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Abstract: In this paper, we study the oscillation of the second-orad&inear neutral generalizex—difference equation of the form
Aq (1) (@M Ag ) (X(n) +3p(Mx(n—1£))) + f(n,x(n— ) —g(n,x(n— p£)) = 0.
We obtain the oscillation criteria and provide some exasfdllustrate the results.
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1 Introduction definition of A given in ). Recently, Manuel et al1fl]
. ) ) considered operator in2) and established some new

Difference  equations ~manifest themselves asresults and new properties related to the solutions of
mathematical models describing real life situations indifference equations involvé,, which is the notation
probability theory, queuing models, statistical analysis preferred by the authors to distinguish the operators,
genetics in Biology, economics, psychology, sociology defined in () and Q).
etc. These are only considered as discrete analog of
differential equations several times. In fact difference popenda and Szmandg$], introducedA as
equations appeared much earlier then differential
equations and were instrumental in paving the way for the Aqu(n)] =u(n+1) —au(n) (3)
development of the later. Only recently, that difference
equations have started receiving the attention that theyand studied certain type of difference equations. Very
deserve. recently Kilicman et al. 8,9,10] introduced the new

operator as

The conventional theory of difference equations is based
on the operatod is defined as Agplu(n)] = u(n+¢) — au(n) (4)

Alu(n)] =u(n+1)—u(n),ne N={0,1,2,3,---}. (1) named it as the generalizeddifference operator since it
) ) generalizes the previous operators which were defined in
Many authors such as Agarwadl][ Mickens [12], Elaydi (1) (2) and @) and established many related results and
[13] and Kelly [15] mentioned the same definition of the ey properties on the behavior of solutions. The
difference operatodl and given by generalized a-difference operator involves and
_ _ _ generalizes many difference equationsasdifference
A =u(n+£6)—u(n), neR, LR —{0},  (2) equation. For further study one can refer to related
as the incremental factof is different from unity, literature such as36,7].
researchers struggled to establish new results based on the
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Throughout this paper we use the following notations.
(@N=1{0,1,2,3,...}, N(a) = {a,a+ L, a+2,...},
(b)Ny(a) ={a,a+l,a+2¢,...}.

(c) [X] upper integer part of.

@dj=n-ni— [%}&ni € [0,0).

(e)A =maxXrt,0,p}.

In the present study, we consider nonlinear generalize

o —difference equations having the form

Aq ) (@(M)Ag ) (X(N) + Op(N)X(n—T¢)))
+f(n,x(n—0a?)) —g(n,x(n—p¥)) =0, (5)
where d = +1, n > ng, a(n) > 0 with 44(Ha(n) > 0,

p(n) > 0 bounded sequencef,(n,u) and g(n,v) are
continuous, and, 1,0, p € [0, ).

DenoteA = max{1,0,p}, N1 =g+ A/,

Lfng,e0) — {x(n» 5 (9| < oo}.

S=Np

The motivation is based on work by Wu et. al4] and
consider the following assumptions.

[ee]

1
(Hq) z W(S@ = oo for all n > ng,

s=n

(Hz) f(rsju)Zq(n—aé)>0 for u # 0 and
g(r\1/,v) <r(n—p¢)forv+#0,

(Hs) 0<@§q(n—a€) for u # 0 and
g(r\1/,v) >r(n—p¢)>0forv+0,

(Ha)

(Hs)

1 .

Ao pr(n)—q(n) is bounded foo > p,

r(n) —aP=oq(n)
C([no, ), R").

Next, we recall the following definitions:

Definition 1.[7] The inverse operatoﬂ;(lg) is defined if

Agpyv(n) = u(n), then

is bounded foro < p, wherer,q €

Aglylun)] = v(n) — al?lv(j) (6)

where ne Ny(j), j=n—[J]¢.

In more general form is given irlfl] by
[H;jﬂ u(@a+j+re) n
Ac?(lé)[u(n)] = Z) W+a[ﬂ u(a+j),
r= al T

()

for alln € Ny(j), where j=n—a— [n;fa} 2

Definition 2.[ 7] The solution of §) is called oscillatory if
there exists an ne Ny(ny) for n; € [a,»), such that
x(n2)x(nz + ¢) < 0. If all solutions are oscillatory then
equation known as oscillatory, Similarly, if not, then
equation non-oscillatory (i.e. (R)x(n+ ¢) > 0 for all

n e [ng,)).

