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Abstract: This article considers the problem of estimating the unkm@arameters of the compound Rayleigh distribution with
progressive first-failure censoring scheme during stegsstpartially accelerated life tests (ALT). Progressiv&-failure censoring
and accelerated life testing are performed to decreaseuttaiah of testing and to lower test expenses. The maximuetitiood
estimators (MLESs) and Bayes estimates (BESs) for the diginh parameters and acceleration factor are obtainedoptimal time
for stress change is determined. Furthermore, the appet&jrbootstrap and credible confidence intervals (Cls)®ptrameters are
derived. Methods of Markov chain Monte Carlo (MCMC) are usedbtain the Bayes estimates. Finally, the accuracy of th&MM
and BEs for the model parameters is investigated throughlation studies.

Keywords: Compound Rayleigh distribution; Step stress partiallyeteated life test; Progressive first failure censoringxivieaim
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1 Introduction conditions. PALT are of two types, constant stress PALTs
(see B,4]) and step stress PALTs (seq)]

In constant PALTSs, every unit is run at constant high

| Stress until either the test terminates or all units faif; fo
more specifics about constant-stress ALT, s&&][ In

step PALTs, the stress on each unit is not fixed but is
increased step by step at personified times or
simultaneously to the appearance of a fixed number of
failures. When the test contain two levels of stress, it's
indicated to as a simple step-stress ALT. Several authors

iscuss step-stress PALTs scheme for example, &&e [

Accelerated life test (ALT) is a popular experimental
strategy to obtain information on life distribution of
highly reliable products. Test units under norma
operating conditions are often extremely reliable, with
significant mean times to failure. ALT experiments may
be used to obtain reliable information on product
components within a short period by subjecting them to
higher-than-usual stress (pressure, temperature, egltag
etc.). [1,2] introduced and studied the concept of ALT.
Data collected under such accelerated conditions are the . !
extrapolated through appropriate statistical model. 0'.11' 1.2]' Several studies have employed Bayesian
In the ALT, the experiment can either be started atestimation based on ALT, for example, sd&14,15,16,
higher stresses than normal and continued under these’ 1819 )
conditions or it can be stated under normal conditions. ~Type-l and type-ll censoring are the most two
Thus, there are two types of ALT. The first is said to be Common censoring schemes in life testing, but these kind
the ordinary accelerated life test (OALT), and the second®f censoring don't allow units to be extracted from the
is the partially accelerated life tests (PALTs). The major €xperiment at any other point than the last termination
assumption in OALT is that the mathematical model Point. For this reason, the progressive censoring scheme
relating the lifetime of the unit to the stress must be has been very famous for analyzing extremely reliable
known or can be assumed. In several cases, this life stregiata.
relationships are not known and can’'t be supposed, i.e. Progressive censoring schemes introduceddy; pr
OALT data can'’t be extrapolated to normal condition. So, in the review by R1]. [22] described a life test where the
PALT is the more proper test to be performed, where, theexperimenter units set in to different groups, each as an
tested units are undergone by both accelerated and normabmponent of test units, and then all of them run until the
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first failure in each cluster. This scheme is called 2 Model Description and Basic Assumptions
first-failure censoring.43] studied a sampling experiment

for a bearing manufacturer. The bearing test engineeR.1 A progressive first-failure-censoring scheme
wanted to reduce test time by testing 50 bearings in sets

of 10 each, where, the first failure times from each groupln this subsection, the progressive censoring scheme is
were observed. If an experimenter wish to take out somgointed with the first-failure censoring scheme as 24|

sets of test units before the first failures in these sets; thiLet n independent groups witk items are set in a life
life test experiment is named as a progressive first-failurd€St R groups and the group in which the first failure is
censoring scheme, as specified B[ observed are randomly removed from the test when the

. S first failure (saleR: k) has occurred®, groups and the
The compqund Raylelgh dlstr|but|o(rn:(,B)_, denoted ._group in which thnénsecond first failure is observed are
by CRD, supplies a population model which is valuable|nrandom|y removed from the test promptly when the

life testing and reliability. The probability density futimn ; R
(pdf), and the cum_ulative distribution function (CDF) are SRi:?nng ;aélforfpésgr%{ﬁg%rgjs ir? wrg)igﬁﬁé—a Pr?filrztStly
presented, respectively, by failure is obtained are randomly removed from the test
when the m — thfailure (YR ) has happened. The
f(x) =2aB%(B+x3) "V a,B>0,x>0, (1) YR . <YR < . <YR _ are titled progressively
first-failure-censored order statistics with the progiress
and censoring schem® = (R, Ry,...,Rn). It is clear that
m

F(x) = 1_B“(B+x2)*“, ) n=m-+ ZRi. If the failure times of then x k items
[

originally :on the test are from a continuous distribution
with pdf f(y) and dfF(y), the joint probability density
function of YR o Ym0 YiRmnk IS Presented by

Also the failure rate and the reliability functions, at the
specified, are

K(Rj+1)~1 o

H (t) — Zat t > 0 (3) 12, m(y}:?:m:n:l<‘y§:m:n:k*”"ylr?wzm:n:k):CkmjI;I:lf(y'i:\tm:n:k)>< [17F(y}im:n:k)}
B + t2 ’ R R R
0< Yimnk < Y2mnk < - < Ymmnk <
where

S(t) =B (B+t?) "%, t>0, (4)

where3 and a are the scales and the shape parameters.

