37

Progress in Fractional Differentiation and Applications An International Journal

http://dx.doi.org/10.18576/pfda/050104

Continuous Family of Solutions for Fractional Integro-Differential Inclusions of Caputo-Katugampola Type

Aurelian Cernea^{1,2}

¹ Faculty of Mathematics and Computer Science, University of Bucharest, Academiei 14, 010014 Bucharest, Romania
 ² Academy of Romanian Scientists, Splaiul Independenței 54, 050094 Bucharest, Romania

Received: 8 Jan. 2018, Revised: 19 Jun. 2018, Accepted: 22 Jun. 2018 Published online: 1 Jan. 2019

Abstract: Investigating the properties of the new fractional operators is an important issue within the fractional calculus. In this manuscript a continuous family of solutions for a fractional integro-differential inclusion involving Caputo-Katugampola fractional derivative is obtained.

Keywords: Fractional derivative, differential inclusion, initial value problem.

1 Introduction

A strong development of the theory of differential equations and inclusions of fractional order can be seen during the last years [1,2,3,4,5]. We recall that fractional differential equations can model better many physical phenomena.

Recently, a generalized Caputo-Katugampola fractional derivative was suggested in [6] by Katugampola and afterwards he provided the existence of solutions for fractional differential equations defined by this derivative. This Caputo-Katugampola fractional derivative extends the well known Caputo and Caputo-Hadamard fractional derivatives. Recently, several qualitative properties of solutions of fractional differential equations defined by Caputo-Katugampola derivative were obtained [7,8].

In the present paper we study the following Cauchy problem

$$D_c^{\alpha,\rho}x(t) \in F(t,x(t),W(x)(t)) \quad a.e. \ ([0,T]), \quad x(0) = x_0,$$
(1.1)

where $\alpha \in (0,1]$, $\rho > 0$, J = [0,T], $D_c^{\alpha,\rho}$ is the Caputo-Katugampola fractional derivative, $FJ \times \mathbf{R} \times \mathbf{R} \to \mathscr{P}(\mathbf{R})$ is a set-valued map, $W : C(J, \mathbf{R}) \to C(J, \mathbf{R})$ is the nonlinear $W(x)(t) = \int_0^t v(t, s, x(s)) ds$, $v(., ., .) : J \times \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ and $x_0 \in \mathbf{R}$.

The goal of this paper is to prove the existence of solutions continuously depending on a parameter for problem (1.1). Our main theorem is, at the same time, a continuous version of Filippov's theorem [9] for problem (1.1). On the other hand, as a consequence of this result we obtain a continuous selection of the solution set of problem (1.1). The proof is essentially based on the Bressan-and Colombo selection theorem [10].

We note that similar results for other classes of fractional differential inclusions defined by Riemann-Liouville, Caputo or Hadamard fractional derivatives exists in the literature [11, 12, 13]. The present paper extends and unifies all these results in the case of the more general problem (1.1).

The manuscript is organized as follows: in Section 2 we present some preliminary results and Section 3 is devoted to our main results. The conclusions are presented in Section 4.

^{*} Corresponding author e-mail: acernea@fmi.unibuc.ro

2 Preliminaries

Let T > 0, J := [0, T]. In what follows $\mathscr{L}(J)$ is the σ -algebra of all Lebesgue measurable subsets of J, X is a real separable Banach space. As usual, $\mathscr{P}(X)$ is the set of all nonempty subsets of X and $\mathscr{B}(X)$ is the set of all Borel subsets of X. If $C \subset J$ then $\chi_C(.) : J \to \{0, 1\}$ is the characteristic function of C. If $C \subset X$, its closure is denoted by cl(C).

The Hausdorff distance between the closed sets $C, D \subset X$ is $d_H(C,D) = \max\{d^*(C,D), d^*(D,C)\}$, where $d^*(C,D) = \sup\{d(c,D); c \in C\}$ and $d(y,C) = \inf\{|y-c|; c \in C\}$.

By C(J,X) we understand the Banach space of all continuous functions $y(.): J \to X$. Its norm is $|y(.)|_C = \sup_{t \in J} |x(t)|$.

