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Abstract: The objective of the present work is to develop an efficient estimation procedure to enhance the precision of estimate of a
finite population variance under simple random sampling without replacement (SRSWOR) scheme. Utilizing information on median
and coefficient of kurtosis of an auxiliary variable, an improved ratio-type estimator of population variance has been suggested. The
properties of the proposed estimation procedure have been examined and empirical studies are performed to show the dominance over
some contemporary estimators. Suitable recommendations are made to the survey practitioners.
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1 Introduction

The estimation of finite population variance attracts the attention of survey practioners for many practical applications.
For example, a physician requires sufficient knowledge about different pathological parameters of human body such as
variations in degree of blood pressure, pulse rate, blood sugar level to provide adequate prescriptions to the patients.
Similarly farmers need adequate information regarding thepatterns of variations in various weather parameters for
cultivation of different crops. The use of auxiliary information has been a popular technique for enhancing the precision
of estimates for long time and its application in estimationof finite population variance goes back to [3] and followed by
[15], [4], [13], [1], and [2] among others.

Several authors have introduced the modified versions of ratio, product and linear regression methods of estimation
for finite population variance by utilizing the informationon auxiliary variable. Singh et al. [12] utilized known coefficient
of kurtosis of auxiliary variable to estimate the population variance of the study variable. In follow up Upadhyaya and
Singh [19,20] , Kadilar and Cingi [5,6], Khan and Shabbir [7] and Subramani and Kumarapandeyan [16,17,18] proposed
the modified estimation procedures of population variance which made the use of various known parameters of auxiliary
variable. Motivated with the above works, the aim of the present work is to propose an improved estimation procedure for
estimation of finite population variance by using information on known population median and coefficient of kurtosis of
an auxiliary variable under SRSWOR scheme. Properties of the suggested estimation procedure are deeply examined and
supplemented with empirical studies.

2 Description of notations and some existing estimators of population variance

Let yi andxi be the values of study variabley and auxiliary variablex respectively for theith unit of a finite population of
size N. To estimate the population varianceSy

2 of study variable y, a random sample of size n under without replacement
scheme is drawn from the population and surveyed for the study variabley under the assumption that the information on
auxiliary variablex readily available for all the units of the population. The following notations have been adopted for
the further use:
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X̄(Ȳ ) : Population means of auxiliary (study) variablex(y).
x̄(ȳ) : Sample means of auxiliary (study) variablex(y).
s2

x(s
2
y) : Sample variance of the variablex(y).

Cy,Cx : Population coefficients of variation for the variables shown in subscripts.
ρyx : Population correlation coefficient between the variablesy andx.
B (.) : Bias of the estimator.
M (.) : Mean square error (MSE) of the estimator.
f = n

N : Sampling Fraction.

µst =
1

(N−1)

N
∑

i=1
(yi − Ȳ)s

(xi − X̄)
t ,δst =

µst

µs/2
20 µt/2

02
andζ =

(1
n −

1
N

)

κ(x) =
µ04
µ2

02
: Population coefficient of kurtosis of the auxiliary variable.

κ(y) =
µ40
µ2

20
: Coefficient of kurtosis of the study variable.

Md : Population median of the auxiliary variable.

Qi (i = 1,2,3) denote the first, second and third quartiles of the auxiliaryvariable.Qr, Qd andQa are the functions of
quartile defined as

Qr = (Q3−Q1), Qd =
(Q3−Q1)

2

Qr = (Q3−Q1), Qd = (Q3−Q1)
2 andQa =

(Q3+Q1)
2

For sample observations

ȳ = (n)−1
n
∑

i=1
yi, x̄ = (n)−1

n
∑

i=1
xi, s2

x = (n−1)−1
n
∑

i=1
(xi − x̄)2,

s2
y =(n−1)−1

n
∑

i=1
(yi − ȳ)2, syx=(n−1)−1

n
∑

i=1
(yi − ȳ) (xi − x̄)

For population observations

Ȳ = (N)−1
N
∑

i=1
Yi , X̄ = (N)−1

N
∑

i=1
Xi , S2

x = (N −1)−1
N
∑

i=1

(

xi−X̄
)2
,Cx = (Sx/X̄)

