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Abstract: In mixture distributions, mixing parameter is an importpatameter. In this paper we estimate this parameter in neixtu
of two chi-square distributions using method of moments,-&lybrithm and Bayesian approach. These estimators ar@areuh
empirically; and their bias is investigated using numétieshniques. At the end, we conjecture that EM-algorithtreiger than method
of moments, but bayesian approach is better than method wfemis and EM-algorithm. Analysis of a real data set is camsidl for
illustrative purposes.
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1 Introduction distribution time. Sahuguede et al7][proposed this

distribution for modeling the incoming light in imaging

Mixture models in general and parametric mixture systems with multiple inputs, but did not provide a
method for estimating the parameters of this distribution.

models in particular are very useful methods for .
modelling a population and have a lot of useful examplesRIndSkOpf Pl showed by examples that abnormal

2 . - . ~__“distributions may not necessarily be considered in the
of applications in medicine, industry and economics.

. . : form of mixed distributions, but also showed that mixture
Wang, Tan and Louisl0] used this models for modelling ;i ihtions are not necessarily distributions with two o

time-to-event data to evaluate treatment effects in . S
andomized cincal tils. Teel, Par and Sampsbi [ * ore TS, 1Y e modeed a2 med dtnbuons
considered the use of an EM algorithm for fitting finite Jaspers, Komrek and Aerts4] estimated mixing weights

mixture models when mixing component size is known. o . ) . .
Render and Walkerl] showed that the EM algorithmis a of myltlvanate mixture we|ghts using Bayesian approach.
In this paper, we want to introduce a mixture chi-square

useful method for predicting parameters of mixture distribution and estimate its mixing proportion using

distributions. Baudry and Celeux1? showed that, i : . : )
although maximum likelihood through the EM algorithm EM-algorithm and compare this estimator with method of
moment. We also provide a real example of the use of

'Ssm\;\é'& erg r#(')sgglstgngsﬁerﬁsairsgii gg\z?aeéﬁf itl r;s r;l'ddc;aong1ixture of two chi-square distributions for age of patients
method in these problems ' 900Gt a hospital. Nasiri and Azariari§ defined Mixture of
P ' two chi-square distributions as below:

Z.am'an et al. .6] mtroduced mixture of chi-square The mixture of two chi-square distributions (MTChD)
distributions using Poisson elements. Chen, PonomarevfallalS its pdf as:

and Tamer §] introduced likelihood inference in some
finite mixture models and discussed different situations f(x;0) = 1f1(X;61) + (1— 1) fa(X; 62), O<1r<1
for mixture models. _ . ; ;
Hory and Martin B] proposed a mixture of chi-square \é\gr]r?riﬁeﬁt(irs’ G%Qg?])band fi(x &), the density of the ith
distributions to illustrate the time distribution of light P 159 y

the imaging; also, in the same year, Martin, Hory and %3 —-1lg—% .
Huchard introduced this distribution to describe an fi(X:&)Zﬁ, x>0,6>0 i=12
unstructured distribution model for distributing light's 2z (7‘)
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2 Em Algorithm approach is finding estimators using EM-algorithm,

. _ _ _method of moments and Bayesian approach.
SupposeY is a p-dimensional random vector with

probability  density  function g(y;0) where
© =(61,6,,...,64)" is the vector of unknown parameters o ) )
in probability density function ofY. The likelihood 3.1 Estimation using EM-Algorithm

function of @, which calculated on the observed values of
yis L(®) = g(y;0) Suppose we have a population formed from a mixture of
' two independent chi-Square distributions, and also
In some cases vectdt may include incomplete data due suppose that one part of population has chi-square
to presence of missing data or censored data; but in othadiistribution with parameterd; and other part has
situations it may be a complete data from a mixture of chi-square distribution with parametés independent of
two or more distributions where the proportions of the first distribution. Let; be the unknown proportion of
allocation to different distributions is unknown and we population in the first part, and, = 1 — 1; be the
wish to find these proportions. In these cases, it is veryproportion of population in the second part. In this
difficult to use the method of maximum likelihood, but sjtuation, we have a mixture of two independent
EM-algorithm is a useful method. EM-algorithm is an chi-square distributions. As we mentioned above we can
iterative method for estimating parameters usinguse EM-algorithm for estimating the parameters of this
maximum likelihood method in case of incomplete data.population becausa is unknown. To formulate this
Since logL(@) includes incomplete data, suppose thatpopulation, we have:
log Lc(@)is the logarithm of the likelihood function of the

complete data. Suppose that log ©) is the logarithm of n /2
the likelihood function of the complete data. We wantto  L(8;x,2) l_l <Z z=j)1f x.,6,)>
maximise expectation of lodc(®) with condition of =1
complete data of. In other words, le®® be the value o .
of O afterk" iteration. At stepk+ 1, theE andM steps i Iz = )T, X? ez

o — | S—
are specified as follows. rl & 22} r (%)

