Continuous Family of Solutions for Fractional Integro-Differential Inclusions of Caputo-Katugampola Type

Aurelian Cernea ${ }^{1,2}$
${ }^{1}$ Faculty of Mathematics and Computer Science, University of Bucharest, Academiei 14, 010014 Bucharest, Romania
${ }^{2}$ Academy of Romanian Scientists, Splaiul Independenţei 54, 050094 Bucharest, Romania

Received: 8 Jan. 2018, Revised: 19 Jun. 2018, Accepted: 22 Jun. 2018
Published online: 1 Jan. 2019

Abstract

Investigating the properties of the new fractional operators is an important issue within the fractional calculus. In this manuscript a continuous family of solutions for a fractional integro-differential inclusion involving Caputo-Katugampola fractional derivative is obtained.

Keywords: Fractional derivative, differential inclusion, initial value problem.

1 Introduction

A strong development of the theory of differential equations and inclusions of fractional order can be seen during the last years $[1,2,3,4,5]$. We recall that fractional differential equations can model better many physical phenomena.

Recently, a generalized Caputo-Katugampola fractional derivative was suggested in [6] by Katugampola and afterwards he provided the existence of solutions for fractional differential equations defined by this derivative. This Caputo-Katugampola fractional derivative extends the well known Caputo and Caputo-Hadamard fractional derivatives. Recently, several qualitative properties of solutions of fractional differential equations defined by Caputo-Katugampola derivative were obtained [7,8].

In the present paper we study the following Cauchy problem

$$
\begin{equation*}
D_{c}^{\alpha, \rho} x(t) \in F(t, x(t), W(x)(t)) \quad \text { a.e. }([0, T]), \quad x(0)=x_{0} \tag{1.1}
\end{equation*}
$$

where $\alpha \in(0,1], \rho>0, J=[0, T], D_{c}^{\alpha, \rho}$ is the Caputo-Katugampola fractional derivative, $F J \times \mathbf{R} \times \mathbf{R} \rightarrow \mathscr{P}(\mathbf{R})$ is a set-valued map, $W: C(J, \mathbf{R}) \rightarrow C(J, \mathbf{R})$ is the nonlinear $W(x)(t)=\int_{0}^{t} v(t, s, x(s)) d s, v(., .,):. J \times \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ and $x_{0} \in \mathbf{R}$.

The goal of this paper is to prove the existence of solutions continuously depending on a parameter for problem (1.1). Our main theorem is, at the same time, a continuous version of Filippov's theorem [9] for problem (1.1). On the other hand, as a consequence of this result we obtain a continuous selection of the solution set of problem (1.1). The proof is essentially based on the Bressan-and Colombo selection theorem [10].

We note that similar results for other classes of fractional differential inclusions defined by Riemann-Liouville, Caputo or Hadamard fractional derivatives exists in the literature [11,12,13]. The present paper extends and unifies all these results in the case of the more general problem (1.1).

The manuscript is organized as follows: in Section 2 we present some preliminary results and Section 3 is devoted to our main results. The conclusions are presented in Section 4.

[^0]
2 Preliminaries

Let $T>0, J:=[0, T]$. In what follows $\mathscr{L}(J)$ is the σ-algebra of all Lebesgue measurable subsets of J, X is a real separable Banach space. As usual, $\mathscr{P}(X)$ is the set of all nonempty subsets of X and $\mathscr{B}(X)$ is the set of all Borel subsets of X. If $C \subset J$ then $\chi_{C}():. J \rightarrow\{0,1\}$ is the characteristic function of C. If $C \subset X$, its closure is denoted by $\mathrm{cl}(C)$.

The Hausdorff distance between the closed sets $C, D \subset X$ is $d_{H}(C, D)=\max \left\{d^{*}(C, D), d^{*}(D, C)\right\}$, where $d^{*}(C, D)=$ $\sup \{d(c, D) ; c \in C\}$ and $d(y, C)=\inf \{|y-c| ; c \in C\}$.

By $C(J, X)$ we understand the Banach space of all continuous functions $y():. J \rightarrow X$. Its norm is $|y(.)|_{C}=\sup _{t \in J}|x(t)|$. $L^{1}(J, X)$ is the Banach space of all (Bochner) integrable functions $y():. J \rightarrow X$ endowed with the norm $|y(.)|_{1}=\int_{0}^{T}|y(t)| d t$.

