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Abstract: In mixture distributions, mixing parameter is an importantparameter. In this paper we estimate this parameter in mixture
of two chi-square distributions using method of moments, EM-algorithm and Bayesian approach. These estimators are compared
empirically; and their bias is investigated using numerical techniques. At the end, we conjecture that EM-algorithm isbetter than method
of moments, but bayesian approach is better than method of moments and EM-algorithm. Analysis of a real data set is considered for
illustrative purposes.
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1 Introduction

Mixture models in general and parametric mixture
models in particular are very useful methods for
modelling a population and have a lot of useful examples
of applications in medicine, industry and economics.
Wang, Tan and Louis [10] used this models for modelling
time-to-event data to evaluate treatment effects in
randomized clinical trials. Teel, Park and Sampson [11]
considered the use of an EM algorithm for fitting finite
mixture models when mixing component size is known.
Render and Walker [1] showed that the EM algorithm is a
useful method for predicting parameters of mixture
distributions. Baudry and Celeux [12] showed that,
although maximum likelihood through the EM algorithm
is widely used to estimate the parameters in hidden
structure models and has certain drawbacks, it is a good
method in these problems.
Zaman et al. [6] introduced mixture of chi-square
distributions using Poisson elements. Chen, Ponomareva
and Tamer [8] introduced likelihood inference in some
finite mixture models and discussed different situations
for mixture models.
Hory and Martin [3] proposed a mixture of chi-square
distributions to illustrate the time distribution of lightin
the imaging; also, in the same year, Martin, Hory and
Huchard introduced this distribution to describe an
unstructured distribution model for distributing light’s

distribution time. Sahuguede et al. [7] proposed this
distribution for modeling the incoming light in imaging
systems with multiple inputs, but did not provide a
method for estimating the parameters of this distribution.
Rindskopf [5] showed by examples that abnormal
distributions may not necessarily be considered in the
form of mixed distributions, but also showed that mixture
distributions are not necessarily distributions with two or
more modes, they are modeled as mixed distributions and
obtained better estimates for describing the community.
Jaspers, Komrek and Aerts [14] estimated mixing weights
of multivariate mixture weights using Bayesian approach.
In this paper, we want to introduce a mixture chi-square
distribution and estimate its mixing proportion using
EM-algorithm and compare this estimator with method of
moment. We also provide a real example of the use of
mixture of two chi-square distributions for age of patients
of a hospital. Nasiri and Azarian [13] defined Mixture of
two chi-square distributions as below:

The mixture of two chi-square distributions (MTChD)
has its pdf as:

f (x;Θ) = τ f1(x;θ1)+ (1− τ) f2(x;θ2), 0< τ < 1

WhereΘ = (τ,θ1,θ2) and fi(x;θi), the density of the ith
component, is given by

fi(x;θi) =
x

θi
2 −1e−

x
2

2
θi
2 Γ
(

θi
2

) , x ≥ 0, θi > 0, i = 1,2
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2 Em Algorithm

SupposeY is a p-dimensional random vector with
probability density function g(y;Θ) where
Θ = (θ1,θ2, . . . ,θd)

τ is the vector of unknown parameters
in probability density function ofY . The likelihood
function ofΘ , which calculated on the observed values of
y is

L(Θ) = g(y;Θ)

In some cases vectorY may include incomplete data due
to presence of missing data or censored data; but in other
situations it may be a complete data from a mixture of
two or more distributions where the proportions of
allocation to different distributions is unknown and we
wish to find these proportions. In these cases, it is very
difficult to use the method of maximum likelihood, but
EM-algorithm is a useful method. EM-algorithm is an
iterative method for estimating parameters using
maximum likelihood method in case of incomplete data.
Since logL(Θ) includes incomplete data, suppose that
log Lc(Θ)is the logarithm of the likelihood function of the
complete data. Suppose that logLc(Θ) is the logarithm of
the likelihood function of the complete data. We want to
maximise expectation of logLc(Θ) with condition of
complete data ofY . In other words, letΘ (k) be the value
of Θ after kth iteration. At stepk+ 1, theE andM steps
are specified as follows.