 $L^1(J,X)$ is the Banach space of all (Bochner) integrable functions $y(.): J \to X$ endowed with the norm $|y(.)|_1 = \int_0^T |y(t)| dt$. Some preliminary results that needed the sequel are presented. The following lemma is proved in [14].

Lemma 2.1. Consider $x : J \to X$ a measurable function and consider $H : J \to \mathscr{P}(X)$ set-valued which has closed values and is measurable.

Then, if $\varepsilon : J \to (0,\infty)$ *is measurable, there exists a measurable selection* $h : J \to X$ *of* $H(\cdot)$ *which satisfies*

$$|x(t) - h(t)| < d(x(t), H(t)) + \varepsilon(t) \quad a.e. (J).$$

Definition 2.2. The set $A \subset L^1(J,X)$ is called *decomposable* if for any $b(\cdot), c(\cdot) \in A$ and any subset $D \in \mathscr{L}(J)$ one has $a\chi + b\chi_{J\setminus A} \in A$.

 $\mathcal{D}(J,X)$ denotes the set of all decomposable closed subsets of $L^1(J,X)$.

In what follows (S,d) is a separable metric space. The next two lemmas are proved in [10].

Lemma 2.3. Consider $H(.,.): J \times S \to \mathscr{P}(X), \mathscr{L}(J) \otimes \mathscr{B}(S)$ -measurable set-valued map with closed values such that H(t,.) is lower semicontinuous for all $t \in J$.

Then the set-valued map $H^*(.): S \to \mathscr{D}(J,X)$

$$H^*(s) = \{ f \in L^1(J,X); \quad f(t) \in H(t,s) \quad a.e. (J) \}$$

has nonempty closed values and is lower semicontinuous iff there exists $q(.): S \to L^1(J,X)$ continuous that verifies

$$d(0,H(t,s)) \le q(s)(t) \quad a.e. (J), \, \forall s \in S.$$

Lemma 2.4. Consider $H(.): S \to \mathcal{D}(J,X)$ a set-valued map with closed decomposable values that is lower semicontinuous, consider $a(.): S \to L^1(J,X)$, $b(.): S \to L^1(J,\mathbb{R})$ continuous functions such that the values of the set-valued map $F(.): S \to \mathcal{D}(J,X)$ defined by

$$F(s) = cl\{f \in H(s); |f(t) - a(s)(t)| < b(s)(t) \quad a.e. (J)\}$$

are nonempty.

Then F(.) has a continuous selection.

The following notions were introduced [6]. Let $\rho > 0$.

Definition 2.5. a) *The generalized left-sided fractional integral of order* $\alpha > 0$ of a Lebesgue integrable function $f : [0, \infty) \to \mathbf{R}$ is defined by

$$I^{\alpha,\rho}f(t) = \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^\rho - s^\rho)^{\alpha-1} s^{\rho-1} f(s) ds, \qquad (2.1)$$

providing the right-hand side is pointwise defined on $(0,\infty)$ and $\Gamma(.)$ is Gamma function.

b) *The generalized fractional derivative*, corresponding to the generalized left-sided fractional integral in (2.1) of a function $f : [0, \infty) \to \mathbf{R}$ is defined by

$$D^{\alpha,\rho}f(t) = (t^{1-\rho}\frac{d}{dt})^n (I^{n-\alpha,\rho})(t) = \frac{\rho^{\alpha-n+1}}{\Gamma(n-\alpha)} (t^{1-\rho}\frac{d}{dt})^n \int_0^t \frac{s^{\rho-1}f(s)}{(t^{\rho}-s^{\rho})^{\alpha-n+1}} ds$$

if the integral exists and $n = [\alpha]$.

c) The Caputo-Katugampola generalized fractional derivative is defined by

$$D_c^{\alpha,\rho}f(t) = (D^{\alpha,\rho}[f(s) - \sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} s^k])(t)$$

We note that if $\rho = 1$, the Caputo-Katugampola fractional derivative becomes the well- known Caputo fractional derivative. On the other hand, passing to the limit with $\rho \rightarrow 0+$, the above definition yields the Hadamard fractional derivative.

In what follows $\rho > 0$ and $\alpha \in [0, 1]$.

