) andr(n) bounded, we
have

lim
n→∞

a(n)∆α(ℓ)(x(n)+ p(n)x(n− τℓ)) =−∞

Then there existsk1 > 0 andn3 ≥ n2 such that

∆α(ℓ)(x(n)+ p(n)x(n− τℓ))≤
−k1

a(n)
, n≥ n3.

then it follows that

x(n)+ p(n)x(n− τℓ)

=−k1α
⌈

n−n3
ℓ

⌉

(x(n3+ j)+ p(n3+ j)x(n3+ j − τℓ))

−k1

[

n−n3−ℓ− j
ℓ

]

∑
r=0

1

α
⌈

n3+ j+ℓ−n+rℓ
ℓ

⌉

a(n3+ j + ℓ+ rℓ)

As n→ ∞, according to(H1), we obtain

lim
n→∞

(x(n)+ p(n)x(n− τℓ)) =−∞.
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That is a contradiction with consideringx(n) and q(n)
bounded. Thus we have|c|< ∞, andz(n) is bounded.
From (10) it follows that

x(n−σℓ)≤
1

ασ−ρr(n−σℓ)−q(n−σℓ)
∆α(ℓ)z(n). (11)

So,x∈ L1[n0,∞) by (H4).
(i) If c> 0, using (9) we obtain

z(n)≤ a(n)∆α(ℓ)(x(n)+ p(n)x(n− τℓ)), n≥ n2.

Now, sincez(n)→ c asn→ ∞, leads to

∆α(ℓ)(x(n)+ p(n)x(n− τℓ))≥
c

a(n)
, n≥ n2

and

x(n)+ p(n)x(n− τℓ)

= cα
⌈

n−n2
ℓ

⌉

(x(n2+ j)+ p(n2+ j)x(n2+ j − τℓ))

+c

[

n−n2−ℓ− j
ℓ

]

∑
r=0

1

α
⌈

n2+ j+ℓ−n+rℓ
ℓ

⌉

a(n2+ j + ℓ+ rℓ)
.

On using(H1) then lim
n→∞

(x(n)+ p(n)x(n− τℓ)) = ∞, that

contradicts with assumption thatx(n) is bounded.

(ii) If c< 0, andx∈ L1[n0,∞), we have

lim
n→∞

σ−1

∑
s=ρ

αs−ρ r(n− sℓ− ℓ)x(n− sℓ− ℓ)= 0.

Then, sincez(n) → c asn → ∞, there existsε ∈ (0,−c)
andn4 ≥ n2 such that

a(n)∆α(ℓ)(x(n)+ p(n)x(n− τℓ))≤ c+ ε < 0, n≥ n4

and

x(n)+ p(n)x(n− τℓ)

= (c+ ε)α
⌈

n−n4
ℓ

⌉

(x(n4+ j)+ p(n4+ j)x(n4+ j − τℓ))

+(c+ ε)

[

n−n4−ℓ− j
ℓ

]

∑
r=0

1

α
⌈

n4+ j+ℓ−n+rℓ
ℓ

⌉

a(n4+ j + ℓ+ rℓ)

Hence, by(H1) again, we obtain

lim
n→∞

(x(n)+ p(n)x(n− τℓ)) =−∞,

that is also a contradiction by assuming thatx(n) andq(n)
bounded.

(iii) If c= 0, and∆α(ℓ)z(n)< 0, then we havez(n)> 0.
So

a(n)∆α(ℓ)(x(n)+ p(n)x(n− τℓ))

>
σ−1

∑
s=ρ

αs−ρ r(n− (s+1)ℓ)x(n− (s+1)ℓ)> 0, n≥ n2.

Sincex(n)+ p(n)x(n− τℓ) is positive and increasing, the
summation

∞

∑
s=n0

(x(s)+ p(s)x(s− τℓ))

does not converge, that is a contradiction again saying
thatx∈ L1[n0,∞). These contradictions show that (8) has
no bounded positive solution. Now, suppose conversely
that x(n) has a bounded eventually negative solution.
Then x(n− λ ℓ) < 0 for somen2 > n1 and all n ≥ n2.
From (8), (9) and(H1), we have

∆α(ℓ)z(n) ≥ (ασ−ρ r(n−σℓ)−q(n−σℓ))x(n−σℓ)> 0,

n≥ n2. (12)

Thus,z(n) is increasing and−∞ < lim
n→∞

z(n) = c≤ ∞. That

is every bounded solution of (8) is oscillatory.