The CRD is a particular case of the 3-parameter Burr typeSpecial cases:

XII distribution. Many authors studied the 2-parameter The following four censoring schemes are special cases

CRD, including P5. The step-stress ALT with from (5):

progressive first-failure censoring from Weibull (1) The first-failure censored scheme obtained when

distribution are considered i2§]. The MLEs is givenfor R= (0,0,...,0).

the distribution parameters and the acceleration factor(2) When k = 1, we obtained the progressive type-II

The point estimation and interval estimation for Lindley censored order statistics.

distribution parameter and the acceleration factor is(3) In case oR = (0,0,...,n—m) andk = 1 we obtained

obtained with step-stress accelerated life test undetype Il censored order statistics.

progressive first failure sample i2). (4) If R=(0,0,...,0) andk = 1, we gained the complete
The novelty of this study is the application of the step sample.

stress PALT to compound Rayleigh failure time From the distribution function 1- (1 — F(x))X,

distribution using the progressive first-failure censgrin - YR, Yok - Yimnk C@N be sighted as a progressive

life test. Maximum likelihood estimators and Bayes type-Il censored sample. so that, results for progressive

estimates for the parameters are then calculated using thgpe-Il censored can be expanded to progressive

method of MCMC. first-failure censored order statistics. The progressive
The paper is organized as follows: Section 2 describegirst-failure censored order statistics are interesting

the lifetime model and test assumptions. In Section 3, thébecause they reduce the test time, where, many items are

MLESs of the model parameters with the simple step-stressitilized, where, jusin of n x k items are failures.

ALT are derived. Estimation of optimal time of stress

change time is given in Section 4. The Bayes estimates of

model parameters using the MCMC method are obtained

in Section 5. In Section 6, the approximate, bootstrap an®.2 Basic assumptions and test procedure

credible confidence intervals are derived. Section 7

discusses the simulation studies. Conclusions aréhroughoutthe paper the following assumptions are used

presented in Section 8. in the scope of step stress PALT:

m-1 j
C= — = ).
"2 R
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1. nidentical and independent groups witlitems within ~ and

each set are put on a life test; each unit has CRD. 20A(T+A(Yy—T1))
2. The test is concluded at time— th failure, wherem is ha(t) = ) 5= (11)
prespecifiedm < n). B+T+Ay—1))

3. The units are first put in normal condition, if it does not
fail or removed from the test by presignified tinmgit's
run under accelerated condition.
4. At thei —th failure, a random number of the surviving
groupsRi,i = 1,2,....m—1, and the group in which the
failure YR has occurred are randomly removed from
the test. Finally, at theny, failure the remaining surviving
group’sRn = n—m— ™ 'R are all extracted from the
test, and the test is concluded.

i~

In progressive first failure censoring, the test terminates
when the first failure censoring numbers reactmtec n.
From the total lifetimeY, the observed values are
Yimnk <Y2mnk < .o <¥ngmnk < T <VYn+1mnk < ... <
Ymmnk Wheren; is the number of groups failed under
normal conditions andm — n; under accelerated
conditions. Let us determine the indicator functions

1 Yimnk < T

5. LetN; = 1, be the number of failures before ting 0 otherwise

at normal condition, antl, = 3, . ; be the number of
failures before(after) timex at stress condition and = o i ) o
N1 -+ Ny, with this procedure the spotted progressive first- FOr simplicity let us assume the first failure lifetimgs<

i=1,2 ..m  (12)

failure censored data are Y2 < ... < ¥mother thanyymnk < Yzmnk < - < Ymmnk

of m groups are identically and independent distribution,
Y?-m-n-k <. < yﬁl'm'n'k <T< yﬁﬁl_m_n_k <. < yﬁTm_n_k’ consequently the likelihood function is presented by
Wheres™; R =n—mandR= (Ry,Ry,...,Rm). L AlV) — CKM u f1 (v A k(R+1)-1] 2
Then thle influence of this process is to multiply the (a.B.Aly) .El[ 1) [S100)] }

remaining lifetime of the item by the inverse of the 1-5
acceleration factor. Where, the changing to the higher X {fz(yi)[SQ(yi)]k(R‘”)*l} (2)
stress level will shorten the life of test item. The total

lifetime Y passes through two stages: normal and

accelerated conditions. 0<yr <Y2 <o <Yy <T <Ynpy1 < oo <Ym <,
Thus the total lifetimeY of the groups in SSPALT is . ,
presented as follows: whereC given in (5).
Special cases
Y — T, T<r 6
Tl AN T D), T, (6) 1) If T — 0O, then the experiment run only under accelerate
conditions.

whereT is the first failure lifetime of a group under the 2) If T — o, then the experiment runs only under use
conditions used) is the acceleration factor, arwis the conditions.

time-change stresa. > 1 is the ratio of mean life under
the conditions used to that under accelerated conditions.
Suppose that the lifetime of the test item follows CRD.

Thus, the pdf of the total lifetim¥ is presented by 3 Maximum Likelihood Estimation
0, y<O0
f(y) = fily), O<y<rt (7) The aims of MLE is to specify the parameters which
fay), y>T1, maximize the likelihood function of the sample data. The
method of ML is used to be more robust and produces
wherefy(y), is presented by (1) anf3(y), given by estimators with perfect statistical properties. Numérica

techniques are used to compute them, which is based on
fo(y) =2aBOA(T+A(y—1))(B+[T+A(y— T)]Z)—(a+(1>5 EX)E_Fesswe first-failure censoring data under step stress
8 .

is obtained by the transformation variable technique using. Ii;/etnyif';"“fﬁ Eyi bre ﬂ:e OR/SE][;;E? fvzis}lures ofntherilgeti_rpﬁ
equations (7) and (8). The cumulative distribution given Iro € progressive Nirst failure censoring. the

function cd f, reliability function S(t), and hazard rate glfeh%oo.d fugcuor(]j lé(a’ﬁ’é‘h—/) n (13)hwﬁ';h t;/zvo
functionhs(t) are presented by istributions (7) and (8), with censoring scheRe= (Ry,