Lemma 2.6. For a given integrable function $h(.): [0,T] \to \mathbf{R}$, the unique solution of the initial value problem

$$D_c^{\alpha,\rho}x(t) = h(t)$$
 a.e. ([0,T]), $x(0) = x_0$

is given by

$$x(t) = x_0 + \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^\rho - s^\rho)^{\alpha - 1} s^{\rho - 1} h(s) ds$$

For the proof of Lemma 2.6, see [6]; namely, Lemma 4.2.

By a solution of the problem (1.1) we mean a function $x \in C(J, \mathbb{R})$ for which there exists a function $h \in L^1(J, \mathbb{R})$ satisfying $h(t) \in F(t, x(t), W(x)(t))$ a.e. $(J), D_c^{\alpha, \rho} x(t) = h(t)$ a.e. (J) and $x(0) = x_0$.

The solution set of (1.1) is then denoted with $\mathscr{S}(x_0)$.

3 Main results

Below we assume the following hypotheses.

Hypothesis 3.1. i) $F(.,.): J \times \mathbb{R} \times \mathbb{R} \to \mathscr{P}(\mathbb{R})$ is $\mathscr{L}(J) \otimes \mathscr{B}(\mathbb{R} \times \mathbb{R})$ measurable with nonempty closed values. ii) There exists $l(.) \in L^1(J, (0, \infty))$ in such a way that, for almost all $t \in J$

$$d_H(F(t,u_1,v_1),F(t,u_2,v_2)) \le l(t)(|u_1-u_2|+|v_1-v_2|) \quad \forall u_1,u_2,v_1,v_2 \in \mathbf{R}.$$

iii) The mapping $v(.,.,.): J \times \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ verifies: $\forall y \in \mathbf{R}, (s,t) \to v(s,t,y)$ is measurable.

iv) $|v(s,t,y) - v(s,t,x)| \le l(t)|y-x|$ a.e. $(s,t) \in J \times J$, $\forall y,x \in \mathbf{R}$.

Hypothesis 3.2. (i) *S* is a separable metric space, the mappings $a(.) : S \to \mathbb{R}$ and $\varepsilon(.) : S \to (0, \infty)$ are continuous. (ii) There exists $g(.), q(.) : S \to L^1(J, \mathbb{R}), y(.) : S \to C(J, \mathbb{R})$ continuous that satisfy

$$(Dy(s))_c^{\alpha,\rho}(t) = g(s)(t) \quad a.e. \ t \in J, \quad \forall s \in S,$$

 $d(g(s)(t), F(t, y(s)(t), W(y(s)(.))(t)) \le q(s)(t) \quad a.e. \ t \in J, \ \forall \ s \in S.$

We utilize below the following notation

$$k(t) := l(t)(1 + \int_0^t l(u)du), \quad t \in J,$$

$$\xi(s) = \frac{1}{1 - I^{\alpha,\rho}k}(|a(s) - y(s)(0)| + \varepsilon(s) + I^{\alpha,\rho}q(s)), s \in S,$$

where $I^{\alpha,\rho}k := \sup_{t \in J} |I^{\alpha,\rho}k(t)|$ and $I^{\alpha,\rho}q(s) := \sup_{t \in J} |I^{\alpha,\rho}q(s)(t)|$.

Theorem 3.3. *Hypotheses 3.1 and 3.2 are verified.*

If $I^{\alpha,\rho}k < 1$, then there exists $x(.): S \to C(J, \mathbf{R})$ continuous, x(s)(.) denotes a solution of

$$D_c^{\alpha,\rho} z(t) \in F(t, z(t), W(z)(t)), \quad z(0) = a(s)$$

such that, $\forall (t,s) \in J \times S$,

$$|y(s)(t) - x(s)(t)| \le \xi(s).$$

Proof. In what follows we consider the notations $b(s) = |a(s) - y(s)(0)| + \varepsilon(s)$, $q_n(s) := (I^{\alpha,\rho}k)^{n-1}(b(s) + I^{\alpha,\rho}q(s))$, $n \ge 1$, $x_0(s)(t) = y(s)(t)$, $\forall s \in S$. Define the set-valued maps

$$A_0(s) = \{ f \in L^1(J, \mathbf{R}); \quad f(t) \in F(t, y(s)(t), W(y(s)(.))(t)) \quad a.e.(J) \}$$

$$B_0(s) = \operatorname{cl} \{ f \in A_0(s); \quad |f(t) - g(s)(t)| < q(s) + \frac{\rho^{\alpha} \Gamma(\alpha + 1)}{T^{\rho \alpha}} \varepsilon(s) \}.$$