% Oscillation Criteria of (5)whend =+1

In the next we prove some oscillation criterions wiea
1 and illustrate them with suitable examples.
Whend = 1, the equatiorf5) can be rewritten as

Aq ) (@(N)Ag ) (X(N) + p(N)X(N—T¢)))
+f(n,x(n—0a¥?))—g(n,x(n—p¥))=0. (8)

Theorem 1Let the conditions(H;), (H2) and (Hs) be
held, and further ¢n) > r(n), r(n) is bounded and > p.
Then(8) is bounded oscillatory.

ProofLet x(n) be a bounded and non-oscillatory. Then
x(n) is an eventually positive solution. That xn) > 0
andx(n—A) > 0forn>ny. Let

Z(n) = a(n)Aq ) (X(n) + p(M)x(n— 1))
o-1

=Y a¥Pr(n—st—Ox(n—st— (). (9)

=p
From @) and(Hy) it follows that
Ag(pyz(n) < (@°Pr(n—ol) —q(n—al))x(n—al) <0,
(10)

forn>no.

Soz(n) is decreasing, ango < rI1iLnooz(n) =C< 0o,

If c = —oo, from (9) and sincex(n) andr(n) bounded, we
have

lim a(n)Aq ) (X(N) + p(N)x(n—1¢)) = —o0

n—oo
Then there existk; > 0 andnz > n, such that

Ag gy (X(n) + p(n)x(n—1¢)) < a_(—|:11)’ n>ng.

then it follows that
x(n) 4+ p(n)x(n— t¢)
n—n3
— —kaal T (g + 1)+ plna-+ P)x(ns + | — 16))
n-ng—{—j
[ 4 } 1
—k 20 EE==E
=0« ! a(ng+j+L+rl)

As n— oo, according tqH1 ), we obtain

lim (x(n) + p(N)x(n— 1)) = —oo.

n—oo
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That is a contradiction with consideringn) and g(n)
bounded. Thus we haye| < «, andz(n) is bounded.
From (L0) it follows that

X(n-0f) < a%=Pr(n— a;) q(n— UZ)A oZm- (11)
S0,x € L1[ng, ) by (Hy).
(i) If ¢> 0, using @) we obtain
z(n) <a(n)lqp(x(n) + p(n)x(n—1¢)), Nn>m
Now, sincez(n) — c ash — o, leads to
Agpy(X(n) + p(n)x(n—1£)) > a—cn)’ n>np

and

x(n) + p(n)x(n—1¢)
= ca[w] (X(N2+ ) + p(n2+ j)x(n2+ j — 1¢))
{n—nz[f:—j} 1

+C No+j+0—n+r :
Z" a(W1 a(np+j+L+re)

On using(H1) then Iim( (n) + p(n)x(n—1¢)) = o, that
contradicts with assump'uon the(n) is bounded.

(i) If ¢ < 0, andx € LY[ng,), we have

o-1
lim % a*Prin—sl—0)x(n—sf—¢)=0.

00
n—e &

Then, sincez(n) — ¢ asn — oo, there exists € (0,—c)
andny > n, such that

a(n)Ag(p) (X(N) + p(M)x(n—T¢)) < c+& <0,
and

() + p(nx(n—T¢)

(c+eg) a( 441 (X(Na+j) + p(na+ j)x(na+ j — 14))
[ 1
'ZO a{wwa(n4+j+é+r€)
Hence, by(H1) again, we obtain
lim (x(n) + p(n)x(n— 1¢)) = —oo,

that is also a contradiction by assuming tk@t) andqg(n)
bounded.

n>mng

+(c+¢)

(iii) If ¢=0, andA(,z(n) <0, then we have(n) > 0.
So

a(n)Ag (o) (X(n) + p(nx(n—1¢))

f SPr(n—(s+1)0)x(N— (5+1)¢)>0, n>ny.

Sincex(n) + p(n)x(n— t¢) is positive and increasing, the
summation

[ee]

> (x(s)+ p(s)x(s—1¢))

S=Np

does not converge, that is a contradiction again saying
thatx € L[ng, ). These contradictions show th&) has
no bounded positive solution. Now, suppose conversely
that x(n) has a bounded eventually negative solution.
Thenx(n— A¢) < 0 for someny, > n; and alln > ny.
From @), (9) and(H1), we have
Dgpy2(n) > (@ Pr(n—al)—q(n—al))x(n—al) >0,
n>no. (12)
Thus,z(n) is increasing ane-c < M}n z(n) =c < oo. That
is every bounded solution o8 is oscillatory.
Example 1Consider
Aa(g) (nAa([) (x(n) + 2X(n — Zé)))

+3n(1+a)*X(n—30) —3({+al)x(n—20)=0 (13)

viewing (13) as @), we havea(n) =n, p(n) =2 >0, and

a(n) =3(1+a)?(n+30) >r(n)=3((1+a) > 0.

