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Abstract: Investigating the properties of the new fractional operators is an important issue within the fractional calculus. In this
manuscript a continuous family of solutions for a fractional integro-differential inclusion involving Caputo-Katugampola fractional
derivative is obtained.

Keywords: Fractional derivative, differential inclusion, initial value problem.

1 Introduction

A strong development of the theory of differential equations and inclusions of fractional order can be seen during the last
years [1,2,3,4,5] . We recall that fractional differential equations can model better many physical phenomena.

Recently, a generalized Caputo-Katugampola fractional derivative was suggested in [6] by Katugampola and
afterwards he provided the existence of solutions for fractional differential equations defined by this derivative. This
Caputo-Katugampola fractional derivative extends the well known Caputo and Caputo-Hadamard fractional derivatives.
Recently, several qualitative properties of solutions of fractional differential equations defined by Caputo-Katugampola
derivative were obtained [7,8].

In the present paper we study the following Cauchy problem

Dα ,ρ
c x(t) ∈ F(t,x(t),W(x)(t)) a.e. ([0,T]), x(0) = x0, (1.1)

whereα ∈ (0,1], ρ > 0, J = [0,T], Dα ,ρ
c is the Caputo-Katugampola fractional derivative,FJ×R×R → P(R) is a

set-valued map,W : C(J,R)→C(J,R) is the nonlinearW(x)(t) =
∫ t

0 v(t,s,x(s))ds, v(., ., .) : J×R×R→ R andx0 ∈ R.
The goal of this paper is to prove the existence of solutions continuously depending on a parameter for problem (1.1).

Our main theorem is, at the same time, a continuous version ofFilippov’s theorem [9] for problem (1.1). On the other
hand, as a consequence of this result we obtain a continuous selection of the solution set of problem (1.1). The proof is
essentially based on the Bressan-and Colombo selection theorem [10].

We note that similar results for other classes of fractionaldifferential inclusions defined by Riemann-Liouville, Caputo
or Hadamard fractional derivatives exists in the literature [11,12,13] . The present paper extends and unifies all these
results in the case of the more general problem (1.1).

The manuscript is organized as follows: in Section 2 we present some preliminary results and Section 3 is devoted to
our main results. The conclusions are presented in Section 4.
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2 Preliminaries

Let T > 0,J := [0,T]. In what followsL (J) is theσ -algebra of all Lebesgue measurable subsets ofJ, X is a real separable
Banach space. As usual,P(X) is the set of all nonempty subsets of X andB(X) is the set of all Borel subsets ofX. If
C⊂ J thenχC(.) : J → {0,1} is the characteristic function ofC. If C⊂ X, its closure is denoted by cl(C).

The Hausdorff distance between the closed setsC,D ⊂ X is dH(C,D) = max{d∗(C,D),d∗(D,C)}, whered∗(C,D) =
sup{d(c,D); c∈C} andd(y,C) = inf{|y− c|;c∈C}.

By C(J,X) we understand the Banach space of all continuous functionsy(.) : J→ X. Its norm is|y(.)|C = supt∈J|x(t)|.
L1(J,X) is the Banach space of all (Bochner) integrable functionsy(.) : J→X endowed with the norm|y(.)|1 =

∫ T
0 |y(t)|dt.

Some preliminary results that needed the sequel are presented. The following lemma is proved in [14].

Lemma 2.1.Consider x: J → X a measurable function and consider H: J → P(X) set-valued which has closed values
and is measurable.

Then, ifε : J → (0,∞) is measurable, there exists a measurable selection h: J → X of H(·) which satisfies

|x(t)−h(t)|< d(x(t),H(t))+ ε(t) a.e. (J).

Definition 2.2. The setA ⊂ L1(J,X) is calleddecomposableif for any b(·),c(·) ∈ A and any subsetD ∈ L (J) one has
aχ+bχJ\A ∈ A.