By our assumptions, $d(g(s)(t), F(t, y(s)(t), W(y(s)(.))(t)) \le q(s)(t) < q(s)(t) + \frac{\rho^{\alpha} \Gamma(\alpha+1)}{T \rho^{\alpha}} \varepsilon(s)$, so according with Lemma 2.1, $B_0(s)$ is not empty.

Put $G_0(t,s) = F(t,y(s)(t),V(y(s)(.))(t))$ and one has

$$d(0, G_0(t, s)) \le |g(s)(t)| + q(s)(t) = q^*(s)(t)$$

with $q^*(.): S \to L^1(J, \mathbf{R})$ being continuous.

Taking into account Lemmas 2.3 and 2.4 we deduce that there exists h_0 a selection of B_0 that is continuous, i.e.

$$h_0(s)(t) \in F(t, y(s)(t), W(y(s)(.))(t))$$
 a.e. $(J), \forall s \in S,$

$$|h_0(s)(t) - g(s)(t)| \le q(s)(t) + rac{
ho^{lpha} \Gamma(lpha+1)}{T^{
ho lpha}} arepsilon(s) \quad \forall t \in J, \ s \in S.$$

Set $x_1(s)(t) = a(s) + \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^\rho - u^\rho)^{\alpha-1} u^{\rho-1} h_0(s)(u) du$ and we have

$$|x_1(s)(t) - x_0(s)(t)| \le |a(s) - y(s)(0)| + \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^\rho - u^\rho)^{\alpha - 1} u^{\rho - 1} |h_0(s)(v) - g(s)(v)| dv \le |a(s) - y(s)(0)| + \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^\rho - u^\rho)^{\alpha - 1} u^{\rho - 1} |h_0(s)(v) - g(s)(v)| dv \le |a(s) - y(s)(0)| + \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^\rho - u^\rho)^{\alpha - 1} u^{\rho - 1} |h_0(s)(v) - g(s)(v)| dv \le |a(s) - y(s)(0)| + \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^\rho - u^\rho)^{\alpha - 1} u^{\rho - 1} |h_0(s)(v) - g(s)(v)| dv \le |a(s) - y(s)(0)| + \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^\rho - u^\rho)^{\alpha - 1} u^{\rho - 1} |h_0(s)(v) - g(s)(v)| dv \le |a(s) - y(s)(0)| + \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^\rho - u^\rho)^{\alpha - 1} u^{\rho - 1} |h_0(s)(v) - g(s)(v)| dv \le |a(s) - y(s)(0)| + \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^\rho - u^\rho)^{\alpha - 1} u^{\rho - 1} |h_0(s)(v) - g(s)(v)| dv \le |a(s) - y(s)(0)| + \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^\rho - u^\rho)^{\alpha - 1} u^{\rho - 1} |h_0(s)(v) - g(s)(v)| dv \le |a(s) - y(s)(0)| + \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^\rho - u^\rho)^{\alpha - 1} u^{\rho - 1} |h_0(s)(v) - g(s)(v)| dv \le |a(s) - y(s)(0)| + \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^\rho - u^\rho)^{\alpha - 1} u^{\rho - 1} |h_0(s)(v) - g(s)(v)| dv \le |a(s) - y(s)(0)| + \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^\rho - u^\rho)^{\alpha - 1} u^{\rho - 1} |h_0(s)(v) - g(s)(v)| dv \le |a(s) - y(s)(0)| + \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^\rho - u^\rho)^{\alpha - 1} u^{\rho - 1} |h_0(s)(v) - g(s)(v)| dv \le |a(s) - y(s)(0)| + \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^\rho - u^\rho)^{\alpha - 1} u^{\rho - 1} |h_0(s)(v) - g(s)(v)| dv \le |a(s) - y(s)(0)| + \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^\rho - u^\rho)^{\alpha - 1} |h_0(s)(v) - g(s)(v)| dv \le |a(s) - y(s)(0)| + \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^\rho - u^\rho)^{\alpha - 1} |h_0(s)(v) - y(s)(v)| dv \le |a(s) - y(s)(v)| + \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^\rho - u^\rho)^{\alpha - 1} |h_0(s)(v) - y(s)(v)| dv \le |a(s) - y(s)(v)| + \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^\rho - u^\rho)^{\alpha - 1} |h_0(s)(v) - y(s)(v)| dv \le |a(s) - y(s)(v)| + \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^\rho - u^\rho)^{\alpha - 1} |h_0(s)(v)| dv \le |a(s) - y(s)(v)| dv \le |a(s) - y($$