1.Step E (Expectation): computeQ(Θ ;Θ (k)) where

Q(Θ ;Θ (k)) = EΘ (k){logLc(Θ)|y}

2.Step M (Maximization): chooseΘ (k+1) for eachΘ ∈
Ω , (Ω is parameter space) that maximizesQ(Θ ;Θ (k))
with respect toΘ . In other words,

Q(Θ (k+1);Θ (k))≥ Q(Θ ;Θ (k)) ∀ Θ ∈ Ω

StepsE and M are repeated until the sequenceL(Θ (k))
converges.

In 1977 Rubin, Dumpster and Layrd showed that the
likelihood function of incomplete data(L(Θ)) after one
iteration is non-decreasing. So the sequenceL(Θ (k))
converges uniformly to someL∗, whereL∗ is a stationary
value forΘ ∗, which implies ∂L(Θ )

∂Θ = 0, or equivalently
∂ logL(Θ )

∂Θ = 0. In some cases, it is possible thatΘ ∗ is a
local maximum and in very rare cases it may be a saddle
point and not a local maximum or minimum. Value ofΘ ∗

depends on the initial valueΘ (0). It should be noted that
iterations in EM-algorithm increase the likelihood, and
converges to a value under some general conditions.

3 Estimating Parameters of a Mixture
Chi-Square Distribution

In this section estimators of mixing parameter of mixture
of two chi-square distribution will be introduced. Our

approach is finding estimators using EM-algorithm,
method of moments and Bayesian approach.

3.1 Estimation using EM-Algorithm

Suppose we have a population formed from a mixture of
two independent chi-Square distributions, and also
suppose that one part of population has chi-square
distribution with parameterθ1 and other part has
chi-square distribution with parameterθ2 independent of
the first distribution. Letτ1 be the unknown proportion of
population in the first part, andτ2 = 1 − τ1 be the
proportion of population in the second part. In this
situation, we have a mixture of two independent
chi-square distributions. As we mentioned above we can
use EM-algorithm for estimating the parameters of this
population becauseτ is unknown. To formulate this
population, we have:

L(θ ;x,z) =
n

∏
i=1

(
2

∑
j=1

I(zi = j)τ j f (xi,θ j)

)

=
n

∏
i=1




2

∑
j=1

I(zi = j)τ j




x
θ j
2 −1

i e−
xi
2

2
θ j
2 Γ
(

θ j
2

)







where I(zi = j) is an indicator function identifying the
distribution of ith observation andn is the number of
observations.L(θ ;x,z) is the likelihood function for a
mixture distribution with mixing proportionsτ1 andτ2. If
we denote the logarithm of likelihood function by
l(θ ;x,z), then

l(θ ;x,z) =
2

∑
j=1

n

∑
i=1

I(zi = j)

[
log(τ j)+

(
θ j

2
−1

)
log(x j)

−
xi

2
−

θ j

2
log2− log

(
Γ
(

θ j

2

))]

In this case, we have a mixture of two independent chi-
square distributions (MTChD) with parameters(τ,θ1,θ2).

In this case, stepsE and M of EM-algorithm are as
follows.

E Step:
Suppose thatθ (t) is the current parameter value. The

distribution of zi is obtained using Bayes rule and is
proportional to chi-square parameters and proportions
included inθ (t). In other words,

τ(k)j,i := P(zi = j|Xi = xi;θ (t))

=
τ(t)j f (xi;θ (t)

j )

τ(t)1 f (xi;θ (t)
1 )+ τ(t)2 f (xi;θ (t)

2 )
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So theE-step results in

Q(θ |θ (t)) =E(logL(θ ;x,z))