Ry, ...,Rm) is given by
F()=1-BIB+[t+A(y-1))% (9 i .
L(a. B Aly) [ gMpkna ym nlexp{f‘zl(uk(Ri +1)+1)><Iog[13+yﬂ +. z+1log[r+/\(yi -1)

i= i=ng

S(0) =B (B+T+Ay-DP) " (10) B LR |

i=nj+1
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then the log-likelihood function df(a, 3, A |y) is specified
by B
ny

((a,B,Aly) = mloga +knalogB + (m—ng)logA — 21
i=

m

(ak(Ri+1)+1)log[B+y]+ Y log[t+A(yi—1)]

i=np+1
- g (ak(Ri+1) +1)log [B +(T+A(i— r))z](.4)
i=n;+1

After calculating the first partial derivatives of (15) an3

acceleration factor. The minimum option is used in
Mathematica 9 to specify the timeg’, 7% minimizes the
asymptotic variance of MLEs of the acceleration factor
and the model parameters. 8o= 1.1261. see [27].

5 Bayes Estimation of the Model Parameters

In this section, both symmetric loss (square error loss
(SEL)) function and asymmetric loss (linear exponential
(LINEX) and general entropy (GE)) loss function are

investigated to get (BEs) of the parametars 8, andA)

andA and equating each to zero, we obtain the likelihoodwith progressive first-failure censoring. In different

equations as

ol(a,B,Aly) - ol(a,B,Aly) - ol(a,B,Aly) _0
Jda B 2B N oA N
(16)
hence K
m
@A =p D, nogs (7
where -
D1= 3 (R+1)log [B+y?], (18)
D2= Y (R+Dlog|[B+(T+A(i—D)7]. (19
i=n;+1
Also
kn EkR+D+z 2 KkR+D+g 0
B i; B+y? A B (THAY—T)
(20)
and
m-m & -0 o, <
A i=ng+1 T+A(Yi—T) i=n;+1
(@k(R+D+Di—D(T+AM—T) _, ®)

B+(T+A(yi—1))°

_ . . . Tl
Consequently, the likelihoods equations are written in the
two nonlinear equation (20) and (21). In order to solve it

effective cases, information about the parameters is
available independently. So the independent prior is
specified forB anda, and the noninformative prior (NIP)
for the acceleration factok. We used the gamma priors
for the shape and the scale parameters because it's
wealthy to cover the previous trust of the experimenter.
The independent gamma prior f@@ and o is given,
respectively, as follows:

1 (a) O a® lexp—ba), (a > 0), (22)
and

5 (B) 0 B° exp(—dB), (B > 0), (23)

Also, the NIP for the acceleration factaris given by

TQ(A)D)\E,()\ > 0), (24)

consequently, from equations (22), (23) and (24) the joint
prior can be accurate as

n*(aaﬁv)\) O aa713C71)\ 7lexq_ba_dﬁ)7 (/\ ) aaB > 0)7

(25)
The joint posterior density o8,a and A, indicated by
ri(a,B,Ay) are apparent as:

L(a,B,Aly)m(a,B,A)

Jo Jo Jo L(a,B,Aly)m(a,B,A)dadBdA’
(26)

(a,B,Aly) =

numerically onf3 andA we use quasi-Newton Raphson, Thus, the Bayes estimate af 8 andA, say¢(a,3,A),

to obtain the MLE 8 andA and the MLE ofa sayd by
substituting of3 andA.

4 Estimation of Optimal Time-Change Stress

The optimal time-change stress is determined in this
section by minimizing the asymptotic variance of MLEs
of the acceleration factor and the model parameters. Th
asymptotic variance ofr, § and A is obtained using the
diagonal entries of the inverse of the Fisher information

matrix. With the assumption that = 0.1 ,8 = 1.5 and
A = 2.5, then fork = 3,n = 50,m = 30 andC.SlI, which

are the true values of the population parameters and the

with the squared error loss function (SEL), is gained by
(ﬁ(avﬁv)‘) = Ea,ﬁ,)\\x((p(avﬁv)‘)) =
Jo Jo Jo #(a,B.A)L(a,B.Aly)m(a,B,A)dadBdA
Jo' Jo" Jo' L(a.B.Aly)r(a, B, A)dardBdA

The ratio of three integrals given by (27) can’'t be gained in
a closed form. In this case, we use the MCMC method to
create samples from the posterior distributions to compute

the Bayes estimator @f(a,3,A) with SEL function.

By choosing®(u(¢),8) = eX-4%) —a(5 —u(e)) — 1,
we get theLINE X loss function written as

Sawaly) =~ NEEOl), (@29
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Where a # 0 is the shape parameter &INEX loss are identical to a normal distribution, see Figure(2).
function. The Bayes estimate of@) gathers the form Therefore to generate these distributions, we utilize the
Metropolis-Hastings method [28] together with normal

1 Yy . proposal distribution.
-3 ///e ’1'(ply)dadBdA].  (29)  The algorithm of Metropolis-Hastings method is as
000 follows
o 1. Start with initial guess of3(® = B,a© = a and
TheGE loss function is formed as A0 — ).
P 2. Setl = 1.
Gaw . (Y) = [E(u(9) ly)] 2, B0 3 " Generate a) from Gamma distribution
Wherea # 0 is the shape parameter®E loss function m(alp' AL y).
For which the Bayes estimate ofgp) takes the form 4. Using Metropolis-Hastings, generat8(") from

m(Bla'~1 A" Ly) with the N(B(~Y vy,) proposal
T27 N distribution. Wherev is from the variances-covariances
e=1/ [ [u@) *r(@ydadpdr] i (1) matrix
000 5. Using Metropolis-Hastings, generaté(” from
m(Ala'1,B'1y) with the N(A(~Y vs3) proposal
strlbutlon Wherersz is from the variances-covariances
matrix.
6. Computex"), B, andA ™
7.Putl =1+1.
8. Repeat steps 3-6 N times.
5.1 Bayesian estimation using MCMC method 9. The approximate Bayes MCMC point estimate of