$$\frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^\rho - u^\rho)^{\alpha-1} u^{\rho-1} (q(s)(u) + \frac{\rho^{\alpha} \Gamma(\alpha+1)}{T^{\rho\alpha}} \varepsilon(s)) du \le |a(s) - y(s)(0)| + I^{\alpha,\rho} q(s) + \frac{\rho^{\alpha} \Gamma(\alpha+1)}{T^{\rho\alpha} \Gamma(\alpha)} \varepsilon(s) + \int_0^t (t^\rho - u^\rho)^{\alpha-1} u^{\rho-1} du \le b(s) + I^{\alpha,\rho} q(s) = q_1(s).$$

Following an idea in [7], we define the sequences $h_n(.): S \to L^1(J, \mathbf{R}), x_n(.): S \to C(J, \mathbf{R})$ such that a) $x_n(.): S \to C(J, \mathbf{R}), h_n(.): S \to L^1(J, \mathbf{R})$ are continuous. b) $h_n(s)(t) \in F(t, x_n(s)(t), W(x_n(s)(.))(t)), s \in S$, a.e. (*J*). c) $|h_n(s)(t) - h_{n-1}(s)(t)| \le k(t)q_n(s), s \in S$, a.e. (J). d) $x_{n+1}(s)(t) = a(s) + \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^\rho - u^\rho)^{\alpha - 1} u^{\rho - 1} h_n(s)(u) du$.

If we assume that $h_i(.), x_i(.)$ are already constructed with a)-c) and define $x_{n+1}(.)$ as in d). It follows from c) and d) that

$$\begin{aligned} |x_{n+1}(s)(t) - x_n(s)(t)| &\leq \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^\rho - u^\rho)^{\alpha - 1} u^{\rho - 1} |h_n(s)(u) - h_{n-1}(s)(u)| du \\ &\leq \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^\rho - u^\rho)^{\alpha - 1} u^{\rho - 1} k(u) q_n(s) du \leq I^{\alpha, \rho} k \cdot q_n(s) = q_{n+1}(s). \end{aligned}$$
(3.1)

Also we have

$$d(h_n(s)(t), F(t, x_{n+1}(s)(t), W(x_{n+1}(s)(.))(t)) \leq l(t)(|x_{n+1}(s)(t) - x_n(s)(t)| + \int_0^t l(u)|x_{n+1}(s)(v) - x_n(s)(v)|dv) \leq l(t)(1 + \int_0^t l(u)du)q_{n+1}(s) = k(t)q_{n+1}(s).$$

For $s \in S$ we define

$$A_{n+1}(s) = \{ f \in L^1(J, \mathbf{R}); f(t) \in F(t, x_{n+1}(s)(t), W(x_{n+1}(s)(.))(t)) \text{ a.e. } (J) \},\$$
$$B_{n+1}(s) = \operatorname{cl} \{ f \in A_{n+1}(s); \quad |f(t) - h_n(s)(t)| < k(t)q_{n+1}(s) \text{ a.e. } (J) \}.$$

In order to prove that $B_{n+1}(s)$ is nonempty we point out that function $t \to p_n(s)(t) = ((I^{\alpha,\rho}k)^{n-1} - (I^{\alpha,\rho}k)^n)(b(s) + (I^{\alpha,\rho}k)^n)(b(s))$ $I^{\alpha,\rho}q(s)l(t)$ is strictly positive and measurable for any s. We have

$$d(h_n(s)(t), F(t, x_{n+1}(s)(t), W(x_{n+1}(s)(.))(t)) \le k(t)|x_{n+1}(s)(t) - x_n(s)(t)| - p_n(s)(t) \le k(t)q_{n+1}(s)$$