1.Step E (Expectation): compuf©; @) where
Q(@;0W) = Egio{logLe(O)ly} wherel(z = j) is an indicator function identifying the

distribution of it" observation and is the number of
2.Step M (Maximization): choos® k1) for each® €  observationsL(0;x,z) is the likelihood function for a
Q, (Q is parameter space) that maximi@(g@;@(@) mixture distribution with mixing proportions;, and,. If

with respect ta. In other words, }/\(/g de)no:]e the logarithm of likelihood function by
1X,2), then
Qe*1.0k) >qe;0W) voe
2 n .

StepsE and M are repeated until the sequerlc@®) (o2 =Y Y@= [Iog(rj)—f— (ﬂ — 1> log(x;)
converges. =1i= 2

In 1977 Rubin, Dumpster and Layrd showed that the % 6 0.
likelihood function of incomplete daté_(©@)) after one 5 E‘IogZ—Iog (l' (%))}

iteration is non-decreasing. So the sequeh¢®®)

converges uniformly to somie', whereL" is a stationary In this case, we have a mixture of two independent chi-

value for ©*, which implies 252} = 0, or equivalently square distributions (MTChD) with parametérsé;, 65).

‘7'%5(@) = 0. In some cases, it is possible th@at is a In this case, stepE and M of EM-algorithm are as

local maximum and in very rare cases it may be a saddldollows.

point and not a local maximum or minimum. Value®f E Step:

depends on the initial valu®?. It should be noted that Suppose thaét) is the current parameter value. The

iterations in EM-algorithm increase the likelihood, and distribution of z is obtained using Bayes rule and is

converges to a value under some general conditions. proportional to chi-square parameters and proportions
included in6). In other words,

3 Estimating Parameters of a Mixture

M . Blo 1w v n®)
' istributi 17 =Pz =jX=x0
Chi-Square Distribution ji =P@=]l )
TJ-(U f(x; Gjm)
In this section estimators of mixing parameter of mixture = O © i
of two chi-square distribution will be introduced. Our T f(x;0,)+ 1, f(%;65,7)
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So theE-step results in In the same as manner, we have

Q(6|6Y) =E (logL(G'X 7))
leZI Iog— 92“)

n
re _ herea = 4
W 2

_%_%IogZ—logO‘ (%)ﬂ ZTZ'

Here W(a) is (I (a))’. This equation should be solved
numerically and there is no algebraic solution.

Z [IogTJ + = 8 logx; — logx;

M Step:

As mentioned above, we maximize the log-likelihood
obtained inE-step with respect to all the parameters. We
find the maximum ofQ(8|6)) with respect tary, v; and
vo. Parameters of this distribution can be estimated
independently. Since, + 1> = 1, we have:

1) —arg mTa)wa(t)) 3.2 Estimating Using Method of Moments
=arg max{ [ZITL] logty . .
T & As mentioned above, we can use EM-algorithm to
| estimate unknown parameters of a distribution when the
+ | logT, simple methods like maximum likelihood estimators
i; 2' using differentiation or other routine methods do not

work. However, there are other methods for estimating
unknown parameters like the method of moments, which
uses the sample moments and population moments to find
1) 21 estimates of parameters. In this method, parameters are
T = leJ i estimated by equating sample moments with population
Zl(Tl' +T2| moments. In mixture of two chi-square distributions,
i= method of moments estimates the proportion of mixing

So,1; can be estimated from this equation. For estimatingTom the first population. Thus, we have
parametery, we have

o) = argma>Q(9|9 ) T=

And hence

e(t)
=arg rglax T1| [Iong (% — 1] logx Wherex is the sample mean.
1=

(t) (t)
IR AP 8
> 5 log2—log <l’< 5

If we let 3.3 Bayesian Approach

n
k= ziTl(? logr."
= ® For estimating mixing parametarin MTChD, we can
0, AR e )X assume Beta distribution as prior distributiontoflue to
+ <__1> ZiTu logx'_.Zlei 2 the fact thatt € (0,1). Suppose thatr has prior
distributionBeta(a, 1).

o A ( log2— Iog<l’ (it))))
Z‘ - 2 m(t)=ar??!