Further,1 =2, 0 =3, p = 2 andr(n) is bounded for
n > 3¢. That is the theorent is held and the equation is

bounded oscillatory. In fact(n) = (—1)[91 is one such

solution.
Theorem 2Assume(H1), (H2) and (Hs) is held on) >
r(n), and dn), (1) are bounded and < p. Then(8) is

almost oscillatory.

ProofSuppose that(n) is an eventually positive solution.
Takeny > np such thax(n—A¢) > 0 for alln > ny. Let

z(n) = a(n)Ag () (X(n) + p(NX(n— 1))
—1
+pz as%q(n

From @) it follows that
Ag(pyZ(n) < (r(n—pf) -

— (s+1)O)x(n— (s+1)0). (14)

aP~%q(n—pl))x(n—pl) <0,
n>ny. (15)
So,z(n) is decreasing and

—o0 < lim z(n) =c < oo.
N—00

If c= —oo, then

lim a(n)Ag o (X() + p(M)x(n — T€)) = —oo

n—oo

On using(H3), we obtain

lim (x(n) + p(M)x(n — 1)) = oo,

n—oo
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which contradictgx(n) + p(n)x(n—t¢)) > 0. Therefore
|c| < e soz(n) is bounded.
From (@5 we have

1

r(n—p¢) —af-oq(n—pl)
n = ny,

x(n—pl) < Ag(pZ(n),
(16)
S0, by(Hs), x € LY[ng,») and

lim

n—oo0

pforsf"q(n —(s+1))x(n—(s+1)¢)=0.

. 1 .
Smce@ is bounded, by14), thus
Ag o) (X(N) + p(Mx(n— 7))
is bounded. This implies thaix(n)+ p(n)x(n—t¥¢)) is
convergent on [n;,). Note that the property
x € LY[ng, ) and boundedness gfn) implies that

(x(n) + p(n)x(n—1¢)) € LY[ng, o).
Hence

lim (x(n) + p(n)x(n—1¢)) = 0= lim x(n) = 0.

n—o0 n—o0

Therefore, every solutior(n) of (8) which is noto(1) as
n— oo, it is oscillatory.

Example et

Ag ) <Aa(é) (X(”) +

n_n4€x(n—4é))>

2 4/(1
+- M (14 20+ a?)x(n— 1) — %

7 x(n—2¢)=0.

(17)
By (17) as @), we havea(n) =1, p(n) = n—LM >0, and
2
o(n) = 2(n+€)r51+ a) > r(n) = 46(1n+ a) -0

Moreovert =4,0 =1, p =2 andq(n) is bounded fon >
5¢. Then the conditions of theorenare satisfied so the
equation is almost oscillatory. Cleark(n) =n(—1)! ¢! is
one such solution.

Theorem 3Suppose (H;), (Hz) and (Hs) hold,

q(n) < r(n), r(n), % are bounded and > p. Then(8)

is bounded almost oscillatory.

Proof Assume thak(n) is a bounded positive solution and

z(n) is defined by 9). Taken, > n; such thak(n—A¢) >0

for all n > ny. From @) and(Hs), we have

Agpyz(n) > (a?7Pr(n—al) —q(n—al))x(n—al) <0,
n>no. (18)

So0,z(n) increases. Then

—o0 < lim z(n) =d < co.
n—oo

If ”m z(n) = oo, then from @) and the boundednessxth)
—>00

andr(n), we obtain

lim a(n)Aq ) (X(n) + p(N)X(n— 1)) = 0.

n—oo
Then there exist > 0 andnz > n, such that

a(n)Aq o (X(n) +p(n)x(n—1£)) > 12, Nn>ns.

From(H,) it follows that

lim (x(n) + p(M)x(n — 1)) = e,

n—o0

this a contradiction by consideringn) andq(n) bounded,
so|d| < e andz(n) is bounded. Froml@) we have

1
—ol) <
X(n—af) < a%-Pr(n—al)—q(n— UZ)A“(E)Z(n)’
n>no.

Therefore, by(H), X € L[ng, ). Similar to the proof of
theorem2, we havenﬂmx(n) = 0. That isx(n) in (8) not

0(1) class a1 — o thus it is oscillatory.
(Hs) (Hs) hold,
q(n) < r(n), q(n), % are bounded andr < p. Then(8)

Theorem 4Suppose (Hy), and

is bounded almost oscillatory.