D(J,X) denotes the set of all decomposable closed subsets ofL1(J,X).
In what follows(S,d) is a separable metric space. The next two lemmas are proved in[10].

Lemma 2.3.Consider H(., .) : J×S→ P(X), L (J)⊗B(S)-measurable set-valued map with closed values such that
H(t, .) is lower semicontinuous for all t∈ J.

Then the set-valued map H∗(.) : S→ D(J,X)

H∗(s) = { f ∈ L1(J,X); f (t) ∈ H(t,s) a.e. (J)}

has nonempty closed values and is lower semicontinuous iff there exists q(.) : S→ L1(J,X) continuous that verifies

d(0,H(t,s))≤ q(s)(t) a.e. (J), ∀s∈ S.

Lemma 2.4. Consider H(.) : S → D(J,X) a set-valued map with closed decomposable values that is lower
semicontinuous, consider a(.) : S→ L1(J,X), b(.) : S→ L1(J,R) continuous functions such that the values of the
set-valued map F(.) : S→ D(J,X) defined by

F(s) = cl{ f ∈ H(s); | f (t)−a(s)(t)|< b(s)(t) a.e. (J)}

are nonempty.
Then F(.) has a continuous selection.

The following notions were introduced [6]. Let ρ > 0.

Definition 2.5. a) The generalized left-sided fractional integral of orderα > 0 of a Lebesgue integrable functionf :
[0,∞)→ R is defined by

Iα ,ρ f (t) =
ρ1−α

Γ (α)

∫ t

0
(tρ − sρ)α−1sρ−1 f (s)ds, (2.1)

providing the right-hand side is pointwise defined on(0,∞) andΓ (.) is Gamma function.
b) The generalized fractional derivative, corresponding to the generalized left-sided fractional integral in (2.1) of a

function f : [0,∞)→ R is defined by

Dα ,ρ f (t) = (t1−ρ d
dt
)n(In−α ,ρ)(t) =

ρα−n+1

Γ (n−α)
(t1−ρ d

dt
)n

∫ t

0

sρ−1 f (s)
(tρ − sρ)α−n+1ds

if the integral exists andn= [α].
c) The Caputo-Katugampolageneralized fractional derivative is defined by

Dα ,ρ
c f (t) = (Dα ,ρ [ f (s)−

n−1

∑
k=0

f (k)(0)
k!

sk])(t)
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We note that ifρ = 1, the Caputo-Katugampola fractional derivative becomes the well- known Caputo fractional
derivative. On the other hand, passing to the limit withρ → 0+, the above definition yields the Hadamard fractional
derivative.

In what followsρ > 0 andα ∈ [0,1].

Lemma 2.6.For a given integrable function h(.) : [0,T]→ R, the unique solution of the initial value problem

Dα ,ρ
c x(t) = h(t) a.e. ([0,T]), x(0) = x0,

is given by

x(t) = x0+
ρ1−α

Γ (α)

∫ t

0
(tρ − sρ)α−1sρ−1h(s)ds

For the proof of Lemma 2.6, see [6]; namely, Lemma 4.2.

By a solution of the problem (1.1) we mean a functionx ∈ C(J,R) for which there exists a functionh ∈ L1(J,R)
satisfyingh(t) ∈ F(t,x(t),W(x)(t)) a.e. (J), Dα ,ρ

c x(t) = h(t) a.e. (J) andx(0) = x0.
The solution set of (1.1) is then denoted withS (x0).

3 Main results

Below we assume the following hypotheses.

Hypothesis 3.1.i) F(., .) : J×R×R→ P(R) is L (J)⊗B(R×R) measurable with nonempty closed values.
ii) There existsl(.) ∈ L1(J,(0,∞)) in such a way that, for almost allt ∈ J

dH(F(t,u1,v1),F(t,u2,v2))≤ l(t)(|u1−u2|+ |v1− v2|) ∀ u1,u2,v1,v2 ∈ R.

iii) The mappingv(., ., .) : J×R×R→ R verifies:∀y∈ R, (s, t)→ v(s, t,y) is measurable.
iv) |v(s, t,y)− v(s, t,x)| ≤ l(t)|y− x| a.e. (s, t) ∈ J× J, ∀y,x∈ R.