Example 1.Consider

∆α(ℓ)

(

n∆α(ℓ)(x(n)+2x(n−2ℓ))
)

+3n(1+α)2x(n−3ℓ)−3(ℓ+αℓ)x(n−2ℓ)= 0 (13)

viewing (13) as (8), we havea(n) = n, p(n) = 2> 0, and

q(n) = 3(1+α)2(n+3ℓ)> r(n) = 3ℓ(1+α)> 0.

Further,τ = 2, σ = 3, ρ = 2 and r(n) is bounded for
n ≥ 3ℓ. That is the theorem1 is held and the equation is

bounded oscillatory. In fact,x(n) = (−1)⌈
n
ℓ ⌉ is one such

solution.

Theorem 2.Assume(H1), (H2) and (H5) is held q(n) >

r(n), and q(n),
1

a(n)
are bounded andσ < ρ . Then(8) is

almost oscillatory.

Proof.Suppose thatx(n) is an eventually positive solution.
Taken2 ≥ n1 such thatx(n−λ ℓ)> 0 for all n≥ n2. Let

z(n) = a(n)∆α(ℓ)(x(n)+ p(n)x(n− τℓ))

+
ρ−1

∑
s=σ

αs−σ q(n− (s+1)ℓ)x(n− (s+1)ℓ). (14)

From (8) it follows that

∆α(ℓ)z(n) ≤
(

r(n−ρℓ)−αρ−σq(n−ρℓ)
)

x(n−ρℓ)< 0,

n≥ n2. (15)

So,z(n) is decreasing and

−∞ ≤ lim
n→∞

z(n) = c< ∞.

If c=−∞, then

lim
n→∞

a(n)∆α(ℓ)(x(n)+ p(n)x(n− τℓ)) =−∞

On using(H1), we obtain

lim
n→∞

(x(n)+ p(n)x(n− τℓ)) =−∞,
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which contradicts(x(n) + p(n)x(n− τℓ)) > 0. Therefore
|c|< ∞ soz(n) is bounded.
From (15) we have

x(n−ρℓ) ≤
1

r(n−ρℓ)−αρ−σq(n−ρℓ)
∆α(ℓ)z(n),

n≥ n2, (16)

so, by(H5), x∈ L1[n0,∞) and

lim
n→∞

ρ−1

∑
s=σ

αs−σ q(n− (s+1)ℓ)x(n− (s+1)ℓ)= 0.

Since
1

a(s)
is bounded, by (14), thus

∆α(ℓ)(x(n)+ p(n)x(n− τℓ))

is bounded. This implies that(x(n)+ p(n)x(n− τℓ)) is
convergent on [n1,∞). Note that the property
x∈ L1[n0,∞) and boundedness ofq(n) implies that

(x(n)+ p(n)x(n− τℓ))∈ L1[n0,∞).

Hence

lim
n→∞

(x(n)+ p(n)x(n− τℓ)) = 0⇒ lim
n→∞

x(n) = 0.

Therefore, every solutionx(n) of (8) which is noto(1) as
n→ ∞, it is oscillatory.

Example 2.Let

∆α(ℓ)

(

∆α(ℓ)

(

x(n)+
n

n−4ℓ
x(n−4ℓ)

))

+
2n

n− ℓ
(1+2α +α2)x(n− ℓ)−

4ℓ(1+α)

n−2ℓ
x(n−2ℓ) = 0.

(17)

By (17) as (8), we havea(n) = 1, p(n) =
n

n−4ℓ
> 0, and

q(n) =
2(n+ ℓ)(1+α)2

n
> r(n) =

4ℓ(1+α)

n
> 0.

Moreover,τ = 4,σ = 1,ρ = 2 andq(n) is bounded forn≥
5ℓ. Then the conditions of theorem1 are satisfied so the
equation is almost oscillatory. Clearly,x(n) = n(−1)⌈

n
ℓ ⌉ is

one such solution.

Theorem 3.Suppose (H1), (H3) and (H4) hold,

q(n)< r(n), r(n),
1

a(n)
are bounded andσ > ρ . Then(8)

is bounded almost oscillatory.