The MCMC tech d method § . a(@g=a,@=0,¢=A) underSELandLINEX loss
e echnique is a good method for parameterfncti tivel
estimation. Several schemes of MCMC are obtainable, unctions, respectively, are expressed by

Unfortunately, we can’t calculate the integrals in equadio d|
(28), (29) and (31) exactly. So, the MCMC technique is
applied to approximate the integrals.

one significant sub-class of MCMC methods is Gibbs N
sampling and more general Metropolis within-Gibbs E(@|data) O (36)
samplers. MCMC has the feature over the MLE method g

that by structuring the probability intervals based on the

experimental posterior distribution, we get a appropriate 1 N
interval estimate of the parameters. E(exd—calldata) O exo—ca 37
The joint posterior density function ¢f,a, andA are: (expi—call ) N-M, (. A-cq], (37)
ﬂ(mB,Ay)ﬂﬂm*a’lBk"”’lAm’”l’l Where M is the burn-in period (that is, some iterations
g 00~ 9B- 51y (kR +1) 1) loglB 1yF) before the stationary distribution is carried out) and the
posterior variance off becomes
+ Y loglt+Ai-1)] - Y (Gk(Ri+l)+l)xlog{B+(T+)\(yi—r))2]}, . "
i=nj+1 i=n+1 . ~
V(@ |data) 0 ——— ) _E(g|data)?, (38
The conditional posterior pdf’s of the parametet$, and (@] ) N-M, _ +1((H (@l )) (38)

A using the conjugate prior can be computed by
ny
m(alB,A,y) O Gammdm-+ a,b— knlogB — k'ZL(R +1) 6 Interval Estimation

The approximate, credible and bootstrap confidence
2
xlog[B+y?] —k Z (R+1)logB+(T+A(Yi—1))T  jntervals (Cls) of the parametera, B, and A are

=N+l discussed in this section.
where
—dp— nz ak(R +1)+1) ><IogB+y2] rzn (ak(Rj +1)+1) xlog[B + (T +A(y; 7r))2]
r@(B\a,A.y)B”k"*c 1 i=1 i=ng+1 .
and 6.1 Approximate confidence intervals Cls
,Q(Aw,wmmfnrlexp{ $ gt A0l 3 (akR 1+ DiogB (A )2 In this subsection, the approximate Cls of the parameters

= = © are obtained using the asymptotic distributions of the
elements of the vectord(a,B8,A). The asymptotic
Figures(1-3)shows the number of simulation of CRD distribution of the MLEs ofp is obtained by
parameters generated by the MCMC method and the ~ ~

corresponding histogram. The plots of (34) show that they ((&@ —a),(B—B),(A —A))— N(0,1 " X(a,B,1)), (39)

(@© 2018 NSP
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wherel ~(a,3,1) is the variance-covariance matrix. The 7. Repeat step (1-6), U times and sort each estimate in
3x3 symmetric matrix of negative second partial ascending order AL, 62, .. 6% i = 1,2,3, where
derivatives of the log-likelihood function om, B, andA J Wise s+ Fisel 1 -

i i i : : $1se = Ose ,Pase = Pse and Pasg = Asg, Then, the
is the Fisher information matrik(a, 3, ), for the MLEs 100(1-y)% credible Cls fou: is presented by

(a, [§ and 5\), see [29]. The performance of
lij(a,B,A)),i,j = 1,2,3,, which is written by V9] Ala-$u), .
PSRN ce B =123 44
lij(@,B,A)), where (fisé - Pise * ) (44)
10. To compute the credible intervals@f we commonly
2%((¢ly) choose the quartiles of the sample as the endpoints of the
lij(¢) = — 36:09, (40)  interval, or as "L g2 M3 g as
I
J B D2, A An-m)- Then the 1001 —y) %
1 symmetric credible interval is
_Q%(aBAlY)  0*(aBAl)  d%(aBAl)
Ja2 0adf daodA
|1 | _P@BA _ d%a A _ d*(@pA (@A g n-m)> A5 n-my)s (45)
0 = | "7 9Bda ~ ~_aB2  ~_JBoA :
% BAIt) _ 0*(aBA)  9%(aBAl)
T T oAda T dAdB  o9Az @B

(41) 6.3 Bootstrap confidence intervals Cls
Thus, the 1001-y)% approximate Cls foa, 3, andA are _
obtained as We propose to use Cls based on the parametric bootstrap
R R methods. It's known that Cls with the asymptotic results
a Fzy\/V11, BF Zy+/Voz andA Fzy/V33 (42) don’t implement very well for small samples. We use the
2 2 2 parametric percentile bootstrap(Boot-p)Cls method based
Where vq1, Vo2, and vaz are the elements on the main on the concept of [30]. The following procedures are
diagonal of the variance-covariance matrixl(&,[?,}\) followed to obtain the progressive first-failure censoring

and zy is the percentile of the standard normal Pootstrap sample from CRD.
2 1. Compute the MLEs of the parametersf3 andA from

distribution with right-tail probability}. equations (17)-(21), using the original data set,
Y= (Yrmnks -’-\-aYnl:m:n:Aka)’n1+1:m:n:ka ey Ymemenik)
2. Useamy, BuL and Ay to generate a bootstrap sample
y* with sameR;, (i = 1,2,...,m) using the algorithm of
[34].
3. As in step one, using' compute the bootstrap sample
estimates ofiy, BuL, andAy saya*, B*, andA*.
4. Repeat steps (2)-(3), G times.
U 5. Sort each estimate in ascending order to gain the
plL<¢g<U)= / T (¢ly)dp =1-vy. (43)  bootstrap samples (@t a2, . a+(el),
: 34,32, .. 3€)) and[A*1, A+, .. 3+E),
There are several types of the credible interval, includingThen, the 10QL-y)% percentile bootstrap Cls fap; is
a central interval of posterior probability which is the presented by
range of values between th€) and(1— %) percentiles. . ,
The following procedures are performed to get credible soaxy _ oyl o x[(1-3)Gly -
Cls Ofa, Ba and)\. (¢IL7¢IG) - (¢| 7¢i )7' - 1a Za Sa (46)
T 0 _ 0 _ . - -