S2
y = (N −1)−1

N
∑

i=1

(

yi−Ȳ
)2
, Sxy = (N −1)−1

N
∑

i=1

(

yi−Ȳ
)(

xi−X̄
)

,Cy = (Sy /Ȳ )

2.1 Some existing estimators of population variance

In this section, we have revisited to some existing estimators of the population varianceSy
2, which will provide the strong

basis for proposition of an estimator. The estimators and their expression of the bias and mean square errors are shown
below in Table 1. The usual unbiased estimator of populationvariance and the expression of their variance is presented as

d0 = sy
2 (1)

and
V (d0) = ζS4

y(κ(y)−1) (2)
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Table 1: Existing estimators and their bias and mean square errors
Estimator and Sources Bias(d j) MSE(d j)

d1 = s2
y(S

2
x/s2

x) [4] ζ S2
y

[

L1(κ(x)−1)(L1−ψ)
]

ζS4
y

[

(κ(y)−1)
+L1(κ(x)−1)(L1−2ψ)

]

d2 = s2
y

[

(S2
x +κ(x))

/

(s2
x +κ(x))

]

[20] ζS2
y

[

L2(κ(x)−1)(L2−ψ)
]

ζS4
y

[

(κ(y)−1)
+L2(κ(x)−1)(L2−2ψ)

]

d3 = s2
y
[

(S2
x −Cx)

/

(s2
x −Cx)

]

[5] ζ S2
y

[

L3(κ(x)−1)(L3−ψ)
]

ζS4
y

[

(κ(y)−1)
+L3(κ(x)−1)(L3−2ψ)

]

d4 = s2
y

[

(S2
x −κ(x))

/

(s2
x −κ(x))

]

[5] ζS2
y

[

L4(κ(x)−1)(L4−ψ)
]

ζ S4
y

[

(κ(y)−1)
+L4(κ(x)−1)(L4−2ψ)

]

d5 = s2
y

[

(S2
x κ(x)−Cx)

/

(s2
xκ(x)−Cx)

]

[5] ζS2
y

[

L5(κ(x)−1)(L5−ψ)
]

ζS4
y

[

(κ(y)−1)
+L5(κ(x)−1)(L5−2ψ)

]

d6 = s2
y

[

(S2
xCx −κ(x))

/

(s2
xCx −κ(x))

]

[5] ζS2
y

[

L6(κ(x)−1)(L6−ψ)
]

ζ S4
y

[

(κ(y)−1)
+L6(κ(x)−1)(L6−2ψ)

]

d7 = s2
y
[

(S2
x +Md)

/

(s2
x +Md)

]

[16] ζS2
y

[

L7(κ(x)−1)(L7−ψ)
]

ζS4
y

[

(κ(y)−1)
+L7(κ(x)−1)(L7−2ψ)

]

d8 = s2
y
[

(S2
x +Q1)

/

(s2
x +Q1)

]

[17] ζS2
y

[

L8(κ(x)−1)(L8−ψ)
]

ζ S4
y

[

(κ(y)−1)
+L8(κ(x)−1)(L8−2ψ)

]

d9 = s2
y
[

(S2
x +Q3)

/

(s2
x +Q3)

]

[17] ζS2
y

[

L9(κ(x)−1)(L9−ψ)
]

ζ S4
y

[

(κ(y)−1)
+L9(κ(x)−1)(L9−2ψ)

]

d10 = s2
y
[

(S2
x +Qr)

/

(s2
x +Qr)

]

[17] ζS2
y

[

L10(κ(x)−1)(L10−ψ)
]

ζ S4
y

[

(κ(y)−1)
+L10(κ(x)−1)(L10−2ψ)

]

d11 = s2
y
[

(S2
x +Qd)

/

(s2
x +Qd)

]

[17] ζ S2
y

[

L11(κ(x)−1)(L11−ψ)
]

ζ S4
y

[

(κ(y)−1)
+L11(κ(x)−1)(L11−2ψ)

]

d12 = s2
y
[

(S2
x +Qa)