=
n

∑
i=1

2

∑
j=1

T (t)
j,i

[
logTj +

θ j

2
logxi − logxi

−
xi

2
−

θ j

2
log2− log

(
Γ
(

θ j

2

))]

M Step:
As mentioned above, we maximize the log-likelihood

obtained inE-step with respect to all the parameters. We
find the maximum ofQ(θ |θ (t)) with respect toτ1, ν1 and
ν2. Parameters of this distribution can be estimated
independently. Sinceτ1+ τ2 = 1, we have:

τ(t+1) =argmax
τ

Q(θ |θ (t))

=argmax
τ

{[
n

∑
i=1

τ(t)1,i

]
logτ1

+

[
n

∑
i=1

τ(t)2,i

]
logτ2

}

And hence

τ(t+1)
j =

n

∑
i=1

T (n)
j,i

n

∑
i=1

(T (n)
1,i +T (n)

2,i )

=
1
n

n

∑
i=1

T (t)
j,i

So,τ1 can be estimated from this equation. For estimating
parameterν1, we have

(ϑ (t+1)
1 ) =argmax

ϑ1
Q(θ |θ (t))

=argmax
ϑ1

n

∑
i=1

T (t)
1,i

[
logT (t)

1 +

(
θ (t)

1

2
−1

)
logxi

−
xi

2
−

θ (t)
1

2
log2− log

(
Γ

(
θ (t)

1

2

))]

If we let

k =
n

∑
i=1

T (t)
1,i logτ(t)1

+

(
θ (t)

1

2
−1

)
n

∑
i=1

T (t)
1,i logxi −

n

∑
i=1

T (t)
1,i

xi

2

−
n

∑
i=1

T (t)
1,i

(
θ (t)

1

2
log2− log

(
Γ

(
θ (t)

1

2

)))

Differentiatek with respect toν1 and set the derivative
equal to zero to obtain

Γ (α)(Ψ (α))2 =

n

∑
i=1

T (t)
1,i log

xi

2
n

∑
i=1

T (t)
1,i

; whereα =
θ (t)

1

2

In the same as manner, we have

Γ (β )(Ψ (β ))2 =

n

∑
i=1

T (t)
2,i log

xi

2
n

∑
i=1

T (t)
2,i

; whereα =
θ (t)

2

2

HereΨ(α) is (Γ (α))′. This equation should be solved
numerically and there is no algebraic solution.

3.2 Estimating Using Method of Moments

As mentioned above, we can use EM-algorithm to
estimate unknown parameters of a distribution when the
simple methods like maximum likelihood estimators
using differentiation or other routine methods do not
work. However, there are other methods for estimating
unknown parameters like the method of moments, which
uses the sample moments and population moments to find
estimates of parameters. In this method, parameters are
estimated by equating sample moments with population
moments. In mixture of two chi-square distributions,
method of moments estimates the proportion of mixingτ1
from the first population. Thus, we have

τ̃ =
x−θ2

θ1−θ2

Wherex is the sample mean.

3.3 Bayesian Approach

For estimating mixing parameterτ in MTChD, we can
assume Beta distribution as prior distribution ofτ due to
the fact that τ ∈ (0,1). Suppose thatτ has prior
distributionBeta(α,1).

π(τ) = ατα−1

If we observe only one sample of MTChD, we have:

f (x;Θ)π(τ) = ατα−1


τ

x
θ1
2 −1e

x
2

2
θ1
2 Γ
(

θ1
2

) +(1− τ)
x

θ2
2 −1e

x
2

2
θ2
2 Γ
(

θ2
2

)



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And marginal distribution ofX is:

m(x) =
∫ 1

0
ατα−1


τ

x
θ1
2 −1e

x
2

2
θ1
2 Γ
(

θ1
2

)