i.(o)Sjt)\ the initial guess of3® = B,a® = a and whered: = &, 5 = B, and; = A*.
2. putl = 1.
3. Generate a from Gamma distribution
m(alB' A Ly).
4. Using Metropolis-Hastings, outputB) from  The aim of the simulation is to see the effect of the MLEs
m(Bla' 1A' Ly) with the N(B!~Y,vz) proposal and BEs with SEL, LINEX and GE loss functions of the
distribution. Where vy, is possessed from the suggested methods. Monte Carlo simulations are carried
variances-covariances matrix. out employing 1000 progressively first-failure censored
5. Using Metropolis-Hastings, generatd) from  samples from a CRD(a,B). We use the algorithm
m(Ala'-1, B Ly) with the N(A(U-Y vz3) proposal described in [23] to simulate the samples. Different

distribution, where v33 is taken from a effective samples of sizay, different samples of sizey

6.2 Credible confidence intervals Cls
A 100(1-y)% Bayesian credible for a random quantjty

is the interval that has the posterior probability- y) that
¢(a,B,A) liesin the range such that

7 Simulation Studies

variances-covariances matrix. and differentk has been used. The study is done to
6. Computexr"), 1) andA (), calculate the MLEs, BEs, MSEs, and RABs, based on
(@© 2018 NSP
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N = 11000 andM = 1000 Monte Carlo simulations,
where the computations are performed using
(MATHEMATICA ver.9). The implementation of the
resulting estimators of the acceleration fadqtdy and the
distribution parameterga,f) has been discussed in
terms of their absolute relative bias (RABias); this is the
ultimate difference between the mean estimates, and its
true value divided by the true value of the parameter (i.e.
RABiag6) = %” ) and mean square error MSE; which is
the sum squares of the difference between the true value
and its estimated parameter divided by the number of the Fig. 1: Simulation number oér obtained by MCMC method.

sample (i.e.MSE(@) = E[(¢ — ¢)?]). Table.2 includes
MSEs and RABs of the MLEs and BEs af 3,A.

2000 4000 00 BO00 10000

Furthermore, the approximate bootstrap and credible Cls
of the acceleration factor, the scale parameter, and the
shape parameters obtained. Table 1 introduces the lengths
and the coverage probabilities of 95% and 90%
approximate, credible and percentile bootstrap Cls of the
model parameters.

The simulation procedure is performed according to the Fig. 2: Simulation number of; obtained by MCMC method.
following algorithm:

1- Specify the values af, m, k, andTt.

2- Specify the values ofa, B, and A as case.l:

Whereas the number of items setting in a life test is

(@ = 01,8 = 151 = 25 and case.2: (nx k) items, wheren indicates the group number akd
(B=0.1 o0—02A =1 ’5) ' " indicates the items number in every group. We consider
< o £ the following progressive CSs(l, II, I1), for the simulati

3- For specific values of the prior parameter®, ¢, and ; S
d generaten (a) and7e (). studies, to compare the performances of the estimation
4- Generate a sample of size x k) from the random discussed in this study. .

variableY presented by equation (5) and arrange it. TheSCh€me [Rm=n—m, Ry =0 fori 7 m.

CRD can be generated easily, for instance, if U indicates Egcheme IRy =n—m Ry =0fori#1. ml.

uniform random variable from [0,1], and if >chemelliRma =n—m Ry =0foriz %= if modd,

y = U62f,, thenY = [[B-9[1-U]]"a — B]Z has andRmz =n—m Ry=0fori# T ifmeven.

CRD with pdf specified by (13). The three censoring schemes are coincide with the cases
5- Generate progressively first-failure censored data foif all remaining items which are extracted from the test at
specifiedn, m Using the model given by equation (14), the first failure point, last failure point, and midpoint,
we consider the set of data: respectively. Furthermore, it is notable that Type-Il first
YlR;m,n,k <. < Y,ﬁ;m,n,k <1< YanH;m,n,k <. < Yn'?;m,n’k, failure censored scheme is the scheme-I.

whereR= (Ry,Ry,...,Rn) andy ;R =n—m.

6- Use the progressive first-failure censored data to

calculate the MLEs of the model parameters; the

Newton-Raphson method is used for resolving equations

(17)-(21) to get the MLESs of the unknown parameters.

7- Compute the BEs of the unknown parameters with SE

and LINEX loss functions, where N = 11000 and M =

1000.

8- Compute the approximate CI witly = 0.95 and

y = 0.90 for the unknown parameters. 8 Conclusion

9- Replicate steps (4)-(9), 1000 times.