With Lemma 2.1 we find $w(.) \in L^1(J, \mathbf{R})$ such that $w(t) \in F(t, x_n(s)(t), W(x_{n+1}(s)(.))(t))$ a.e. (J) and

$$|w(t) - h_n(s)(t)| < d(h_n(s)(t), F(t, x_n(s)(t), W(x_{n+1}(s)(.))(t)) + p_n(s)(t))$$

i.e., $B_{n+1}(s)$ is nonempty.

Put $G_{n+1}(t,s) = F(t,x_{n+1}(s)(t),W(x_{n+1}(s)(.))(t))$. One may estimate

$$d(0, G_{n+1}(t, s)) \le |h_n(s)(t)| + k(t)|x_{n+1}(s)(t) - x_n(s)(t)| \le |h_n(s)(t)| + k(t)q_{n+1}(s) = q_{n+1}^*(s)(t) \quad a.e.(I) \le |h_n(s)(t)| + k(t)q_{n+1}(s) \le |h_n(s)(t)| + k(t)q_{n+1$$

with $q_{n+1}^*(.): S \to L^1(J, \mathbf{R})$ being continuous.

As above we find $h_{n+1}(.): S \to L^1(I, \mathbf{R})$ being continuous such that

$$h_{n+1}(s)(t) \in F(t, x_{n+1}(s)(t), W(x_{n+1}(s)(.))(t)) \quad \forall s \in S, a.e.(J),$$

$$|h_{n+1}(s)(t) - h_n(s)(t)| \le k(t)q_{n+1}(s) \quad \forall s \in S, a.e.(J).$$

Taking into account conditions c), d) and (3.1) one has

$$|x_{n+1}(s)(.) - x_n(s)(.)|_C \le I^{\alpha,\rho} kq_n(s) = q_{n+1}(s) = (I^{\alpha,\rho}k)^n (b(s) + I^{\alpha,\rho}q(s))$$
(3.2)

$$|h_{n+1}(s)(.) - h_n(s)(.)|_1 \le |k(.)|_1 q_n(s) = |k(.)|_1 (I^{\alpha,\rho}k)^n (b(s) + I^{\alpha,\rho}q(s)).$$
(3.3)

Therefore sequences $h_n(s)(.)$, $x_n(s)(.)$ are Cauchy in spaces $L^1(J, \mathbf{R})$ and $C(J, \mathbf{R})$, respectively. Denote by $h(.): S \to L^1(J, \mathbf{R})$, $x(.): S \to C(J, \mathbf{R})$ with their limits. The mapping $s \to b(s) + |I^{\alpha, \rho}q(s)|$ is continuous, therefore locally is bounded. Thus from (3.3) we deduce the continuity of $s \to h(s)(.)$ from S into $L^1(J, \mathbf{R})$.

As above, from (3.2), we obtain that the Cauchy condition is satisfied for the sequence $x_n(s)(.)$ locally uniformly with respect to *s*. Thus, the mapping $s \to x(s)(.)$ is continuous. At the same time, since the convergence of $x_n(s)(.)$ to x(s)(.) is uniform and

$$d(h_n(s)(t), F(t, x(s)(t), W(x(s)(.))(t)) \le M(t)|x_n(s)(t) - x(s)(t)| \quad a.e. \ (J),$$

 $\forall s \in S$ we may pass to the limit and deduce that

$$h(s)(t) \in F(t, x(s)(t), W(x(s)(.))(t)) \quad \forall s \in S, a.e. (J)$$

We have

$$\frac{\rho^{1-\alpha}}{\Gamma(\alpha)} |\int_0^t (t^{\rho} - u^{\rho})^{\alpha-1} u^{\rho-1} h_n(s)(u) du - \int_0^t (t^{\rho} - u^{\rho})^{\alpha-1} u^{\rho-1} h(s)(u) du| \le \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^{\rho} - u^{\rho})^{\alpha-1} u^{\rho-1} |h_n(s)(u) - h(s)(u)| du \le \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^{\rho} - u^{\rho})^{\alpha-1} u^{\rho-1} k(u) |x_{n+1}(s)(\cdot) - x_n(s)(\cdot)|_C du \le I^{\alpha,\rho} k |x_{n+1}(s)(\cdot) - x_n(s)(\cdot)|_C.$$