+(1− τ)
x

θ2
2 −1e

x
2

2
θ2
2 Γ
(

θ2
2

)



dτ

=
x

θ1
2 −1e

x
2

2
θ1
2 Γ
(

θ1
2

)
∫ 1

0
ατα dτ

+
x

θ2
2 −1e

x
2

2
θ2
2 Γ
(

θ2
2

)
∫ 1

0
ατα−1(1− τ)dτ

= f1(x,θ1)

∫ 1

0
ατα dτ + f2(x,θ2)

∫ 1

0
ατα−1(1− τ)dτ

= f1(x,θ1)
α

α +1
+ f2(x,θ2)

[
1−

α
α +1

]

= f1(x,θ1)
α

α +1
+ f2(x,θ2)

1
α +1

And posterior distribution ofτ is:

π(τ|x) =

ατα−1


τ x

θ1
2 −1e

x
2

2
θ1
2 Γ

(
θ1
2

) +(1− τ) x
θ2
2 −1e

x
2

2
θ2
2 Γ

(
θ2
2

)




x
θ1
2 −1e

x
2

2
θ1
2 Γ

(
θ1
2

)
α

α+1 +
x

θ2
2 −1e

x
2

2
θ2
2 Γ

(
θ2
2

)
1

α+1

=
ατα−1[τ f1(x,θ1)+ (1− τ) f2(x,θ2)]

f1(x,θ1)
α

α+1 + f2(x,θ2)
1

α+1

=
ατα f1(x,θ1)

α f1(x,θ1)+ f2(x,θ2)

+
ατα (1+α)(1− τ) f2(x,θ2)

α f1(x,θ1)+ f2(x,θ2)

With use of square error loss function, mean of this
distribution is the Bayes estimator for mixing parameter
of MTChD.

4 Numerical Study

In last sections, we described theE-step andM-step of
EM-algorithm, method of moments and Bayesian method
for estimating the mixing parameter of mixture of two
independent chi-square distributions with mixing
proportionτ from the first population. In this section, we
want to find the estimates, by simulating. For this
purpose, In table 1, we simulated a mixture of two
independent chi-square distributions with parameters
θ1 = 2 andθ2 = 8 with mixing parametersτ=0.15, 0.35,
0.55, 0.75 and sample sizesN = 20,40,60,80,100. Then

mixing parameterτ was estimated useigEM-algorithm,
method of moments and Bayesian method (with priorα=
0.2 for Bayesian method). We check these estimates by
means of bias and MSE.EM-algorithm represents better
estimates than method of moments in almost all cases and
its bias decreased when mixing proportion and sample
size increased. Also MSE ofEM-algorithm is less than
both method of moments and Bayes method in all cases.
On the other hand, Bayes method represents better
estimates thanEM-algorithm for mixing proportions
τ=0.15, 0.35 and 0.55, but for mixing proportion
τ = 0.75, EM-algorithm has zero bias and smaller MSE
than Bayes method.
In tables 2 and 3, similar process like table 1 were
conducted but there were only parameters of chi-square
distributions and priorα had changed. In table 2, we
proposedθ1 = 3 and θ2 = 9 and prior α= 0.4 for
Bayesian method. And in table 3, we proposedθ1 = 4 and
θ2 = 10 and priorα= 0.6 for Bayesian method. In all
cases similar results like table 1 were achieved.
So we can conclude thatEM-algorithm has comparative
advantage than method of moments, but for small mixing
proportions, Bayes method represents better estimates.

5 Real Data

In the last section, we investigate statistical distribution of
age of pediatrics patients referred to a hospital in
Mashhad, North-east of Iran. Histogram of age of a
random sample of 110 patient (74 boy and 36 girl) of this
hospital represented in figure 1. As it is shown, our
sample is unimodal and has positive skewness. So we can
fit a chi-square distribution for the society. In figure 2, we
check goodness of fit of a chi-square distribution with 4
degrees of freedom for our sample usingQ-Q-plot and
our idea can be accepted. But we know that patients of
this hospital are both boys and girls. So we can divide
population in to 2 parts and modeling the population as a
mixture of two distributions. In figure 3, histogram of age
of boys and girls are represented. So we can propose a
chi-square distribution for age of boys and another
chi-square distribution for age of girls of this hospital.
Q-Q-plot in figure 4, confirms the chi-square distribution
with 5 degrees of freedom for age of boys, and figure 5,
confirms a chi-square with 4 degrees of freedom for girls.
So we can use MTChD for modelling age of these
patients.