ProofSimilar to the previous proofs letn) be defined by

(14). Takeny > ny such thak(n—A¢) > 0 forn> ny. From

(8) and(Hs), we have

Ag(pyzZ(n) > (r(n—pl) —aP~%q(n—pl)) x(n—pf) >0,
n>no. (29)

Hencez(n) increases and

—oo < limz(n) =d < oo,
N—o0

By using proof of theorenB, we have—o < d < .
Thereforez(n) is bounded. Froml1(9) it follows that

1
r(n—p¢)—ar-9q(n—p’)
n>np.
Thus, by(Hs), x € L[ng, ») and

x(n—pl) < Agpyz(n),

lim
n—o0

pilas‘aq(n —(s+1)0)x(n— (s+1)¢)=0.

Then it follows from (4) that

M}m a(n)Ag gy (X(n) + p(nN)x(n—1¢)) =d.

(@© 2018 NSP
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() If d > 0, then there existss > n, such that

, nh>ns. (20)

NI

a(n)Ag o) (X(n) + p(M)x(n—1¢)) >
From condition(H;) we have
lim (x() + p(m)x(n - 7)) = oo,
which is a contradiction.

(i) If d <0, asin the case (i), we have

lim (x(n) + p(M)x(n — 1)) = oo,

n—oo

it follows that a contradictiorx(n) and q(n) assuming
bounded.
Henced =0, i.e.,nlimz(n) = 0. Now, in view of (L4),
—>00

Ag(py(X(N) + p(n)x(n—1£)) < 0= x(Nn) + p(n)x(n— T¢).
Since

x(n) + p(n)x(n— 1¢) € LY[ng, o),
then it follows that

lim (x(n) + p(n)x(n—1¢)) = 0= lim x(n) = 0.

n—oo n—oo

Thereforex(n) is not in the class 06(1) asn — o thus it
must be oscillatory.

Example 3_et

Aaey (Mg (X(n) +x(N—20))) + 20> (1+ a2 x(n—¢)

—4na®(1+a~?)x(n—4¢) =0 (21)
then it follows that we hava(n) =n, p(n) =1> 0, and
qn) =2a°(1+a7?) <r(n)=4na®(1+a7?).
Moreover,T = 2, 0 = 1, p = 4 andq(n) is bounded for
n > 5¢. Then by theorem we obtain
x(n) = (~a)l 1

which is such a solution.

3 Oscillation Criteria of (5) whend = —1

In this section, we consideb when d = —1, so 6)
becomes

Aa(r)(@(N) Ay (X(n) = p(Mx(n—T1¢)))

+f(nx(n—0a?))—g(nx(n—p¢))=0. (22)

Theorem 5Supposé€Hs), (Hs) and (Ha) hold, p(n) > 1,
q(n) < r(n), o < p and r(n) is bounded. Theri22) is
bounded oscillatory.

ProofSupposex(n) is a bounded non-oscillatory that
impliesx(n) is an eventually positive solution. Now let

Z(n) = a(n)4q ) (X(n) — p(n)x(n—1¢))
o-1

+ > a®Pr(n—(s+1)O)x(n— (s+1)0).

=p

(23)

From the theorer, we obtain
Ag(yz(n) >0, lim z(n) =c, |c| <, andxe L[ng, o).

(@) If c> 0, from @23) it follows that

lim &) (s (X(n) — P)X(n— T€)) =¢ > 2.
So, for large enough
Do (x(n) — p()X(n — 7)) > %(n)

By condition(H;), we have
lim (x(n) — p(n)x(n— 10)) = o,
which is a contradictions.

(i) If c< 0, inview ofnlim z(n) = candx € L[ng, »),
—>00
there exist$ig > n; such that

<0, n>ng.

NI O

a(N)Aa () (X(n) — p(N)x(n— 1)) <

By (Hi), we have nﬂn(x(n) —p(N)x(n—T1¥)) = —oo,
which is also a contradiction.

(iii) If c=0, inview ofAy(;z(n) > 0, we havez(n) <
0. Further,
Ag(oy(X(n) = p(n)x(n— 1)) < 0.

We show thatx(n) — p(n)x(n— 1¢) > 0. In fact, if there
existsn; > np such that(x(n7) — p(n7)x(ny — t¢)) < O,
then, for alln > ny,

x(n) — p(n)x(n— 1) < x(n7) — p(n7)x(n7 — t¢) < 0.