Some preliminary results that needed the sequel are presented. The following lemma is proved in [14].
Lemma 2.1. Consider $x: J \rightarrow X$ a measurable function and consider $H: J \rightarrow \mathscr{P}(X)$ set-valued which has closed values and is measurable.

Then, if $\varepsilon: J \rightarrow(0, \infty)$ is measurable, there exists a measurable selection $h: J \rightarrow X$ of $H(\cdot)$ which satisfies

$$
|x(t)-h(t)|<d(x(t), H(t))+\varepsilon(t) \quad \text { a.e. }(J)
$$

Definition 2.2. The set $A \subset L^{1}(J, X)$ is called decomposable if for any $b(\cdot), c(\cdot) \in A$ and any subset $D \in \mathscr{L}(J)$ one has $a \chi+b \chi_{J \backslash A} \in A$.
$\mathscr{D}(J, X)$ denotes the set of all decomposable closed subsets of $L^{1}(J, X)$.
In what follows $(S, \mathrm{~d})$ is a separable metric space. The next two lemmas are proved in [10].
Lemma 2.3. Consider $H(.,):. J \times S \rightarrow \mathscr{P}(X), \mathscr{L}(J) \otimes \mathscr{B}(S)$-measurable set-valued map with closed values such that $H(t,$.$) is lower semicontinuous for all t \in J$.

Then the set-valued map $H^{*}():. S \rightarrow \mathscr{D}(J, X)$

$$
H^{*}(s)=\left\{f \in L^{1}(J, X) ; \quad f(t) \in H(t, s) \quad \text { a.e. }(J)\right\}
$$

has nonempty closed values and is lower semicontinuous iff there exists $q():. S \rightarrow L^{1}(J, X)$ continuous that verifies

$$
d(0, H(t, s)) \leq q(s)(t) \quad \text { a.e. }(J), \forall s \in S .
$$

Lemma 2.4. Consider $H():. S \rightarrow \mathscr{D}(J, X)$ a set-valued map with closed decomposable values that is lower semicontinuous, consider $a():. S \rightarrow L^{1}(J, X), b():. S \rightarrow L^{1}(J, \mathbf{R})$ continuous functions such that the values of the set-valued map $F():. S \rightarrow \mathscr{D}(J, X)$ defined by

$$
F(s)=c l\{f \in H(s) ; \quad|f(t)-a(s)(t)|<b(s)(t) \quad \text { a.e. }(J)\}
$$

are nonempty.
Then $F($.$) has a continuous selection.$
The following notions were introduced [6]. Let $\rho>0$.
Definition 2.5. a) The generalized left-sided fractional integral of order $\alpha>0$ of a Lebesgue integrable function f : $[0, \infty) \rightarrow \mathbf{R}$ is defined by

$$
\begin{equation*}
I^{\alpha, \rho} f(t)=\frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_{0}^{t}\left(t^{\rho}-s^{\rho}\right)^{\alpha-1} s^{\rho-1} f(s) d s \tag{2.1}
\end{equation*}
$$

providing the right-hand side is pointwise defined on $(0, \infty)$ and $\Gamma($.$) is Gamma function.$
b) The generalized fractional derivative, corresponding to the generalized left-sided fractional integral in (2.1) of a function $f:[0, \infty) \rightarrow \mathbf{R}$ is defined by

$$
D^{\alpha, \rho} f(t)=\left(t^{1-\rho} \frac{d}{d t}\right)^{n}\left(I^{n-\alpha, \rho}\right)(t)=\frac{\rho^{\alpha-n+1}}{\Gamma(n-\alpha)}\left(t^{1-\rho} \frac{d}{d t}\right)^{n} \int_{0}^{t} \frac{s^{\rho-1} f(s)}{\left(t^{\rho}-s^{\rho}\right)^{\alpha-n+1}} d s
$$

if the integral exists and $n=[\alpha]$.
c) The Caputo-Katugampola generalized fractional derivative is defined by

$$
D_{c}^{\alpha, \rho} f(t)=\left(D^{\alpha, \rho}\left[f(s)-\sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} s^{k}\right]\right)(t)
$$

We note that if $\rho=1$, the Caputo-Katugampola fractional derivative becomes the well- known Caputo fractional derivative. On the other hand, passing to the limit with $\rho \rightarrow 0+$, the above definition yields the Hadamard fractional derivative.