Hypothesis 3.2.(i) S is a separable metric space, the mappingsa(.) : S→ R andε(.) : S→ (0,∞) are continuous.
(ii) There existsg(.),q(.) : S→ L1(J,R), y(.) : S→C(J,R) continuous that satisfy

(Dy(s))α ,ρ
c (t) = g(s)(t) a.e. t ∈ J, ∀s∈ S,

d(g(s)(t),F(t,y(s)(t),W(y(s)(.))(t)) ≤ q(s)(t) a.e. t ∈ J, ∀ s∈ S.

We utilize below the following notation

k(t) := l(t)(1+
∫ t

0
l(u)du), t ∈ J,

ξ (s) =
1

1− Iα ,ρk
(|a(s)− y(s)(0)|+ ε(s)+ Iα ,ρq(s)), s∈ S,

whereIα ,ρk := supt∈J |I
α ,ρk(t)| andIα ,ρq(s) := supt∈J |I

α ,ρq(s)(t)|.

Theorem 3.3.Hypotheses 3.1 and 3.2 are verified.
If I α ,ρk< 1, then there exists x(.) : S→C(J,R) continuous, x(s)(.) denotes a solution of

Dα ,ρ
c z(t) ∈ F(t,z(t),W(z)(t)), z(0) = a(s)

such that,∀(t,s) ∈ J×S,
|y(s)(t)− x(s)(t)| ≤ ξ (s).

Proof. In what follows we consider the notationsb(s) = |a(s)− y(s)(0)|+ ε(s), qn(s) := (Iα ,ρk)n−1(b(s)+ Iα ,ρq(s)),
n≥ 1, x0(s)(t) = y(s)(t), ∀s∈ S. Define the set-valued maps

A0(s) = { f ∈ L1(J,R); f (t) ∈ F(t,y(s)(t),W(y(s)(.))(t)) a.e.(J)},
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B0(s) = cl{ f ∈ A0(s); | f (t)−g(s)(t)|< q(s)+
ραΓ (α +1)

Tρα ε(s)}.

By our assumptions,d(g(s)(t),F(t,y(s)(t),W(y(s)(.))(t))≤ q(s)(t)< q(s)(t)+ ραΓ (α+1)
Tρα ε(s), so according with Lemma

2.1,B0(s) is not empty.
PutG0(t,s) = F(t,y(s)(t),V(y(s)(.))(t)) and one has

d(0,G0(t,s))≤ |g(s)(t)|+q(s)(t) = q∗(s)(t)

with q∗(.) : S→ L1(J,R) being continuous.
Taking into account Lemmas 2.3 and 2.4 we deduce that there existsh0 a selection ofB0 that is continuous, i.e.

h0(s)(t) ∈ F(t,y(s)(t),W(y(s)(.))(t)) a.e.(J), ∀s∈ S,

|h0(s)(t)−g(s)(t)| ≤ q(s)(t)+
ραΓ (α +1)

Tρα ε(s) ∀t ∈ J, s∈ S.

Setx1(s)(t) = a(s)+ ρ1−α

Γ (α)

∫ t
0(t

ρ −uρ)α−1uρ−1h0(s)(u)duand we have

|x1(s)(t)− x0(s)(t)| ≤ |a(s)− y(s)(0)|+
ρ1−α

Γ (α)

∫ t

0
(tρ −uρ)α−1uρ−1|h0(s)(v)−g(s)(v)|dv≤ |a(s)− y(s)(0)|+

ρ1−α

Γ (α)

∫ t

0
(tρ −uρ)α−1uρ−1(q(s)(u)+

ραΓ (α +1)
Tρα ε(s))du≤ |a(s)− y(s)(0)|+ Iα ,ρq(s)+

ραΓ (α +1)
TραΓ (α)

ε(s)·

∫ t

0
(tρ −uρ)α−1uρ−1du≤ b(s)+ Iα ,ρq(s) = q1(s).