Proof.Assume thatx(n) is a bounded positive solution and
z(n) is defined by (9). Taken2 ≥ n1 such thatx(n−λ ℓ)> 0
for all n≥ n2. From (8) and(H3), we have

∆α(ℓ)z(n) ≥
(

ασ−ρr(n−σℓ)−q(n−σℓ)
)

x(n−σℓ)< 0,

n≥ n2. (18)

So,z(n) increases. Then

−∞ ≤ lim
n→∞

z(n) = d ≤ ∞.

If lim
n→∞

z(n) = ∞, then from (9) and the boundedness ofx(n)

andr(n), we obtain

lim
n→∞

a(n)∆α(ℓ)(x(n)+ p(n)x(n− τℓ)) = ∞.

Then there existsl2 > 0 andn3 ≥ n2 such that

a(n)∆α(ℓ)(x(n)+ p(n)x(n− τℓ))≥ l2, n≥ n3.

From(H1) it follows that

lim
n→∞

(x(n)+ p(n)x(n− τℓ)) = ∞,

this a contradiction by consideringx(n) andq(n) bounded,
so|d|< ∞ andz(n) is bounded. From (18) we have

x(n−σℓ) ≤
1

ασ−ρ r(n−σℓ)−q(n−σℓ)
∆α(ℓ)z(n),

n≥ n2.

Therefore, by(H4), x ∈ L1[n0,∞). Similar to the proof of
theorem2, we have lim

n→∞
x(n) = 0. That isx(n) in (8) not

o(1) class asn→ ∞ thus it is oscillatory.

Theorem 4.Suppose (H1), (H3) and (H5) hold,

q(n)< r(n), q(n),
1

a(n)
are bounded andσ < ρ . Then(8)

is bounded almost oscillatory.

Proof.Similar to the previous proofs letz(n) be defined by
(14). Taken2 ≥ n1 such thatx(n−λ ℓ)> 0 forn≥ n2. From
(8) and(H3), we have

∆α(ℓ)z(n) ≥
(

r(n−ρℓ)−αρ−σq(n−ρℓ)
)

x(n−ρℓ)> 0,

n≥ n2. (19)

Hencez(n) increases and

−∞ < lim
n→∞

z(n) = d ≤ ∞.

By using proof of theorem3, we have−∞ < d < ∞.
Therefore,z(n) is bounded. From (19) it follows that

x(n−ρℓ) ≤
1

r(n−ρℓ)−αρ−σq(n−ρℓ)
∆α(ℓ)z(n),

n≥ n2.

Thus, by(H5), x∈ L1[n0,∞) and

lim
n→∞

ρ−1

∑
s=σ

αs−σ q(n− (s+1)ℓ)x(n− (s+1)ℓ)= 0.

Then it follows from (14) that

lim
n→∞

a(n)∆α(ℓ)(x(n)+ p(n)x(n− τℓ)) = d.
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(i) If d > 0, then there existsn5 ≥ n2 such that

a(n)∆α(ℓ)(x(n)+ p(n)x(n− τℓ))≥
d
2
, n≥ n5. (20)

From condition(H1) we have

lim
n→∞

(x(n)+ p(n)x(n− τℓ)) = ∞,

which is a contradiction.

(ii) If d < 0, as in the case (i), we have

lim
n→∞

(x(n)+ p(n)x(n− τℓ)) =−∞,

it follows that a contradictionx(n) and q(n) assuming
bounded.
Henced = 0, i.e., lim

n→∞
z(n) = 0. Now, in view of (14),

∆α(ℓ)(x(n)+ p(n)x(n− τℓ))< 0⇒ x(n)+ p(n)x(n− τℓ).

Since
x(n)+ p(n)x(n− τℓ)∈ L1[n0,∞),

then it follows that

lim
n→∞

(x(n)+ p(n)x(n− τℓ)) = 0⇒ lim
n→∞

x(n) = 0.

Therefore,x(n) is not in the class ofo(1) asn→ ∞ thus it
must be oscillatory.