In what follows $\rho>0$ and $\alpha \in[0,1]$.
Lemma 2.6. For a given integrable function $h():.[0, T] \rightarrow \mathbf{R}$, the unique solution of the initial value problem

$$
D_{c}^{\alpha, \rho} x(t)=h(t) \quad \text { a.e. }([0, T]), \quad x(0)=x_{0}
$$

is given by

$$
x(t)=x_{0}+\frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_{0}^{t}\left(t^{\rho}-s^{\rho}\right)^{\alpha-1} s^{\rho-1} h(s) d s
$$

For the proof of Lemma 2.6, see [6]; namely, Lemma 4.2.
By a solution of the problem (1.1) we mean a function $x \in C(J, \mathbf{R})$ for which there exists a function $h \in L^{1}(J, \mathbf{R})$ satisfying $h(t) \in F(t, x(t), W(x)(t))$ a.e. $(J), D_{c}^{\alpha, \rho} x(t)=h(t)$ a.e. (J) and $x(0)=x_{0}$.

The solution set of (1.1) is then denoted with $\mathscr{S}\left(x_{0}\right)$.

3 Main results

Below we assume the following hypotheses.
Hypothesis 3.1. i) $F(.,):. J \times \mathbf{R} \times \mathbf{R} \rightarrow \mathscr{P}(\mathbf{R})$ is $\mathscr{L}(J) \otimes \mathscr{B}(\mathbf{R} \times \mathbf{R})$ measurable with nonempty closed values.
ii) There exists $l(.) \in L^{1}(J,(0, \infty))$ in such a way that, for almost all $t \in J$

$$
d_{H}\left(F\left(t, u_{1}, v_{1}\right), F\left(t, u_{2}, v_{2}\right)\right) \leq l(t)\left(\left|u_{1}-u_{2}\right|+\left|v_{1}-v_{2}\right|\right) \quad \forall u_{1}, u_{2}, v_{1}, v_{2} \in \mathbf{R} .
$$

iii) The mapping $v(., .,):. J \times \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ verifies: $\forall y \in \mathbf{R},(s, t) \rightarrow v(s, t, y)$ is measurable.
iv) $|v(s, t, y)-v(s, t, x)| \leq l(t)|y-x| \quad$ a.e. $(s, t) \in J \times J, \quad \forall y, x \in \mathbf{R}$.

Hypothesis 3.2. (i) S is a separable metric space, the mappings $a():. S \rightarrow \mathbf{R}$ and $\varepsilon():. S \rightarrow(0, \infty)$ are continuous.
(ii) There exists $g(),. q():. S \rightarrow L^{1}(J, \mathbf{R}), y():. S \rightarrow C(J, \mathbf{R})$ continuous that satisfy

$$
\begin{aligned}
(D y(s))_{c}^{\alpha, \rho}(t)=g(s)(t) \quad \text { a.e. } t \in J, & \forall s \in S, \\
d(g(s)(t), F(t, y(s)(t), W(y(s)(.))(t)) \leq q(s)(t) & \text { a.e. } t \in J, \forall s \in S
\end{aligned}
$$

We utilize below the following notation

$$
\begin{gathered}
k(t):=l(t)\left(1+\int_{0}^{t} l(u) d u\right), \quad t \in J \\
\xi(s)=\frac{1}{1-I^{\alpha, \rho} k}\left(|a(s)-y(s)(0)|+\varepsilon(s)+I^{\alpha, \rho} q(s)\right), s \in S
\end{gathered}
$$

where $I^{\alpha, \rho} k:=\sup _{t \in J}\left|I^{\alpha, \rho} k(t)\right|$ and $I^{\alpha, \rho} q(s):=\sup _{t \in J}\left|I^{\alpha, \rho} q(s)(t)\right|$.
Theorem 3.3. Hypotheses 3.1 and 3.2 are verified.
If $I^{\alpha, \rho} k<1$, then there exists $x():. S \rightarrow C(J, \mathbf{R})$ continuous, $x(s)($.$) denotes a solution of$