/

(s2
x +Qa)

]

[17] ζ S2
y

[

L12(κ(x)−1)(L12−ψ)
]

ζ S4
y

[

(κ(y)−1)
+L12(κ(x)−1)(L12−2ψ)

]

d13 = s2
y
[

(S2
xρ +Q3)

/

(s2
xρ +Q3)

]

[7] ζ S2
y

[

L13(κ(x)−1)(L13−ψ)
]

ζS4
y

[

(κ(y)−1)
+L13(κ(x)−1)(L13−2ψ)

]

d14 = s2
y
[

(S2
xCx + Md)

/

(s2
xCx + Md)

]

[18] ζS2
y

[

L14(κ(x)−1)(L14−ψ)
]

ζ S4
y

[

(κ(y)−1)
+L14(κ(x)−1)(L14 −2ψ)

]

where

L1 = 1,L2 = S2
x

s2
x+κ(x)

,L3 = S2
x

s2
x−Cx

,L4 = S2
x

s2
x−κ(x)

,L5 =
S2

xκ(x)
s2
xκ(x)−Cx

,L6 =
S2

xCx
s2
xCx−κ(x)

,L7 =
S2

x
s2
x+Md

,L8 = S2
x

s2
x+Q1

,

L9 =
S2

x
s2
x+Q3

,L10 = S2
x

s2
x+Qr

,L11 = S2
x

s2
x+Qd

,L12 = S2
xρ

s2
xρ+Qa

,L13 = S2
xρ

s2
xρ+Q3

,L14 = S2
xCx

s2
xCx+Md

andψ = δ22−1
κ(x)−1

In general the MSEs of the estimators shown in Table 1, may be written as

MSE(d j) = ζ S4
y

[

(κ(y)−1)+L j(κ(x)−1)(L j −2ψ)
]

; ( j = 1,2, ....,14) (3)

3 Proposition of the estimator and its bias and mean square error

Following the previously discussed estimation procedures, we propose a general class of estimators of population
varianceSy

2which utilizes the readily available information on medianand coefficient of kurtosis of an auxiliary variable
x and defined as

dPS = s2
y

{

λ +(1−λ )
(S2

xκ(x)+M2
d)

(s2
xκ(x)+M2

d)

}

(4)
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whereλ is a scalar quantity to be determined under certain criterions so as to minimise the MSE of the estimatordPS. To
obtain the bias and mean square error of the proposed estimator dPS up to the first order of approximations, we use the
following transformations:

s2
y = S2

y (1+ e1) , s2
x = S2

x (1+ e2) andE (ei) = 0 for ( i = 1,2).

We use the following expected values for further derivations:

E(e2
1) = ζ (κ(y)−1) , E(e2

2) = ζ (κ(x)−1) andE(e1e2) = ζ (δ22−1)

To derive the expression of bias and mean square error of the proposed class of estimatorsdPS, the structure of estimator
is expressed in terms ofei’s as

dPS = S2
y (1+ e1)

{

λ +(1−λ )
κ(x)S

2
x +M2

d

κ(x)S2
x (1+ e2)+M2

d

}

= S2
y (1+ e1)

[

λ +(1−λ )(1+L∗e2)
−1
]

(5)

whereL∗ =
S2

xκ(x)
s2
xκ(x)+M2

d
and|L∗e1|< 1 so that the term(1+L∗e2)

−1 is convergent.

Now expanding the expression in equation (5) binomially andsimplifying we have

dPS = S2
y

(

1+ e1−L∗(1−λ )e2−L∗(1−λ )e1e2+L∗2(1−λ )e2
2+L∗(1−λ )e1e2

2− .....
)

(6)

Taking expectation and retaining the terms up to the ordern−1, we have the expression of bias and mean square error of
the estimatordPS as

B(dPS) = E(dPS − S2
y)

= (1−λ )ζ S2
y(κ(x)−1)L∗ [L∗−ψ]

(7)

M(dPS) = E[dPS − S2
y]

2

= S4
yζ

[

(κ(y)−1)+ (1−λ )2 L∗2(κ(x)−1)−2(1−λ )L∗(δ22−1)
] (8)