Example 3.Let

∆α(ℓ)

(

n∆α(ℓ)(x(n)+ x(n−2ℓ))
)

+2α3(1+α−2)x(n− ℓ)

−4nα6(1+α−2)x(n−4ℓ) = 0 (21)

then it follows that we havea(n) = n, p(n) = 1> 0, and

q(n) = 2α3(1+α−2)< r(n) = 4nα6(1+α−2) .

Moreover,τ = 2, σ = 1, ρ = 4 andq(n) is bounded for
n≥ 5ℓ. Then by theorem1 we obtain

x(n) = (−α)⌈
n
ℓ ⌉

which is such a solution.

3 Oscillation Criteria of ( 5) when δ =−1

In this section, we consider (5) when δ = −1, so (5)
becomes

∆α(ℓ)(a(n)∆α(ℓ)(x(n)− p(n)x(n− τℓ)))
+ f (n,x(n−σℓ))−g(n,x(n−ρℓ))= 0. (22)

Theorem 5.Suppose(H1), (H3) and(H4) hold, p(n) ≥ 1,
q(n) < r(n), σ < ρ and r(n) is bounded. Then(22) is
bounded oscillatory.

Proof.Supposex(n) is a bounded non-oscillatory that
impliesx(n) is an eventually positive solution. Now let

z(n) = a(n)∆α(ℓ)(x(n)− p(n)x(n− τℓ))

+
σ−1

∑
s=ρ

αs−ρ r(n− (s+1)ℓ)x(n− (s+1)ℓ). (23)

From the theorem3, we obtain

∆α(ℓ)z(n)> 0, lim
n→∞

z(n) = c, |c|<∞, and x∈ L1[n0,∞).

(i) If c> 0, from (23) it follows that

lim
n→∞

a(n)∆α(ℓ)(x(n)− p(n)x(n− τℓ)) = c>
c
2
.

So, for large enoughn

∆α(ℓ)(x(n)− p(n)x(n− τℓ))≥
c

2a(n)
.

By condition(H1), we have

lim
n→∞

(x(n)− p(n)x(n− τℓ)) = ∞,

which is a contradictions.

(ii) If c< 0, in view of lim
n→∞

z(n) = c andx∈ L1[n0,∞),

there existsn6 ≥ n1 such that

a(n)∆α(ℓ)(x(n)− p(n)x(n− τℓ))≤
c
2
< 0, n≥ n6.

By (H1), we have lim
n→∞

(x(n)− p(n)x(n− τℓ)) =−∞,

which is also a contradiction.

(iii) If c= 0, in view of∆α(ℓ)z(n)> 0, we havez(n)<
0. Further,

∆α(ℓ)(x(n)− p(n)x(n− τℓ))< 0.

We show thatx(n)− p(n)x(n− τℓ) > 0. In fact, if there
existsn7 ≥ n1 such that(x(n7)− p(n7)x(n7 − τℓ)) < 0,
then, for alln≥ n7,

x(n)− p(n)x(n− τℓ)≤ x(n7)− p(n7)x(n7− τℓ)< 0.

This contradictsx(n)− p(n)x(n− τℓ)∈ L1[n0,∞).
Hence,x(n)− p(n)x(n−τℓ)> 0 for all largen≥ n1. From
this and the assumption onp, we have

x(n)≥ p(n)x(n− τℓ)≥ x(n− τℓ),

which contradictsx ∈ L1[n0,∞). Thus (22) is bounded
oscillatory.

Example 4.Given generalizedα−difference equation

∆α(ℓ)

(

1
n

∆α(ℓ) (x(n)−2x(n−2ℓ))

)

+
(1+α)

n+ ℓ
x(n− ℓ)

−
α2+α

n
x(n−4ℓ) = 0. (24)
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Viewing (24) as (22), we havea(n) =
1
n

, p(n) = 2> 0, and

q(n) =
(1+α)

n+ ℓ
< r(n) =

(1+α)α
n

.

By letting, τ = 2, σ = 1, ρ = 4 and r(n) bounded for
n ≥ 5ℓ. Then the generalizedα−difference equation is

bounded almost oscillatory. Clearlyx(n) = (−1)⌈
n
ℓ ⌉ is

one such solution.

Theorem 6.Suppose (H1), (H3) and (H5) hold,
q(n)< r(n), σ > ρ , 0≤ p(n)≤ p1 < 1 or 1< p2 ≤ p(n),

r(n) and
1

a(n)
are bounded. Then(22) is bounded almost

oscillatory.