Following an idea in [7], we define the sequenceshn(.) : S→ L1(J,R), xn(.) : S→C(J,R) such that
a) xn(.) : S→C(J,R), hn(.) : S→ L1(J,R) are continuous.
b) hn(s)(t) ∈ F(t,xn(s)(t),W(xn(s)(.))(t)), s∈ S, a.e.(J).
c) |hn(s)(t)−hn−1(s)(t)| ≤ k(t)qn(s), s∈ S, a.e.(J).

d) xn+1(s)(t) = a(s)+ ρ1−α

Γ (α)

∫ t
0(t

ρ −uρ)α−1uρ−1hn(s)(u)du.

If we assume thathi(.),xi(.) are already constructed with a)-c) and definexn+1(.) as in d). It follows from c) and d)
that

|xn+1(s)(t)− xn(s)(t)| ≤
ρ1−α

Γ (α)

∫ t
0(t

ρ −uρ)α−1uρ−1|hn(s)(u)−hn−1(s)(u)|du

≤ ρ1−α

Γ (α)

∫ t
0(t

ρ −uρ)α−1uρ−1k(u)qn(s)du≤ Iα ,ρk ·qn(s) = qn+1(s).
(3.1)

Also we have

d(hn(s)(t),F(t,xn+1(s)(t),W(xn+1(s)(.))(t)) ≤ l(t)(|xn+1(s)(t)− xn(s)(t)|+
∫ t

0 l(u)|xn+1(s)(v)− xn(s)(v)|dv) ≤
l(t)(1+

∫ t
0 l(u)du)qn+1(s) = k(t)qn+1(s).

Fors∈ Swe define

An+1(s) = { f ∈ L1(J,R); f (t) ∈ F(t,xn+1(s)(t),W(xn+1(s)(.))(t)) a.e.(J)},

Bn+1(s) = cl{ f ∈ An+1(s); | f (t)−hn(s)(t)|< k(t)qn+1(s) a.e.(J)}.

In order to prove thatBn+1(s) is nonempty we point out that functiont → pn(s)(t) = ((Iα ,ρk)n−1− (Iα ,ρk)n)(b(s)+
Iα ,ρq(s))l(t) is strictly positive and measurable for anys. We have

d(hn(s)(t),F(t,xn+1(s)(t),W(xn+1(s)(.))(t)) ≤ k(t)|xn+1(s)(t)− xn(s)(t)|− pn(s)(t)≤ k(t)qn+1(s)

With Lemma 2.1 we findw(.) ∈ L1(J,R) such thatw(t) ∈ F(t,xn(s)(t),W(xn+1(s)(.))(t)) a.e.(J) and

|w(t)−hn(s)(t)| < d(hn(s)(t),F(t,xn(s)(t),W(xn+1(s)(.))(t))+ pn(s)(t)

i.e.,Bn+1(s) is nonempty.
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PutGn+1(t,s) = F(t,xn+1(s)(t),W(xn+1(s)(.))(t)). One may estimate

d(0,Gn+1(t,s))≤ |hn(s)(t)|+ k(t)|xn+1(s)(t)− xn(s)(t)| ≤ |hn(s)(t)|+ k(t)qn+1(s) = q∗n+1(s)(t) a.e.(I)

with q∗n+1(.) : S→ L1(J,R) being continuous.
As above we findhn+1(.) : S→ L1(I ,R) being continuous such that

hn+1(s)(t) ∈ F(t,xn+1(s)(t),W(xn+1(s)(.))(t)) ∀s∈ S, a.e.(J),

|hn+1(s)(t)−hn(s)(t)| ≤ k(t)qn+1(s) ∀s∈ S, a.e.(J).