$$
D_{c}^{\alpha, \rho} z(t) \in F(t, z(t), W(z)(t)), \quad z(0)=a(s)
$$

such that, $\forall(t, s) \in J \times S$,

$$
|y(s)(t)-x(s)(t)| \leq \xi(s)
$$

Proof. In what follows we consider the notations $b(s)=|a(s)-y(s)(0)|+\varepsilon(s), q_{n}(s):=\left(I^{\alpha, \rho} k\right)^{n-1}\left(b(s)+I^{\alpha, \rho} q(s)\right)$, $n \geq 1, x_{0}(s)(t)=y(s)(t), \forall s \in S$. Define the set-valued maps

$$
A_{0}(s)=\left\{f \in L^{1}(J, \mathbf{R}) ; \quad f(t) \in F(t, y(s)(t), W(y(s)(.))(t)) \quad \text { a.e. }(J)\right\}
$$

$$
B_{0}(s)=\operatorname{cl}\left\{f \in A_{0}(s) ; \quad|f(t)-g(s)(t)|<q(s)+\frac{\rho^{\alpha} \Gamma(\alpha+1)}{T^{\rho \alpha}} \varepsilon(s)\right\}
$$

By our assumptions, $d\left(g(s)(t), F(t, y(s)(t), W(y(s)()).(t)) \leq q(s)(t)<q(s)(t)+\frac{\rho^{\alpha} \Gamma(\alpha+1)}{T^{\rho \alpha}} \varepsilon(s)\right.$, so according with Lemma 2.1, $B_{0}(s)$ is not empty.

Put $G_{0}(t, s)=F(t, y(s)(t), V(y(s)()).(t))$ and one has

$$
d\left(0, G_{0}(t, s)\right) \leq|g(s)(t)|+q(s)(t)=q^{*}(s)(t)
$$

with $q^{*}():. S \rightarrow L^{1}(J, \mathbf{R})$ being continuous.
Taking into account Lemmas 2.3 and 2.4 we deduce that there exists h_{0} a selection of B_{0} that is continuous, i.e.

$$
\begin{gathered}
h_{0}(s)(t) \in F(t, y(s)(t), W(y(s)(.))(t)) \quad \text { a.e. }(J), \forall s \in S \\
\left|h_{0}(s)(t)-g(s)(t)\right| \leq q(s)(t)+\frac{\rho^{\alpha} \Gamma(\alpha+1)}{T^{\rho \alpha}} \varepsilon(s) \quad \forall t \in J, s \in S
\end{gathered}
$$

Set $x_{1}(s)(t)=a(s)+\frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_{0}^{t}\left(t^{\rho}-u^{\rho}\right)^{\alpha-1} u^{\rho-1} h_{0}(s)(u) d u$ and we have

$$
\begin{gathered}
\left|x_{1}(s)(t)-x_{0}(s)(t)\right| \leq|a(s)-y(s)(0)|+\frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_{0}^{t}\left(t^{\rho}-u^{\rho}\right)^{\alpha-1} u^{\rho-1}\left|h_{0}(s)(v)-g(s)(v)\right| d v \leq|a(s)-y(s)(0)|+ \\
\frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_{0}^{t}\left(t^{\rho}-u^{\rho}\right)^{\alpha-1} u^{\rho-1}\left(q(s)(u)+\frac{\rho^{\alpha} \Gamma(\alpha+1)}{T^{\rho \alpha}} \varepsilon(s)\right) d u \leq|a(s)-y(s)(0)|+I^{\alpha, \rho} q(s)+\frac{\rho^{\alpha} \Gamma(\alpha+1)}{T^{\rho \alpha} \Gamma(\alpha)} \varepsilon(s) \\
\int_{0}^{t}\left(t^{\rho}-u^{\rho}\right)^{\alpha-1} u^{\rho-1} d u \leq b(s)+I^{\alpha, \rho} q(s)=q_{1}(s) .
\end{gathered}
$$