Proof.The proof is similar to the proof of theorem3, thus
we obtain

lim
n→∞

(x(n)− p(n)x(n− τℓ)) = 0.

Suppose
limsup

n→∞
x(n) = k> 0.

So, there exists{nk} such thatnk → ∞ ask→ ∞ and

lim
k→∞

x(nk) = k> 0.

(i) If 0 ≤ p(n)≤ p1 < 1, then we have(1− p1)k≤ 0, which
contradictsk> 0 and 1− p1 > 0.
(ii) If 1 < p2 ≤ p(n), then we have 0≤ (1− p2)k, which
contradictsk> 0 andp2−1> 0. Therefore, we must have

limsup
n→∞

x(n) = 0

Then lim
n→∞

x(n) = 0 as x(n) is eventually positive. This

shows that (22) is bounded almost oscillatory.

Theorem 7.Suppose (H1), (H2) and (H4) hold,
q(n)> r(n), σ < ρ , 0≤ p(n)≤ p1 < 1 or 1< p2 ≤ p(n),

q(n) and
1

a(n)
are bounded. Then(22) is bounded almost

oscillatory.

Proof.The proof is similar to theorem2, we obtain

limsup
n→∞

(x(n)− p(n)x(n− τℓ)) = 0.

Then followed by proof of theorem6.

Theorem 8.Suppose that conditions(H1), (H2) and (H4)
hold, q(n) > r(n), σ > ρ , q(n) is bounded,0 ≤ p(n) ≤

p1 < 1 or
1

a(n)
is bounded and1< p2 ≤ p(n). Then(22)

is bounded almost oscillatory.

Proof.Let

z(n) = a(n)∆α(ℓ)(x(n)− p(n)x(n− τℓ))

−
σ−1

∑
s=ρ

αs−ρ r(n− sℓ− ℓ)x(n− sℓ− ℓ). (25)

Then we have x ∈ L1[n0,∞), lim
n→∞

z(n) = c= 0 and

∆α(ℓ)z(n)< 0. So,z(n)> 0,

∆α(ℓ)(x(n)− p(n)x(n− τℓ))> 0

and(x(n)− p(n)x(n− τℓ)) increases. Thus

x(n)− p(n)x(n− τℓ)< 0

for n≥ n1. In fact, if there existsn8 ≤ n1 such thatx(n8)−
p(n8)x(n8− τℓ)≥ 0, then

x(n)− p(n)x(n− τℓ)
≥ x(n8+ ℓ)− p(n8+1)x(n8+ ℓ− τℓ)> 0

for n ≥ n8 + ℓ, which contradictsx(n)− p(n)x(n− τℓ) ∈
L1[n0,∞). Hencex(n)− p(n)x(n− τℓ)< 0 for all n≥ n1.
If 0 ≤ p(n)≤ p1 < 1 is satisfied, thenx(n)< p(n)x(n−τℓ)
for all n≥ n1. This implies that lim

n→∞
x(n) = 0.

If
1

a(n)
is bounded and 1< p2 ≤ p(n), from the proof of

theorem6, we have

lim
n→∞

(x(n)− p(n)x(n− τℓ)) = 0

and thus lim
n→∞

x(n) = 0. Therefore, (22) is bounded almost

oscillatory.

Example 5.Consider the generalizedα−difference
equation

∆α(ℓ)

(

n
n+ ℓ

∆α(ℓ) (x(n)−2x(n−2ℓ))

)

+(2α2−4)
n+ ℓ

n+2ℓ
x(n−3ℓ)

−
2n(α2−2

n+ ℓ
x(n−2ℓ) = 0. (26)

Viewing (26) as (22), we havea(n) =
n

n+ ℓ
, p(n) = 2> 0,

and

q(n) =
2α3(α2−2)(n+4ℓ)

n+5ℓ

> r(n) =
(2α4−4α2)(n+2ℓ)

n+3ℓ
.

Moreover,τ = 2, σ = 3, ρ = 2 andq(n) is bounded for
n ≥ 3ℓ. All the conditions of theorem8 hold and hence
generalizedα−difference equation is bounded almost

oscillatory. In factx(n) = (−α)⌈
n
ℓ ⌉ is one such solution.
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