10- Find the average values of the (MSEs) and (RABS)|n this study, we have considered a progressive
attached with the MLEs and BEs af 3, andA. first-failure censored samples, this study represents
11- Perform steps 1-10 with several valuesiof, andr.  maximum likelihood and Bayes methods for the analysis
Tables 1-3 summarize the simulation results. Table 1of the SSPALT, using the Compound Ray|e|gh failure
displays the approximated ClI at 95% and 90%do18,  model. We employed the MCMC technique to obtain the
andA. ) Bayes estimates and it has been shown the Bayes estimate
We apply the algorithm proposed by [35] to generateconcerning informative prior performs very well in this
progressive first failure censored samples from CRD.stydy. The simulation is performed to compare the
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Table 1: 90% and 95% approximate, credible and bootstrajo€ts,3 andA

O+ C0C

m n SC| Par| Approximate Cl L Credible ClI L bootstrap ClI L
15 30 | a (-0.0305, 0.2182)  0.2487 (0.0282, 0.1355) 0.1073 (0.0351, 0.1804) 0.145]
(-0.0544, 0.2421)  0.2965 (0.0237,0.1394) 0.1157 (0.0172,0.1946) 0.1774
B (-2.2495, 3.1147)  5.3642 (0.3165, 1.9184) 1.6019 (0.2680, 2.3851) 2.117]
(-3.0507, 3.9159)  6.9666 (0.2395, 2.1044) 1.8649 (0.1853,2.6173) 2.432
A (-0.5819, 2.5748)  3.1567 (0.4230, 4.1491) 3.7189 (0.2581, 4.8039) 4.545§
(-0.8843,2.8772)  3.761% (0.3502, 4.5984) 4.2482 (0.1740, 3.9594) 3.7854
Il a (-0.0870, 0.6859)  0.7729 (0.0567,0.1708) 0.1141 (0.0236, 0.3813) 0.357]
(-0.1610, 0.7599)  0.9209 (0.0511, 0.1878) 0.1367 (0.0207, 0.4572) 0.4365
B (-1.0578,5.6142)  6.6720 (0.3485, 1.4014) 1.0529 (0.1547, 2.3168) 2.162]
(-1.7084,5.2648)  6.9732 (0.2905, 1.5451) 1.2546 (0.2083, 2.7205) 2.5121
A (-0.1444,1.2993)  1.4437 (0.5111, 3.9317) 3.4206 (0.3058, 3.5197) 3.213¢
(-0.2827,1.4376)  1.7203 (0.3999, 4.0930) 3.6931 (0.2507, 4.1159) 3.8652
I a (0.0257,0.2175)  0.1918 (0.0365, 0.2048)  0.1583 (0.0316, 0.1386) 0.107
(0.0073, 0.2359) 0.2286 (0.0332, 0.2550) .2118 (0.0271, 0.1649) 0.144¢8
B | (-1.0120, 4.4845)  5.496% (0.3429, 1.8725) 1.5296¢ (0.2057, 2.7534) 2.547]
(-2.1132,4.5857)  6.6989 (0.2835, 1.9153) 1.6318 (0.1503, 2.6103) 2.460
A (-0.5689, 4.3249)  4.8938 (0.4865, 3.7296) 3.2431 (0.2179, 4.8603) 4.6424
(-0.8460, 4.6022)  5.4482 (0.3733,4.1816) 3.8083 (0.1066,5.6308) 5.5241
25 30 | a (0.0264, 0.1832) 0.1568 (0.0591, 0.1568) 0.0977 (0.0308, 0.1645) 0.133]
(0.0114,0.1982)  0.1868 (0.0536,0.1700) 0.1164 (0.0307,0.2060) 0.175%
B (-0.4819, 4.2027)  4.6846 (0.7292, 2.2895) 1.5603 (0.6292, 2.6915) 2.0621
(-0.9306, 4.6514)  5.5820 (0.6286, 2.4790) 1.8504 (0.4893, 2.9820) 2.492]
A (-0.4248, 4.3755)  4.8003 (0.3483, 3.2107) 2.8624 (0.2591, 3.4002) 3.141]
(-0.6929, 4.6437)  5.3366 (0.2838, 3.6524) 3.3686 (0.1906, 3.8527) 3.662]
1] a (0.0339, 0.1475) 0.1136 (0.0510, 0.1321) 0.0811 (0.0447,0.1383) 0.0936
(0.0231,0.1583)  0.1352 (0.0464, 0.1446) 0.0982 (0.0564, 0.1531) 0.0961
B (-0.6650, 3.8668)  4.5318 (0.5153, 1.9301) 1.4148 (0.4038, 2.1435) 1.739]
(-1.0991, 4.3009)  5.4000 (0.4415,2.0936) 1.6521 (0.3391, 2.4107) 2.071¢
A (-0.5346, 4.2067)  4.7413 (0.6675, 4.0904) 3.4229 (0.2571, 3.5300) 3.272¢
(-0.9888, 4.6608)  5.6496 (0.5607, 4.6681) 4.1074 (0.0792, 3.9017) 3.822%
1 a (0.0423, 0.1766) 0.1343 (0.0685, 0.1706) 0.1021 (0.0481, 0.1735) 0.1254
(0.0294, 0.1895)  0.1601 (0.0627,0.1858) 0.1231 (0.0520, 0.1817) 0.1291
B (-0.3507, 3.3368)  2.9861 (0.8144, 2.4047) 1.5903 (0.6011, 2.5907) 1.9896
(-0.7039, 3.6900)  4.3939 (0.6907, 2.6017) 1.9110 (0.4003, 2.8164) 2.416]
A (-0.6894, 3.9735) 4.6629 (0.4817, 3.0441) 2.5624 (0.2751, 3.4602) 3.185]
(-1.1360, 4.4202)  5.5562 (0.3762, 3.4646) 3.0884 (0.2283, 4.0715) 3.8432
30 30 a (0.0539, 0.1754)  0.1215 (0.0711, 0.1688) 0.0977 (0.0618,0.1704) 0.108¢
(0.0423, 0.1871) 0.1448 (0.0656, 0.1822) 0.1166 (0.0752, 0.1905) 0.1153
B (-0.1716, 3.6709)  3.8425 (0.8878, 2.4168) 1.2590 (0.8006, 2.2734) 1.472§
(-0.5397,4.0389)  4.5786 (0.8009, 2.5729) 1.7720 (0.7403, 2.6279) 1.887¢
A (-0.0747,4.24329) 4.3180 (0.7686, 4.0232) 3.2546 (0.6960, 4.3008) 3.604¢
(-0.4884, 4.6569)  5.1553 (0.6517, 4.0628) 3.4111 (0.6025, 4.6671)  4.064¢
50 30 | a (-0.0122,0.2384) 0.1284 (0.0598, 0.1614) 0.1016 (0.0671, 0.1845) 0.1174
(-0.0381, 0.2624)  0.2085% (0.0552, 0.1759) 0.1207 (0.0462, 0.1903) 0.144]
B | (-0.1031,5.2501) 5.3532 (1.3419,3.0827) 1.7408 (1.1407, 3.2550) 2.1141
(-0.0948, 4.2418)  4.3366 (1.1895, 3.4462) 2.2567 (1.1453, 3.6002) 2.454¢
A (-0.2857,2.6819) 2.9676 (0.5837, 3.3341) 2.7504 (0.4816, 3.5131) 3.0311
(-0.5699, 2.9662)  3.5361 (0.5024, 3.5851) 3.0827 (0.4520, 3.6530) 3.201
I | a | (0.0474,0.1476) 0.1002 (0.0760, 0.1817) 0.1057 (0.0471, 0.1846) 0.137%
(0.0359, 0.1491) 0.1132 (0.0705, 0.1962) 0.1257 (0.0415, 0.2136) 0.172]
B (-0.2925, 3.0314)  3.3239 (1.0122, 2.6975) 1.6853 (1.1302, 2.9495) 1.8191
(-0.6109, 3.3499) 3.9608 (0.9231, 2.8643) 1.9412 (0.8671, 3.0651) 2.198
A (-0.1159, 3.5450)  3.6609 (0.9566, 3.9771) 3.020% (1.2548, 4.0357) 2.7804
(-0.6581, 3.0872)  3.7453 (0.8056, 3.7391) 2.933% (0.9865, 4.001) 3.0144
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Table 1 Continued
I | a | (0.0477,0.2693) 0.2216 (0.0760, 0.1817) 0.1057 (0.0510, 0.1973) 0.146i
(0.0265, 0.2905) 0.2640 (0.0705, 0.1962) 0.1257 (0.0481, 0.2119) 0.163