Following an idea in [7], we define the sequences $h_{n}():. S \rightarrow L^{1}(J, \mathbf{R}), x_{n}():. S \rightarrow C(J, \mathbf{R})$ such that
a) $x_{n}():. S \rightarrow C(J, \mathbf{R}), h_{n}():. S \rightarrow L^{1}(J, \mathbf{R})$ are continuous.
b) $h_{n}(s)(t) \in F\left(t, x_{n}(s)(t), W\left(x_{n}(s)().\right)(t)\right), s \in S$, a.e. (J).
c) $\left|h_{n}(s)(t)-h_{n-1}(s)(t)\right| \leq k(t) q_{n}(s), s \in S$, a.e. (J).
d) $x_{n+1}(s)(t)=a(s)+\frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_{0}^{t}\left(t^{\rho}-u^{\rho}\right)^{\alpha-1} u^{\rho-1} h_{n}(s)(u) d u$.

If we assume that $h_{i}(),. x_{i}($.$) are already constructed with a)-c) and define x_{n+1}($.$) as in d). It follows from c) and d)$ that

$$
\begin{align*}
& \left|x_{n+1}(s)(t)-x_{n}(s)(t)\right| \leq \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_{0}^{t}\left(t^{\rho}-u^{\rho}\right)^{\alpha-1} u^{\rho-1}\left|h_{n}(s)(u)-h_{n-1}(s)(u)\right| d u \\
& \leq \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_{0}^{t}\left(t^{\rho}-u^{\rho}\right)^{\alpha-1} u^{\rho-1} k(u) q_{n}(s) d u \leq I^{\alpha, \rho} k \cdot q_{n}(s)=q_{n+1}(s) \tag{3.1}
\end{align*}
$$

Also we have

$$
d\left(h_{n}(s)(t), F\left(t, x_{n+1}(s)(t), W\left(x_{n+1}(s)(.)\right)(t)\right) \leq l(t)\left(\left|x_{n+1}(s)(t)-x_{n}(s)(t)\right|+\int_{0}^{t} l(u)\left|x_{n+1}(s)(v)-x_{n}(s)(v)\right| d v\right) \leq\right.
$$

$$
l(t)\left(1+\int_{0}^{t} l(u) d u\right) q_{n+1}(s)=k(t) q_{n+1}(s)
$$

For $s \in S$ we define

$$
\begin{gathered}
A_{n+1}(s)=\left\{f \in L^{1}(J, \mathbf{R}) ; f(t) \in F\left(t, x_{n+1}(s)(t), W\left(x_{n+1}(s)(.)\right)(t)\right) \text { a.e. }(J)\right\}, \\
B_{n+1}(s)=\operatorname{cl}\left\{f \in A_{n+1}(s) ; \quad\left|f(t)-h_{n}(s)(t)\right|<k(t) q_{n+1}(s) \text { a.e. }(J)\right\}
\end{gathered}
$$

In order to prove that $B_{n+1}(s)$ is nonempty we point out that function $t \rightarrow p_{n}(s)(t)=\left(\left(I^{\alpha, \rho} k\right)^{n-1}-\left(I^{\alpha, \rho} k\right)^{n}\right)(b(s)+$ $\left.I^{\alpha, \rho} q(s)\right) l(t)$ is strictly positive and measurable for any s. We have

$$
d\left(h_{n}(s)(t), F\left(t, x_{n+1}(s)(t), W\left(x_{n+1}(s)(.)\right)(t)\right) \leq k(t)\left|x_{n+1}(s)(t)-x_{n}(s)(t)\right|-p_{n}(s)(t) \leq k(t) q_{n+1}(s)\right.
$$

With Lemma 2.1 we find $w(.) \in L^{1}(J, \mathbf{R})$ such that $w(t) \in F\left(t, x_{n}(s)(t), W\left(x_{n+1}(s)().\right)(t)\right)$ a.e. (J) and

$$
\left|w(t)-h_{n}(s)(t)\right|<d\left(h_{n}(s)(t), F\left(t, x_{n}(s)(t), W\left(x_{n+1}(s)(.)\right)(t)\right)+p_{n}(s)(t)\right.
$$

i.e., $B_{n+1}(s)$ is nonempty.