The expression of mean square error of the estimatordPS in equation (8) is consist the unknown scalarλ , hence to obtain
the optimum value ofλ , the expression of MSE (dPS ) is minimized with respect toλ and subsequently the optimum value
of λ sayλopt is obtained as

λopt = 1−
(δ22−1)

L∗(κ(x)−1)
(9)

Further substituting the value ofλopt in equation (8), we get the optimum MSE (dPS ) as

MSEmin.(dPS) = S4
yζ

[

(κ(y)−1)−
(δ22−1)2

(κ(x)−1)

]

(10)

3.1 Practicability of the proposed estimator dPS

In order to make the proposed class of estimatorsdPS practicable, the unknown scalarλ will be replaced byλopt andλopt

consist of several unknown parameters such asδ22 andS4
y . Hence for practical application, these unknown parameters

may be replaced by their guess values available from the pastsurveys or pilot surveys. If such guess values are not readily
available then they may be estimated by their correspondingsample estimates, see [8],[9,10],[14] , [11].
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4 Theoretical Comparisons

The estimatordPS is more efficient than the existing estimatorsd j( j = 1,2....,14) under the following conditions which
are obtained by comparing their respective variance/MSEs.Using equations (1) and (10), we have the following results

MSEmin.(dps)<V (d0), if (δ22−1)> 0

From equations (3) and (10), we have the following conditions:

MSEmin.(dps)< MSEmin.(dps, if (δ22−1)> (κ(x)−1)

5 Empirical studies

To examine the validity of theoretical comparisons of proposed estimator and other available estimators discussed in this
work, we borrowed the following numerical values of different population parameters for real population datasets
available in [16].

Population I

N = 80, n = 40, Ȳ = 51.8264, X̄ = 11.2646, ρxy = 0.9413, Sy = 18.3569, Cy = 0.3542,

Sx = 8.4563, Cx = 0.7507, κ(x)= 2.8664, κ(y)= 2.2667, δ22 = 2.2209, Md = 7.5750,

Q1 = 5.1500, Q3 = 16.975, Qr = 11.825, Qd = 5.9125, Qa = 11.0625.

Population II

N = 70, n = 20, Ȳ = 96.70, X̄ = 175.2671, ρxy = 0.7293, Sy = 160.7140, Cy = 0.6279,

Sx = 140.8572, Cx = 0.8037, κ(x)= 7.0952, κ(y)= 4.7596, δ22 = 4.6038, Md = 121.50,

Q1 = 80.1500, Q3 = 225.0250, Qr = 144.8750, Qd = 72.4375, Qa = 152.5875.

To assess the performance of the proposed estimator, the bias and mean square errors of all the discussed estimators
are calculated and presented in Table 2. Further the percentrelative efficiencies (PREs) of proposed estimator and other
existing estimators are calculated with respect to the natural sample variance estimator using the following formula and
shown in Table 3.

PRE(t, s2
y) =

V (s2
y)

MSE(t)
×100 (11)

wheret is the estimator of our interest.

6 Interpretations of results and conclusions

From Table 2 it is observed that the bias and mean square errors of the proposed estimator is less than the bias and mean
square error of other existing estimators and subsequentlyfrom Table 3 it is visible that the percent relative efficiencies
of the proposed estimator are appreciably higher than otherdiscussed estimators for both the population values. From the
above interpretations we may conclude that the structure ofthe proposed estimator is justified and it may be considered
for practical applications by the survey practitioners.
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Table 2: Bias B (.) and MSE M (.) of existing and proposed estimators

Estimator and Source
Bias B (.) MSE M (.)