Differentiate k with respect tov; and set the derivative

equal to zero to obtain If we observe only one sample of MTChD, we have:

fa ZT]_I |Og_ ) el(t) o 4 L
. = — 2 2 2

, Wherea = f(x;,0)m(t) = ar®? Txlie +(1-71) );2 ©
ZTl. 271 (%) 271 (%)
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And marginal distribution oKX is:

1 1
:fl(x,el)/o ar"dr+f2(x,62)/o at@Y(1-1)dr

a a
=f1(x, 0 f 1-——
(X, 1)a+1+ 2(X,62) a1
o 1
=f1(x,6)—— + f —
(X, 1)a+1+ 2(X,92)a+1
And posterior distribution of is:
a-1 x(iZl*leLZ( x%’lﬁ
271’(%) 27r(7>

m(T|x) =

313 %
X e a
g+

1
01 a+1 [ a+1
22 r(‘izl) 2% ,—(92

at@rfy(x,61) + (1—1)fa(X,6)]
fi(x, 61) 5% + fa(%, 62) 7
. at? fl(X, 91)
afi(x 61) + f2(x,62)
at?(1+a)(1—1)fa(x,62)
afi(x,61) + fa(x, 62)

With use of square error loss function, mean of this
distribution is the Bayes estimator for mixing parameter

of MTChD.

4 Numerical Study

In last sections, we described tRestep andM-step of

EM-algorithm, method of moments and Bayesian method

mixing parameter was estimated useigM-algorithm,
method of moments and Bayesian method (with peier

0.2 for Bayesian method). We check these estimates by
means of bias and MSEM-algorithm represents better
estimates than method of moments in almost all cases and
its bias decreased when mixing proportion and sample
size increased. Also MSE d&M-algorithm is less than
both method of moments and Bayes method in all cases.
On the other hand, Bayes method represents better
estimates thanEM-algorithm for mixing proportions
71=0.15, 0.35 and 0.55, but for mixing proportion

T = 0.75, EM-algorithm has zero bias and smaller MSE
than Bayes method.

In tables 2 and 3, similar process like table 1 were
conducted but there were only parameters of chi-square
distributions and priora had changed. In table 2, we
proposedf; = 3 and 6, = 9 and prior a= 0.4 for
Bayesian method. And in table 3, we propo$ed- 4 and

6, = 10 and priora= 0.6 for Bayesian method. In all
cases similar results like table 1 were achieved.

So we can conclude th&M-algorithm has comparative
advantage than method of moments, but for small mixing
proportions, Bayes method represents better estimates.

5 Real Data

In the last section, we investigate statistical distribotbf
age of pediatrics patients referred to a hospital in
Mashhad, North-east of Iran. Histogram of age of a
random sample of 110 patient (74 boy and 36 girl) of this
hospital represented in figure 1. As it is shown, our
sample is unimodal and has positive skewness. So we can
fit a chi-square distribution for the society. In figure 2, we
check goodness of fit of a chi-square distribution with 4
degrees of freedom for our sample usiQgQ-plot and
our idea can be accepted. But we know that patients of
this hospital are both boys and girls. So we can divide
population in to 2 parts and modeling the population as a
mixture of two distributions. In figure 3, histogram of age
of boys and girls are represented. So we can propose a
chi-square distribution for age of boys and another
chi-square distribution for age of girls of this hospital.
Q-Q-plot in figure 4, confirms the chi-square distribution
with 5 degrees of freedom for age of boys, and figure 5,
confirms a chi-square with 4 degrees of freedom for girls.
So we can use MTChD for modelling age of these
patients.

f(x) = 0.33xF, +0.67x

for estimating the mixing parameter of mixture of two Where mixing proportiorr = 0.33 is the real proportion

independent

chi-square distributions with mixing of girls from all patients.