B | (-0.2509, 3.9037) 4.1546 (1.0122,2.6975) 1.6853 (0.9716, 2.715) 1.7434
(-1.1279, 4.7806) 5.908% (0.9231, 2.8643) 1.9412 (0.9231, 2.7690) 1.8459

A | (-0.1137,2.0706) 2.1843 (1.0970, 3.2647) 2.1677 (1.0566, 3.6250) 2.5684
y

1

1

(-0.3229, 2.2798)  2.6027 (0.9865, 3.5301) 2.5436 (1.2604, 3.8601) 2.599]
50 50 a | (0.0562,0.1316)  0.0754 (0.0884, 0.1643) 0.0759 (0.0805, 0.1729) _ 0.0924
(0.0490, 0.1389)  0.0899 (0.0825, 0.1733)  0.0908 (0.0937, 0.1831)  0.0894
B | (0.0977,2.6299) 2.5322 (2.0651,3.8525) 1.7874 (1.9641, 3.7401) 1.77§
(-0.1449, 2.8725)  3.0197 (1.9296, 4.0463) 2.1740 (1.8907, 4.1626) 2.2719
A | (0.5121,3.8443) 3.3322 (1.0257,3.1036) 2.0779 (1.0049, 3.3106) 2.3057
(0.0972, 4.2594)  4.1622 (0.9254, 4.0703)  3.1449 (0.9703, 4.0922) 3.1219

Table.2: MSEs and RABs inside the parentheses of the MLE &svBtha = 0.1, = 1.5 andA =25

m n SC| Par ML SEL LINEX GE
c=-2 ¢=0.01 c=2 c=-2 ¢=0.01 c=2
15 30 | a 0.0713 | 0.0121| 0.0072 0.0169 0.0257 0.0112 0.0121 0.0130