Put $G_{n+1}(t, s)=F\left(t, x_{n+1}(s)(t), W\left(x_{n+1}(s)().\right)(t)\right)$. One may estimate

$$
d\left(0, G_{n+1}(t, s)\right) \leq\left|h_{n}(s)(t)\right|+k(t)\left|x_{n+1}(s)(t)-x_{n}(s)(t)\right| \leq\left|h_{n}(s)(t)\right|+k(t) q_{n+1}(s)=q_{n+1}^{*}(s)(t) \quad \text { a.e. }(I)
$$

with $q_{n+1}^{*}():. S \rightarrow L^{1}(J, \mathbf{R})$ being continuous.
As above we find $h_{n+1}():. S \rightarrow L^{1}(I, \mathbf{R})$ being continuous such that

$$
\begin{gathered}
h_{n+1}(s)(t) \in F\left(t, x_{n+1}(s)(t), W\left(x_{n+1}(s)(.)\right)(t)\right) \quad \forall s \in S \text {, a.e. }(J), \\
\left|h_{n+1}(s)(t)-h_{n}(s)(t)\right| \leq k(t) q_{n+1}(s) \quad \forall s \in S \text {, a.e. }(J)
\end{gathered}
$$

Taking into account conditions c), d) and (3.1) one has

$$
\begin{gather*}
\left|x_{n+1}(s)(.)-x_{n}(s)(.)\right|_{C} \leq I^{\alpha, \rho} k q_{n}(s)=q_{n+1}(s)=\left(I^{\alpha, \rho} k\right)^{n}\left(b(s)+I^{\alpha, \rho} q(s)\right) \tag{3.2}\\
\left|h_{n+1}(s)(.)-h_{n}(s)(.)\right|_{1} \leq|k(.)|_{1} q_{n}(s)=|k(.)|_{1}\left(I^{\alpha, \rho} k\right)^{n}\left(b(s)+I^{\alpha, \rho} q(s)\right) . \tag{3.3}
\end{gather*}
$$

Therefore sequences $h_{n}(s)(),. x_{n}(s)($.$) are Cauchy in spaces L^{1}(J, \mathbf{R})$ and $C(J, \mathbf{R})$, respectively. Denote by $h():. S \rightarrow L^{1}(J, \mathbf{R}), x():. S \rightarrow C(J, \mathbf{R})$ with their limits. The mapping $s \rightarrow b(s)+\left|I^{\alpha, \rho} q(s)\right|$ is continuous, therefore locally is bounded. Thus from (3.3) we deduce the continuity of $s \rightarrow h(s)($.$) from S$ into $L^{1}(J, \mathbf{R})$.

As above, from (3.2), we obtain that the Cauchy condition is satisfied for the sequence $x_{n}(s)($.$) locally uniformly with$ respect to s. Thus, the mapping $s \rightarrow x(s)($.$) is continuous. At the same time, since the convergence of x_{n}(s)($.$) to x(s)($.$) is$ uniform and

$$
d\left(h_{n}(s)(t), F(t, x(s)(t), W(x(s)(.))(t)) \leq M(t)\left|x_{n}(s)(t)-x(s)(t)\right| \quad \text { a.e. }(J),\right.
$$

$\forall s \in S$ we may pass to the limit and deduce that

$$
h(s)(t) \in F(t, x(s)(t), W(x(s)(.))(t)) \quad \forall s \in S \text {, a.e. }(J)
$$

We have

$$
\begin{aligned}
& \left.\frac{\rho^{1-\alpha}}{\Gamma(\alpha)}\left|\int_{0}^{t}\left(t^{\rho}-u^{\rho}\right)^{\alpha-1} u^{\rho-1} h_{n}(s)(u) d u-\int_{0}^{t}\left(t^{\rho}-u^{\rho}\right)^{\alpha-1} u^{\rho-1} h(s)(u) d u\right| \leq \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_{0}^{t}\left(t^{\rho}-u^{\rho}\right)^{\alpha-1} u^{\rho-1} \right\rvert\, h_{n}(s)(u)- \\
& \quad h(s)(u)\left|d u \leq \frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_{0}^{t}\left(t^{\rho}-u^{\rho}\right)^{\alpha-1} u^{\rho-1} k(u) .\left|x_{n+1}(s)(.)-x_{n}(s)(.)\right|_{C} d u \leq I^{\alpha, \rho} k .\left|x_{n+1}(s)(.)-x_{n}(s)(.)\right|_{C} .\right.
\end{aligned}
$$