f (x) = 0.33χ2
(4)+0.67χ2

(5)

Where mixing proportionτ = 0.33 is the real proportion
of girls from all patients.
We calculated mixing proportion using EM-algorithm,
method of moments.
Table 4 represents the results. As we expected from the
previous section, EM-algorithm represents better
estimates than method of moments in point of view of
bias and MSE, but its bias is more than Bayes estimate
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Table 1: MSEs of the EM-algorithm, method of moments and
Bayesian estimators withθ1 = 2, θ2 = 8

EM-Algorithm Method of Bayse Method
τ N Moments (prior α = 0.2)

BIAS MSE BIAS MSE BIAS MSE
0.15 20 0.64733 0.00214 0.69188 0.00353 0.46255 0.05613

40 0.60864 0.00185 0.78855 0.00438 0.45393 0.05799
60 0.67825 0.00231 0.56448 0.00254 0.45185 0.05809
80 0.59258 0.00175 0.66880 0.00334 0.44447 0.05954
100 0.58738 0.00171 0.65537 0.00323 0.44179 0.05995

0.35 20 0.37389 0.00060 0.24319 0.00175 0.07043 0.07384
40 0.37441 0.00059 0.26303 0.00187 0.07451 0.07493
60 0.29410 0.00043 0.38848 0.00271 0.07342 0.07481
80 0.26988 0.00031 0.38119 0.00266 0.07531 0.07668
100 0.32187 0.00049 0.35285 0.00246 0.07724 0.07674

0.55 20 0.00000 0.00000 0.19650 0.00062 0.01168 0.13117
40 0.04902 0.00001 0.06905 0.00115 0.00797 0.13120
60 0.06314 0.00002 0.13772 0.00085 0.01668 0.13283
80 0.02235 0.00000 0.08305 0.00109 0.01468 0.13324
100 0.04081 0.00001 0.18640 0.00066 0.02271 0.13289

0.75 20 0.00000 0.00109 0.52098 0.00026 0.07945 0.16826
40 0.00000 0.00050 0.58071 0.00014 0.07563 0.16787
60 0.00000 0.00045 0.49063 0.00034 0.07302 0.16579
80 0.00000 0.00036 0.55279 0.00019 0.07557 0.16761
100 0.00000 0.00026 0.54077 0.00022 0.06898 0.16735

Table 2: MSEs of the EM-algorithm, method of moments and
Bayesian estimators withθ1 = 3, θ2 = 9

EM-Algorithm Method of Bayse Method
τ N Moments (prior α = 0.4)

BIAS MSE BIAS MSE BIAS MSE
0.15 20 0.68839 0.00246 0.78743 0.00437 0.40132 0.01548

40 0.52653 0.00139 0.59526 0.00276 0.39953 0.01564
60 0.59899 0.00180 0.69525 0.00355 0.39741 0.01609
80 0.61900 0.00192 0.58893 0.00272 0.39669 0.01610
100 0.58041 0.00168 0.67781 0.00341 0.39588 0.01595

0.35 20 0.40916 0.00083 0.37548 0.00262 0.22026 0.04380
40 0.17158 0.00014 0.14139 0.00120 0.22388 0.04439
60 0.32974 0.00048 0.15685 0.00128 0.22174 0.04413
80 0.31141 0.00046 0.29002 0.00204 0.22460 0.04420
100 0.27668 0.00038 0.40973 0.00287 0.22229 0.04519