Population I Population II Population I Population II
d1 = s2

y(S
2
x/s2

x) [4] 8.1569 236.1542 2943.7110 924946.50

d2 = s2
y

[

(S2
x +κ(x))

/

(s2
x +κ(x))

]

[20] 6.9686 235.8633 2743.6490 924324.40

d3 = s2
y
[

(S2
x −Cx)

/

(s2
x −Cx)

]

[5] 8.4963 236.1871 3002.9290 925017.00

d4 = s2
y

[

(S2
x −κ(x))

/

(s2
x −κ(x))

]

[5] 9.5235 236.4454 3187.1310 925569.60

d5 = s2
y

[

(S2
xκ(x)−Cx)

/

(s2
xκ(x)−Cx)

]

[5] 8.2739 236.1588 2964.0260 924956.40

d6 = s2
y

[

(S2
xCx −κ(x))

/

(s2
xCx −κ(x))

]

[5] 10.0225 236.5166 3279.0970 925721.90

d7 = s2
y
[

(S2
x +Md)

/

(s2
x +Md)

]

[16] 5.3329 233.2011 2490.0660 918641.40
d8 = s2

y
[

(S2
x +Q1)

/

(s2
x +Q1)

]

[17] 6.1309 232.8888 2610.2640 917976.10
d9 = s2

y
[

(S2
x +Q3)

/

(s2
x +Q3)

]

[17] 2.9355 227.0994 2181.580 905689.90
d10 = s2

y
[

(S2
x +Qr)

/

(s2
x +Qr)

]

[17] 4.1277 230.2846 2323.6670 912437.80
d11 = s2

y
[

(S2
x +Qd)

/

(s2
x +Qd)

]

[17] 5.8707 233.2011 2570.24 918641.40
d12 = s2

y
[

(S2
x +Qa)

/

(s2
x +Qa)

]

[17] 4.3276 229.9762 2349.8550 911783.20
d13 = s2

y
[

(S2
xρ +Q3)

/

(s2
xρ +Q3)

]

[7] 2.7208 223.8262 2158.9170 898785.40
d14 = s2

y
[

(S2
xCx + Md)

/

(s2
xCx + Md)

]

[18] 4.5924 232.4854 2385.4380 917116.90

dps = s2
y

[

λ +(1−λ ) (S
2
x κ(x)+M2

d )

(s2
xκ(x)+M2

d )

]

1.5164 107.2051 1993.0700 569127.70

Table 3: PREs of various estimators with respect tod0 = s2
y

Estimator and Source
PREs

Population I Population II
d1 = s2

y(S
2
x/s2

x) [4] 183.2345 142.0218

d2 = s2
y

[

(S2
x +κ(x))

/

(s2
x +κ(x))

]

[20] 196.5956 142.1173

d3 = s2
y
[

(S2
x −Cx)

/

(s2
x −Cx)

]

[5] 179.6211 142.0109

d4 = s2
y

[

(S2
x −κ(x))

/

(s2
x −κ(x))

]

[5] 169.2398 141.9261

d5 = s2
y

[

(S2
xκ(x)−Cx)

/

(s2
xκ(x)−Cx)

]

[5] 181.9786 142.0202

d6 = s2
y

[

(S2
xCx −κ(x))

/

(s2
xCx −κ(x))

]

[5] 164.4933 141.9028

d7 = s2
y
[

(S2
x +Md)

/

(s2
x +Md)

]

[16] 216.6165 142.9965
d8 = s2

y
[

(S2
x +Q1)

/

(s2
x +Q1)

]

[17] 206.6417 143.1002
d9 = s2

y
[

(S2
x +Q3)

/

(s2
x +Q3)

]

[17] 247.2471 145.0414
d10 = s2

y
[

(S2
x +Qr)

/

(s2
x +Qr)

]

[17] 232.1285 143.9687
d11 = s2

y
[

(S2
x +Qd)

/

(s2
x +Qd)

]

[17] 209.8595 142.9965
d12 = s2

y
[

(S2
x +Qa)

/

(s2
x +Qa)

]

[17] 229.5416 144.0721
d13 = s2

y
[

(S2
x ρ +Q3)

/

(s2
xρ +Q3)

]

[7] 249.8426 146.1556
d14 = s2

y
[

(S2
xCx + Md)

/

(s2
xCx + Md)

]

[18] 226.1175 143.2342

dps = s2
y

[

λ +(1−λ ) (S
2
x κ(x)+M2

d )

(s2
xκ(x)+M2

d )

]

270.6320 230.8138
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