Taking into account conditions c), d) and (3.1) one has

|xn+1(s)(.)− xn(s)(.)|C ≤ Iα ,ρkqn(s) = qn+1(s) = (Iα ,ρk)n(b(s)+ Iα ,ρq(s)) (3.2)

|hn+1(s)(.)−hn(s)(.)|1 ≤ |k(.)|1qn(s) = |k(.)|1(I
α ,ρk)n(b(s)+ Iα ,ρq(s)). (3.3)

Therefore sequenceshn(s)(.), xn(s)(.) are Cauchy in spacesL1(J,R) and C(J,R), respectively. Denote by
h(.) : S→ L1(J,R), x(.) : S→ C(J,R) with their limits. The mappings→ b(s) + |Iα ,ρq(s)| is continuous, therefore
locally is bounded. Thus from (3.3) we deduce the continuityof s→ h(s)(.) from S into L1(J,R).

As above, from (3.2), we obtain that the Cauchy condition is satisfied for the sequencexn(s)(.) locally uniformly with
respect tos. Thus, the mappings→ x(s)(.) is continuous. At the same time, since the convergence ofxn(s)(.) to x(s)(.) is
uniform and

d(hn(s)(t),F(t,x(s)(t),W(x(s)(.))(t)) ≤ M(t)|xn(s)(t)− x(s)(t)| a.e. (J),

∀s∈ Swe may pass to the limit and deduce that

h(s)(t) ∈ F(t,x(s)(t),W(x(s)(.))(t)) ∀s∈ S, a.e. (J).

We have

ρ1−α

Γ (α)
|
∫ t

0
(tρ −uρ)α−1uρ−1hn(s)(u)du−

∫ t

0
(tρ −uρ)α−1uρ−1h(s)(u)du| ≤

ρ1−α

Γ (α)

∫ t

0
(tρ −uρ)α−1uρ−1|hn(s)(u)−

h(s)(u)|du≤
ρ1−α

Γ (α)

∫ t

0
(tρ −uρ)α−1uρ−1k(u).|xn+1(s)(.)− xn(s)(.)|Cdu≤ Iα ,ρk.|xn+1(s)(.)− xn(s)(.)|C.

Passing to the limit in d) we find

x(s)(t) = a(s)+
ρ1−α

Γ (α)

∫ t

0
(tρ −uρ)α−1uρ−1h(s)(u)du.

We add for alln≥ 1 inequalities (3.1) and we get

|xn+1(s)(t)− y(s)(t)| ≤
n

∑
l=1

ql (s)≤ ξ (s).

Finally, passing to the limit in the last inequality we end the proof of the theorem.

From Theorem 3.3 we may find a selection of the solution set of problem (1.1) that is continuous.

Hypothesis 3.4.Hypothesis 3.1 is fulfilled,Iα ,ρk< 1, q0(.) ∈ L1(J,R+) exists and d(0,F(t,0,W(0)(t))≤ q0(t) a.e.(J).

Corollary 3.5. Hypothesis 3.4 is verified.
Then there exists a function s(., .) : J×R → R such that
a) s(.,x) ∈ S (x), ∀x∈ R.
b) x→ s(.,x) from R into C(J,R) is continuous.

Proof. It is enough to put in Theorem 3.3S= R, a(x) = x, ∀x ∈ R, ε(.) : R → (0,∞) a given continuous mapping,
g(.) = 0, y(.) = 0, q(x)(t) = q0(t) ∀x∈ R, t ∈ J.
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4 Conclusion

We discussed the existence of solutions continuously depending on a parameter corresponding to the problem which can
be seen in (1.1). The theorem 3.3 contains the main results ofthis manuscript. Besides, we obtain a continuous selection
of the solution set of problem (1.1).
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