0.7132 | 0.1211| 0.0721 0.1686 0.2569 0.1120 0.1211 0.1297
B 2.8389 | 0.2531| 0.1780 0.3330 0.0257 0.4183  0.2540 0.0235
1.8926 | 0.1687 | 0.1186 0.2220 0.3387 0.2789 0.1694  0.0157
A 0.5741 | 1.1848| 1.7799 0.5381 0.7056¢ 6.257 1.1613 0.7145
0.2297 | 0.4739| 0.7119 0.2152 0.2822 2.5028 0.4645 0.2858
Il a 0.2264 | 0.0366 | 0.0172 0.0298 0.043¢ 0.0347 0.0366 0.0386
2.2638 | 0.3660 | 0.1723 0.2981 0.4364 0.3468 0.3659 0.3863
B 4.1597 | 0.3834| 0.5902 0.4506 0.3184 0.5109 0.3841 0.1959
27732 | 0.2556 | 0.3934 0.3004 0.2123 0.3406  0.2561 0.1306
A 1.1837 | 1.0047 | 1.4909 0.4907 0.5893 4.9800 0.9866 0.6103
0.4735 | 0.4019| 0.5963 0.1963 0.2357 1.992 0.3947 0.2441
1 a 0.2744 | 0.0227| 0.0186 0.0341 0.0266 0.0220  0.0233 0.0227
2.7435 | 0.2265| 0.1858 0.3414 0.2664 0.2200  0.2329 0.2266
B | 12.9007| 0.4981| 0.5801 0.7640 0.4221 0.4989 0.6330 0.2999
8.6004 | 0.3321| 0.3867 0.5093 0.2814 0.3326  0.4220 0.1999
A 1.5687 | 0.2642| 0.0742 0.7818  0.566| 0.2554  0.7837 2.0587
0.6275 | 0.1057| 0.0297 0.3127 0.2264 0.1022 0.3135 0.8235
25 30 I a 0.0253 | 0.0239| 0.0207 0.0270 0.0324 0.0234 0.0239 0.0244]
0.2529 | 0.2394| 0.2075 0.2697  0.324| 0.2343 0.2394  0.2442
B 0.0009 | 0.3252| 0.5605 0.4038 0.2481 0.4787 0.3261 0.0865
0.0006 | 0.2168| 0.3737 0.2692 0.1654 0.3191 0.2174  0.0577
A 1.2606 | 1.7004 | 2.3660 0.9941 0.1869 7.213 1.6704 0.446
0.5042 | 0.6802| 0.9464 0.3977 0.0748% 2.8852 0.6682 0.1784
Il a 0.0403 | 0.0466 | 0.0450 0.0482 0.0511 0.0464 0.0466 0.0467
0.4031 | 0.4657| 0.4496 0.4815 0.5113 0.4640 0.4658 0.4675
B 0.8029 | 1.7626| 1.977 1.8296 1.7001 1.8465 1.7631 1.6522
0.3212 | 0.7051| 0.7908 0.7319 0.6801 0.7386  0.7052 0.6609
A 1.8754 | 2.9798 | 3.7172 2.1508 0.6898 8.3671  2.9443 0.4891
1.2503 | 1.9865| 2.4781 1.4339 0.4599 55781 1.9628 0.3260
1 a 0.0138 | 0.0133| 0.0102 0.0164 0.0223 0.0128 0.0133  0.01390
0.1383 | 0.1332| 0.1018 0.1643 0.223% 0.1276  0.1332 0.1387
B 0.1238 | 0.1969| 0.132 0.2648 0.4048§ 0.0028 0.1978 0.3476
0.0825 | 0.1313| 0.088 0.1766 0.2698 0.0019 0.13190 0.2318
A 0.4329 | 0.3223| 0.8919 0.2648 1.0148 4.0009 0.3048 0.9759
0.1732 | 0.1289| 0.3568 0.0938 0.4059 1.6004 0.12190 0.3904
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Table 2 continued
30 30 o | 0.1470| 0.1476| 0.0339 0.1086 0.1867 0.1386 0.1476 0.1569
0.0147| 0.0148 | 0.0034 0.0109 0.0187 0.0139 0.0148 0.0157
B | 0.1664 | 0.0513 | 0.0954 0.0055 0.0858 0.2077 0.0506 0.0717
0.2496 | 0.0769| 0.1431 0.0082 0.1288% 0.3116 0.0759 0.107%
A | 0.1663| 0.1210| 0.3919 0.1202 0.4133 2.0008 0.1125 0.4002
0.4157 | 0.3024 | 0.9798 0.3005 1.0332 5.0021 0.2813 1.000¢
30 50 I | a | 0.0133] 0.0302| 0.0166 0.0255 0.0349 0.0290 0.0302 0.0314
0.1326| 0.3020| 0.1659 0.2552 0.3488 0.2898 0.3019 0.3144
B | 0.0035| 1.3242| 1.4015 1.2421 1.0663 1.819 1.3219 0.9256
0.0024 | 0.8828 | 0.9343 0.8280 0.7109 0.6170 0.8813 1.212¢
A | 0.6625| 1.1663 | 1.4855 1.2831 1.0452 1.4056 1.168 0.703§
0.2650 | 0.4665| 0.5942 0.5132 0.4181 0.5622 0.4672 0.281%
Il a | 0.0042| 0.0003| 0.0032 0.0038 0.0097 0.001 0.0003 0.0004
0.0417 | 0.0029| 0.0320 0.0383 0.0967 0.0102 0.0028 0.0043
B | 0.1968 | 0.0792 | 0.1525 0.1633 0.0013 0.3431 0.1272 0.078(
0.1312| 0.0528| 0.1017 0.1089 0.0009 0.2288 0.0848 0.052(
A | 0.4175| 2.2448 | 3.1451 1.3384 0.041% 9.8165 2.1985 0.327¢
0.1670| 0.8979| 1.258 0.5354 0.0166 3.9266 0.8794 0.131(
Il | a | 0.1882] 0.0305| 0.0292 0.0319 0.034% 0.0304 0.0305 0.0307
1.8822 | 0.3054 | 0.2920 0.3189 0.3453 0.3035 0.3054 0.3071
B | 3.0990| 0.1749| 0.2446 0.1034 0.0410 0.4568 0.1737 0.0264
2.0660| 0.1166| 0.1630 0.0689 0.0273 0.3045 0.1158 0.017¢
A | 2.7225| 1.3199| 1.3203 1.3194 1.318% 1.3233 1.3199 1.3164
1.0890| 0.5280| 0.5281 0.5278 0.5274 0.5293 0.5279 0.526¢
50 50 o | 0.0061| 0.0228| 0.0164 0.0206 0.0250 0.0223 0.0228 0.0233
0.0610| 0.228 | 0.1640 0.2063 0.2496¢ 0.2226 0.2279 0.2334
B | 0.1362| 1.419 | 1.3657 1.3657 1.2604 1.7579 1.4174 1.149(
0.0908 | 0.9460| 0.9105 0.9105 0.8403 1.1719 0.9450 0.766(
A | 0.1783| 0.2538 | 0.4569 0.7783 0.4569 1.8694 0.8141 0.2592
0.0713| 0.1015| 0.1828 0.3113 0.1828 0.7478 0.3256 0.1037

Fig. 3: Simulation number ofA, obtained by MCMC method. Fig. 5: Histogram off3; obtained by MCMC method.
Simulation number of; obtained by MCMC method.

Fig. 6: Histogram ofA, obtained by MCMC method.
Fig. 4: Histogram ofa obtained by MCMC method.
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