This contradict(n) — p(n)x(n— t¢) € L[ng, o).
Hencex(n) — p(n)x(n— t¢) > 0 for all largen > n;. From
this and the assumption gn we have

x(n) > p(n)x(n— 1) > x(n— 1¢),

which contradictsx € L[ng,0). Thus @2) is bounded
oscillatory.

Example 4Given generalized —difference equation

8ot (et ()~ 2xn-20) )+ (im0
O an—o. (24)
(@© 2018 NSP

Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

812 %N S

A. Kiligman et al.: Oscillation criteria for a class of novear...

Viewing (24) as @2), we havea(n) = % p(n)=2>0, and

By letting, 1 =2, 0 = 1, p = 4 andr(n) bounded for
n > 5¢. Then the generalized —difference equation is

bounded almost oscillatory. Cleark(n) = (—1)(?] is
one such solution.

Theorem 6Suppose (H1), (Hz) and (Hs) hold,
q(n) <r(n),o>p,0<p(n) < pr<lorl<p;<p(n,
r(n) and am are bounded. The(22) is bounded almost

oscillatory.

ProofThe proof is similar to the proof of theore& thus
we obtain

lim (x(n) — p(n)x(n—1¢)) = 0.

n—oo

Suppose
limsupx(n) =k > 0.

n—oo0

So, there existén} such thany, — c ask — o and

lim x(ng) =k > 0.
k—o00

(i) If0 < p(n) < p1 < 1, then we havél — p;)k < 0, which
contradictk > 0 and 1—- p; > O.

(i) If 1 < po < p(n), then we have & (1 — py)k, which
contradictk > 0 andp, — 1 > 0. Therefore, we must have

limsupx(n) =0

n—oo

Then nimx(n) =0 asx(n) is eventually positive. This
shows thatZ?2) is bounded almost oscillatory.

Theorem 7Suppose (Hi), (H2) and (Hs) hold,
q(n) >r(n), 0 <p,0<p(n) <pr<lorl<pz<p(n),
g(n) and am are bounded. The(22) is bounded almost

oscillatory.
ProofThe proof is similar to theorer®, we obtain

limsup(x(n) — p(n)x(n—1¢)) = 0.

n—oo

Then followed by proof of theorei®.

Theorem 8Suppose that conditior($11), (H2) and (Hy)
hold, gn) > r(n), o > p, q(n) is boundedP < p(n) <
p1 <lor a(in is bounded and < pz < p(n). Then(22)

is bounded almost oscillatory.

ProofLet
z(n) = a(n)Ag () (x(N) — p(M)x(n— 1¢))
—Gfas—f’r(n—se—e)x(n—se—z). (25)
=p

Then we havex € Ll[ng,o), r!im zln)=c=0 and
oo
Ag(py2Z(n) <0.So,2(n) >0,

Aa(e)(X(n) = p(Mx(n—1£)) > 0
and(x(n) — p(n)x(n— t¢)) increases. Thus
x(n) — p(nN)x(n—1¢) <0

for n > n;. In fact, if there existeig < n; such thak(ng) —

p(ng)x(ng — t¢) > 0O, then
X(n) — p(n)x(n— ¢)
> X(ng+¥¢) — p(ng+L)x(ng+ ¢ —1£) >0

for n > ng + ¢, which contradictx(n) — p(n)x(n—1¢) €
L[ng,o0). Hencex(n) — p(n)x(n— t¢) < 0 for all n > ny.
IfO < p(n) < p1 < 1is satisfied, ther(n) < p(n)x(n—1¢)
for all n > n;. This implies tha%_lilgb((n) =0.

1
Ifm

theoremg, we have

is bounded and X p, < p(n), from the proof of

lim (x(n) — p(n)x(n—1¢)) =0

n—oo

and thusn_li>mx(n) = 0. Therefore,22) is bounded almost
oscillatory.

Example Consider the

equation

generalized a —difference

Do) <ni+€ﬂa(4> (x(n) —2x(n— 24)))

2 N+l
+(2a 4)—n+ 2éx(n 30)
2n(a? -2

Viewing (26) as £2), we havea(n) = nLM p(n)=2>0,
and

2a3(a? - 2)(n+4¢)
am = n+ 50

(2a* —4a?)(n+2¢)
n-+3¢
Moreover,T = 2, 0 = 3, p = 2 andq(n) is bounded for

n > 3¢. All the conditions of theoren8 hold and hence
generalizeda —difference equation is bounded almost

oscillatory. In factx(n) = (—a) [#1 is one such solution.

>r(n) =

(@© 2018 NSP
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