Passing to the limit in d) we find

$$x(s)(t) = a(s) + \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_0^t (t^{\rho} - u^{\rho})^{\alpha - 1} u^{\rho - 1} h(s)(u) du.$$

We add for all $n \ge 1$ inequalities (3.1) and we get

$$|x_{n+1}(s)(t) - y(s)(t)| \le \sum_{l=1}^{n} q_l(s) \le \xi(s).$$

Finally, passing to the limit in the last inequality we end the proof of the theorem.

From Theorem 3.3 we may find a selection of the solution set of problem (1.1) that is continuous.

Hypothesis 3.4. Hypothesis 3.1 is fulfilled, $I^{\alpha,\rho}k < 1$, $q_0(.) \in L^1(J, \mathbb{R}_+)$ exists and $d(0, F(t, 0, W(0)(t)) \le q_0(t)$ a.e. (J).

Corollary 3.5. *Hypothesis 3.4 is verified.*

Then there exists a function $s(.,.) : J \times \mathbf{R} \to \mathbf{R}$ such that a) $s(.,x) \in \mathscr{S}(x), \forall x \in \mathbf{R}$. b) $x \to s(.,x)$ from **R** into $C(J, \mathbf{R})$ is continuous.

Proof. It is enough to put in Theorem 3.3 $S = \mathbf{R}$, a(x) = x, $\forall x \in \mathbf{R}$, $\varepsilon(.) : \mathbf{R} \to (0, \infty)$ a given continuous mapping, g(.) = 0, y(.) = 0, $q(x)(t) = q_0(t) \ \forall x \in \mathbf{R}$, $t \in J$.

4 Conclusion

We discussed the existence of solutions continuously depending on a parameter corresponding to the problem which can be seen in (1.1). The theorem 3.3 contains the main results of this manuscript. Besides, we obtain a continuous selection of the solution set of problem (1.1).

References

- D. Băleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific, Singapore, 2012.
- [2] K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, 2010.
- [3] A. Kilbas, H. M. Srivastava and J. J. Trujillo, *Theory and Applications of Fractional Differential Equations*, Elsevier, Amsterdam, 2006.
- [4] K. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
- [5] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
- [6] U. N. Katugampola, A new approach to generalized fractional derivative, Bull. Math. Anal. Appl. 6, 1–15 (2014).
- [7] R. Almeida, A. B. Malinowski and T. Odzijewicz, Fractional differential equations with dependence on the Caputo-Katugampola derivative, J. Comput. Nonlin. Dyn. 11, ID 061017, 1–11 (2016).
- [8] S. Zeng, D. Băleanu, Y. Bai and G. Wu, Fractional differential equations of Caputo-Katugampola type and numerical solutions, *Appl. Math. Comput.* **315**, 549–554 (2017).
- [9] A. F. Filippov, Classical solutions of differential equations with multivalued right hand side, SIAM J. Contr. 5, 609–621 (1967).
- [10] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, *Studia Math.* **90**, 69–86 (1988).
- [11] A. Cernea, Continuous version of Filippov's theorem for fractional differential inclusions, Nonlinear Anal. 72, 204–208 (2010).
- [12] A. Cernea, On the existence of solutions for a class of nonconvex Hadamard-type fractional differential inclusions, *Nonlinear Anal. Forum* **19**, 237–245 (2014).
- [13] A. Cernea, Continuous selections of solutions sets of fractional integrodifferential inclusions, Acta Math. Sci. 35B, 399-406 (2015).
- [14] Q. J. Zhu, On the solution set of differential inclusions in Banach space, J. Differ. Equ. 93 213–237 (1991).
- [15] R. M. Colombo, A. Fryszkowski, T. Rzezuchowsk and V. Staicu, Continuous selections of solution sets of Lipschitzean differential inclusions, *Funkcial. Ekvac.* 34, 321–330 (1991).