proportiont from the first population. In this section, we We calculated mixing proportion using EM-algorithm,
want to find the estimates, by simulating. For this method of moments.
purpose, In table 1, we simulated a mixture of two Table 4 represents the results. As we expected from the

independent chi-square distributions with parametergrevious section, EM-algorithm
6, = 2 and6, = 8 with mixing parameters=0.15, 0.35,
0.55, 0.75 and sample sizBs= 20,40,60,80,100. Then

represents better
estimates than method of moments in point of view of
bias and MSE, but its bias is more than Bayes estimate
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Table 1: MSEs of the EM-algorithm, method of moments and Table 3: MSEs of the EM-algorithm, method of moments and
Bayesian estimators withy = 2, 6, =8

Bayesian estimators withy = 4, 6, = 10

EM-Algorithm Method of Bayse Method EM-Algorithm Method of Bayse Method
T N Moments (prior a =0.2) T N Moments (prior a = 0.6)
BIAS MSE BIAS MSE BIAS MSE BIAS MSE BIAS MSE BIAS MSE
0.15| 20 | 0.64733| 0.00214| 0.69188| 0.00353| 0.46255| 0.05613 0.15| 20 | 0.54750| 0.00149| 0.66930| 0.00334| 0.31016| 0.00387
40 [ 0.60864 | 0.00185] 0.78855| 0.00438] 0.45393| 0.05799 40 [ 0.52270] 0.00139] 0.68110| 0.00344] 0.30880| 0.00390
60 [ 0.67825] 0.00231] 0.56448| 0.00254 | 0.45185[ 0.05809 60 | 0.59040| 0.00176] 0.65890| 0.00326] 0.30811| 0.00397
80 [ 0.59258] 0.00175] 0.66880| 0.00334 | 0.44447[ 0.05954 80 [ 0.57780| 0.00168] 0.50434| 0.00213] 0.30711| 0.00400
100 | 0.58738] 0.00171] 0.65537| 0.00323] 0.44179] 0.05995 100 | 0.63400| 0.00203] 0.64624| 0.00315] 0.30549| 0.00409
0.35| 20 | 0.37389| 0.00060| 0.24319| 0.00175| 0.07043| 0.07384 0.35| 20 | 0.38490| 0.00072| 0.41602| 0.00292| 0.28279| 0.02185
40 | 0.37441] 0.00059]| 0.26303| 0.00187| 0.07451| 0.07493 40 | 0.25790| 0.00031] 0.36775| 0.00256| 0.28277| 0.02168
60 | 0.29410| 0.00043| 0.38848| 0.00271| 0.07342| 0.07481 60 | 0.27000( 0.00036] 0.13972]| 0.00119| 0.28306| 0.02188
80 | 0.26988| 0.00031| 0.38119| 0.00266| 0.07531| 0.07668 80 | 0.24410| 0.00028] 0.41081| 0.00288]| 0.28483| 0.02144
100 | 0.32187| 0.00049] 0.35285| 0.00246| 0.07724| 0.07674 100 | 0.25500| 0.00030]| 0.27487| 0.00194| 0.28792| 0.02162
0.55 | 20 | 0.00000| 0.00000| 0.19650| 0.00062| 0.01168| 0.13117 0.55 | 20 | 0.00000| 0.00000| 0.22564 | 0.00052| 0.28257 | 0.05416
40 | 0.04902| 0.00001] 0.06905| 0.00115] 0.00797| 0.13120 40 | 0.00460( 0.00000] 0.11642] 0.00094| 0.28112] 0.05444
60 [ 0.06314] 0.00002] 0.13772] 0.00085| 0.01668| 0.13283 60 [ 0.00000| 0.00002] 0.22873] 0.00051] 0.28166| 0.05418
80 [ 0.02235] 0.00000| 0.08305] 0.00109| 0.01468| 0.13324 80 [ 0.04480| 0.00001] 0.05546| 0.00122] 0.28424| 0.05367
100 | 0.04081] 0.00001] 0.18640| 0.00066] 0.02271] 0.13289 100 | 0.03070 0.00000] 0.21956| 0.00054] 0.28392] 0.05492
0.75| 20 | 0.00000| 0.00109| 0.52098| 0.00026| 0.07945| 0.16826 0.75| 20 | 0.00000| 0.00016| 0.63928| 0.00006| 0.28824| 0.09731
40 | 0.00000 | 0.00050] 0.58071| 0.00014| 0.07563| 0.16787 40 | 0.00000( 0.00036| 0.52148| 0.00026| 0.29120| 0.09734
60 [ 0.00000| 0.00045]| 0.49063| 0.00034| 0.07302| 0.16579 60 | 0.00000( 0.00027] 0.39237| 0.00064| 0.29449| 0.09605
80 [ 0.00000| 0.00036| 0.55279| 0.00019| 0.07557| 0.16761 80 | 0.00000| 0.00055] 0.44978]| 0.00045| 0.29030| 0.09649
100 | 0.00000| 0.00026| 0.54077| 0.00022| 0.06898| 0.16735 100 | 0.00000| 0.00040] 0.51619| 0.00027| 0.30145| 0.09453