0.55 20 0.09947 0.00004 0.08016 0.00198 0.16818 0.08659
40 0.07216 0.00002 0.18321 0.00067 0.17068 0.08631
60 0.00000 0.00000 0.14257 0.00083 0.16761 0.08673
80 0.02657 0.00000 0.00875 0.00146 0.17178 0.08634
100 0.00000 0.00000 0.00636 0.00154 0.17370 0.08732

0.75 20 0.00000 0.00028 0.38733 0.00065 0.11387 0.13505
40 0.00000 0.00050 0.46493 0.00040 0.11700 0.13441
60 0.00000 0.00036 0.53295 0.00023 0.11703 0.13558
80 0.00000 0.00042 0.47731 0.00037 0.11613 0.13456
100 0.00000 0.00054 0.55422 0.00019 0.11833 0.13407

which represents in table 5.
In table 5 we used 3 different priorsα = 0.3,0.4,0.5 for
estimating mixing proportionτ.
Bayesian approach provides better estimates than
EM-algorithm and method of moments with all priors, but
the best estimate achieved with priorα = 0.3 which is
closest to the real mixing proportionτ = 0.33.
According to the results of the previous section, this result
was predictable. Because real mixing proportionτ is less
than 0.55 and at this conditions, Bayesian method
represents the best estimate.

Table 3: MSEs of the EM-algorithm, method of moments and
Bayesian estimators withθ1 = 4, θ2 = 10

EM-Algorithm Method of Bayse Method
τ N Moments (prior α = 0.6)

BIAS MSE BIAS MSE BIAS MSE
0.15 20 0.54750 0.00149 0.66930 0.00334 0.31016 0.00387

40 0.52270 0.00139 0.68110 0.00344 0.30880 0.00390
60 0.59040 0.00176 0.65890 0.00326 0.30811 0.00397
80 0.57780 0.00168 0.50434 0.00213 0.30711 0.00400
100 0.63400 0.00203 0.64624 0.00315 0.30549 0.00409

0.35 20 0.38490 0.00072 0.41602 0.00292 0.28279 0.02185
40 0.25790 0.00031 0.36775 0.00256 0.28277 0.02168
60 0.27000 0.00036 0.13972 0.00119 0.28306 0.02188
80 0.24410 0.00028 0.41081 0.00288 0.28483 0.02144
100 0.25500 0.00030 0.27487 0.00194 0.28792 0.02162

0.55 20 0.00000 0.00000 0.22564 0.00052 0.28257 0.05416
40 0.00460 0.00000 0.11642 0.00094 0.28112 0.05444
60 0.00000 0.00002 0.22873 0.00051 0.28166 0.05418
80 0.04480 0.00001 0.05546 0.00122 0.28424 0.05367
100 0.03070 0.00000 0.21956 0.00054 0.28392 0.05492

0.75 20 0.00000 0.00016 0.63928 0.00006 0.28824 0.09731
40 0.00000 0.00036 0.52148 0.00026 0.29120 0.09734
60 0.00000 0.00027 0.39237 0.00064 0.29449 0.09605
80 0.00000 0.00055 0.44978 0.00045 0.29030 0.09649
100 0.00000 0.00040 0.51619 0.00027 0.30145 0.09453

Table 4: EM-Algorithm and method of moments, estimates for
real data

Method Mixing Proportion Estimate BIAS MSE
EM-algorithm 0.56373 0.26373 0.00045
Method of moments 0.62399 0.32399 0.00194

Table 5: Bayesian approach for estimating mixing Parameter for
real data

teta1 teta2 prior Bayes Estimate Bias MSE-Posterior
4 5 0.3 0.43459 0.08459 0.00453

0.4 0.50493 0.15493 0.00422
0.5 0.55342 0.20342 0.00351

Fig. 1: Histogram of age of all patients
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Fig. 2: Q-Q-plot for all patients

Fig. 3: Histogram of age by gender

Fig. 4: Q-Q-plot for boys age distribution

Fig. 5: Q-Q-plot for girls age distribution
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