Passing to the limit in d) we find

$$
x(s)(t)=a(s)+\frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_{0}^{t}\left(t^{\rho}-u^{\rho}\right)^{\alpha-1} u^{\rho-1} h(s)(u) d u
$$

We add for all $n \geq 1$ inequalities (3.1) and we get

$$
\left|x_{n+1}(s)(t)-y(s)(t)\right| \leq \sum_{l=1}^{n} q_{l}(s) \leq \xi(s)
$$

Finally, passing to the limit in the last inequality we end the proof of the theorem.
From Theorem 3.3 we may find a selection of the solution set of problem (1.1) that is continuous.
Hypothesis 3.4. Hypothesis 3.1 is fulfilled, $I^{\alpha, \rho_{k}}<1, q_{0}(.) \in L^{1}\left(J, \mathbf{R}_{+}\right)$exists and $\mathrm{d}\left(0, F(t, 0, W(0)(t)) \leq q_{0}(t)\right.$ a.e. (J).
Corollary 3.5. Hypothesis 3.4 is verified.
Then there exists a function $s(.,):. J \times \mathbf{R} \rightarrow \mathbf{R}$ such that
a) $s(., x) \in \mathscr{S}(x), \forall x \in \mathbf{R}$.
b) $x \rightarrow s(., x)$ from \mathbf{R} into $C(J, \mathbf{R})$ is continuous.

Proof. It is enough to put in Theorem $3.3 S=\mathbf{R}, a(x)=x, \forall x \in \mathbf{R}, \varepsilon():. \mathbf{R} \rightarrow(0, \infty)$ a given continuous mapping, $g()=0,. y()=0,. q(x)(t)=q_{0}(t) \forall x \in \mathbf{R}, t \in J$.

4 Conclusion

We discussed the existence of solutions continuously depending on a parameter corresponding to the problem which can be seen in (1.1). The theorem 3.3 contains the main results of this manuscript. Besides, we obtain a continuous selection of the solution set of problem (1.1).

References

[1] D. Băleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific, Singapore, 2012.
[2] K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, 2010.
[3] A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
[4] K. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
[5] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego,1999.
[6] U. N. Katugampola, A new approach to generalized fractional derivative, Bull. Math. Anal. Appl. 6, 1-15 (2014).
[7] R. Almeida, A. B. Malinowski and T. Odzijewicz, Fractional differential equations with dependence on the Caputo-Katugampola derivative, J. Comput. Nonlin. Dyn. 11, ID 061017, 1-11 (2016).
[8] S. Zeng, D. Băleanu, Y. Bai and G. Wu, Fractional differential equations of Caputo-Katugampola type and numerical solutions, Appl. Math. Comput. 315, 549-554 (2017).
[9] A. F. Filippov, Classical solutions of differential equations with multivalued right hand side, SIAM J. Contr. 5, 609-621 (1967).
[10] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90, 69-86 (1988).
[11] A. Cernea, Continuous version of Filippov's theorem for fractional differential inclusions, Nonlinear Anal. 72, 204-208 (2010).
[12] A. Cernea, On the existence of solutions for a class of nonconvex Hadamard-type fractional differential inclusions, Nonlinear Anal. Forum 19, 237-245 (2014).
[13] A. Cernea, Continuous selections of solutions sets of fractional integrodifferential inclusions, Acta Math. Sci. 35B, 399-406 (2015).
[14] Q. J. Zhu, On the solution set of differential inclusions in Banach space, J. Differ. Equ. 93 213-237 (1991).
[15] R. M. Colombo, A. Fryszkowski, T. Rzezuchowsk and V. Staicu, Continuous selections of solution sets of Lipschitzean differential inclusions, Funkcial. Ekvac. 34, 321-330 (1991).

[^0]: * Corresponding author e-mail: acernea@fmi.unibuc.ro