Table 4: EM-Algorithm and method of moments, estimates for
real data

Table 2: MSEs of the EM-algorithm, method of moments and ’I‘E"&th‘id - Mixing Prg%%g‘%‘ Estimate 032'23573 ohc/l)c?cl)is
. . - o o -algorithm . . .
Bayesian eStlmatorSWnB&_s’ =9 Method of moments| 0.62399 0.32399| 0.00194

EM-Algorithm Method of Bayse Method
T N Moments (prior a =0.4)
BIAS MSE BIAS MSE | BIAS MSE
0.15| 20 | 0.68839| 0.00246 | 0.78743 | 0.00437] 0.40132| 0.01548 Table 5: Bayesian approach for estimating mixing Parameter for
40 [ 0.52653| 0.00139 | 0.59526| 0.00276| 0.39953 | 0.01564 real data
60 | 0.59899| 0.00180| 0.69525| 0.00355| 0.39741| 0.01609
80 | 0.61900| 0.00192| 0.58893| 0.00272| 0.39669| 0.01610 tetal | teta2 | prior | Bayes Estimatg Bias MSE-Posterior
100 | 0.58041 0.00168| 0.67781| 0.00341| 0.39588| 0.01595 4 5 0.3 0.43459 0.08459 0.00453
0.35| 20 | 0.40916| 0.00083] 0.37548| 0.00262| 0.22026| 0.04380 04 050493 0.15493 0.00422
40 [0.17158| 0.00014 | 0.14139| 0.00120| 0.22388| 0.04439
60 [ 0.32974| 0.00048| 0.15685| 0.00128| 0.22174| 0.04413 0.5 0.55342 020342 0.00351
80 [0.31141] 0.00046] 0.29002| 0.00204| 0.22460 | 0.04420
100 [ 0.27668] 0.00038| 0.40973| 0.00287| 0.22229| 0.04519
0.55| 20 | 0.09947| 0.00004| 0.08016| 0.00198| 0.16818| 0.08659
40 [0.07216| 0.00002 | 0.18321| 0.00067 | 0.17068 | 0.08631 Age of pediatric patients
60 | 0.00000| 0.00000| 0.14257| 0.00083| 0.16761| 0.08673
80 | 0.02657 | 0.00000| 0.00875| 0.00146| 0.17178| 0.08634 .
100 | 0.00000 | 0.00000 | 0.00636| 0.00154 | 0.17370| 0.08732 2]
0.75| 20 | 0.00000| 0.00028] 0.38733] 0.00065| 0.11387| 0.13505
40 [0.00000| 0.00050 | 0.46493| 0.00040| 0.11700| 0.13441 g
60 | 0.00000| 0.00036| 0.53295| 0.00023| 0.11703| 0.13558
80 [0.00000| 0.00042| 0.47731| 0.00037]| 0.11613| 0.13456 .
100 [ 0.00000 | 0.00054 | 0.55422| 0.00019| 0.11833| 0.13407 2

which represents in table 5.
In table 5 we used 3 different priots = 0.3,0.4,0.5 for
estimating mixing proportiom.

Bayesian approach provides better
EM-algorithm and method of moments with all priors, but

estimates than

the best estimate achieved with priar= 0.3 which is
closest to the real mixing proportian= 0.33.

According to the results of the previous section, this resul

was predictable. Because real mixing proportiois less
than 0.55 and at this conditions, Bayesian method
represents the best estimate.

Frequency

Age

Fig. 1. Histogram of age of all patients
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Q-Q plot for yz‘ﬂ Q-Q plot for ZQM
! 3 g ! ! 8 1‘2 5 5 i g : it
All pediatric patients Girl pediatric patients
Fig. 2: Q-Q-plot for all patients Fig. 5. Q-Q-plot for girls age distribution
Age of pediatric boy patients Age of pediatric girl patients ACk nowl edga-n ent
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