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Abstract: We recast complex scalar fields as interacting field using fractional derivatives. to be more developed By applying 
the Hamiltonian formulation using fractional derivatives to the complex scalar fields, we applied the Hamiltonian 
formulation using fractional derivatives to the complex scalar fields. In addition, we observed that the Euler-Lagrange 
equation and the Hamiltonian equation yield the same result. Finally, we studied an example to elucidate the results 
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1 Introduction 

 
Fractional calculus is an extension of classical calculus. In 
this branch of mathematics, definitions are established for 
integrals and derivatives of arbitrary non-integer (even 
complex) order.  It began in 1695 when Leibniz postulated 
his analysis of the derivative of order ½. Subsequently, it is 
developed primarily as a theoretical aspect of mathematics 
and was considered by some of the greatest names in 
mathematics, such as Euler, Lagrange, and   Fourier. This 
branch of mathematics has seen a rapid development of 
interest in recent years, with applications in fractal [1], 
viscoelasticy [2], electrodynamics [3,4], optics [5,6], and 
thermodynamics [7]. The fractional calculus literature, 
which dates back to Leibniz, is rapidly expanding today 
[8,9,10,11,12,13,14]. Fractional derivatives, or more 
precisely, arbitrary order derivatives, are a generalization of 
classical calculus that have found applications in a variety of 
scientific and engineering fields [14,15,16,17,18,19,20]. 
There have been many attempt to include non-conservative 
forces in Lagrangian and Hamiltonian mechanics. 
This mathematical field has been revived over time and is 
now used to study fractals, viscoelasticity, electrodynamics,  
 
 
 
 

optics, and thermodynamics [1,2,3,4,5,6,7]. The research on 
fractional calculus, which stretches back to Leibniz, is 
quickly growing today. Some of these applications are 
described in this section. The first is fractional calculus, 
which is used to understand the viscous interactions of fluids 
and solid structures. Reflection and transmission scattering 
operators for a slab of cancellous bone in the elastic frame 
are calculated using Blot's theory [19]. The approach of 
fractional derivatives in viscoelasticity concept is helpful 
since it allows for the formulation of constitutive equations 
for the elastic complex modulus of viscoelastic materials 
using only a few experimental measurements parameters. 
The fractional derivative method has also been utilized to 
investigate the impedances of many viscoelastic model [20]. 
Riewe [20, 21] formulated a version of the Euler-Lagrange 
equation for problems of calculus of variation with fractional 
derivatives. Recently,  Diab et al [22] presented classical 
fields with fractional derivatives using the fractional 
Hamiltonian formulation. They obtained the fractional 
Hamilton's equations for two classical field examples. The 
formulation presented and the resulting  equations are very 
similar to those  appearing in classical field theory. Houas et 
al. [23] utilised MZ Sarikaya's fractional integral technique 
to develop new generalized fractional integral inequalities 
employing (k, s)-Riemann-Liouville integral operators. A 
few exceptional instances can be used to deduce classical 
and non-classical inequalities, such as the geometric series.  
In another work, Alawaideh has recently found Euler-
Lagrange fractional equations and Hamilton fractional 
equations for the Lee- wick field. A lagrangian density field 
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is constructed using the Riemann-Liouville fractional 
derivative [24].  The key characteristics of the novel 
concepts presented in this manuscript are as follows. 

• Complex scalar fields interacting with an 
electromagnetic field are rewritten with a fractional 
derivative to yield the Hamilton equations. This is 
the first time motion equations have been derived in 
terms of fractional derivatives using complex scalar 
fields interacting with electromagnetic fields and 
Hamilton's equation. 

• The fractional order is used for the present 
formulation, making them more complex to solve 
in practice. As a result, we provide a one-of-a-kind 
and very successful technique. 

• These formulations have been generalized such that 
they can be used with continuous first-order 
derivative systems. A generalized electrodynamics 
problem involving complex scalar fields interacting 
with an electromagnetic field is solved using this 
method. 

The goal of this study is to develop fractional Hamiltonian 
equations for the combined scalar and electromagnetic fields 
using the Riemann-Liouville fractional derivative method. 
 
The remaining of this paper is organized as follows: In 
Section 2, the definitions of fractional derivatives are 
discussed briefly. In Section 3 the fractional form of Euler-
Lagrangian equation is presented. In Section 4, is devoted to 
the equations of motion in terms of Hamiltonian density in 
fractional form. In Section 5 one illustrative example is 
examined. Then in section 6 we obtain fractional combined 
scalar and electromagnetic equations using the Euler-
Lagrange equations. Section 7 presents some fractional 
calculus application to scalar and electromagnetic fields. The 
work closes with some concluding remarks (Section 8). 
 
2 Basic Definitions 
 
In this section, we'll go over some basic mathematical 
definitions that you'll need for this work. The left Riemann-
Liouville fractional derivative, or LRLFD, is defined as [25].  
𝐷! "
#𝑓(𝑥) = 
1

Γ(𝑛 − 𝛼) ,
𝑑
𝑑𝑥.

$

/ (𝑥 − 𝜏)$%#&'𝑓(𝜏)𝑑𝜏.																								(1)
"

!
 

The right Riemann- Liouville fractional derivative is defined 
as  
𝐷" (
#𝑓(𝑥) = 
1

Γ(𝑛 − 𝛼) ,−
𝑑
𝑑𝑥.

$

/ (𝜏 − 𝑥)$%#&'𝑓(𝜏)𝑑𝜏.																				(2)
(

"
 

where Γ denotes the Gamma function, and 	𝛼		is the order of 
the derivative such that 𝑛 − 	1 < 	𝛼 < 	𝑛. If 𝛼 is an integer, 
these derivatives are defined in the usual sense, i.e. 

𝐷! "
#𝑓(𝑥) = ,

𝑑
𝑑𝑥.

#

𝑓(𝑥)																																																					(3)	 

𝐷" (
#𝑓(𝑥) = ,−

𝑑
𝑑𝑥.

#

𝑓(𝑡)																												𝛼 = 1,2, . .		(4) 
 

3 Fractions of Euler and Lagrange Interactions 
of a complex scalar field with the 
electromagnetic Lagrangian density equation 
 

A continuous system with a lagrangian density expressed in 
terms of dynamical field variables, a generalized coordinate, 
and a derivative define as 

	ℒ = ℒ:	𝐴)	, 𝜙, 	𝜙∗, 𝐷! "!
# 𝐴) , 𝐷! "!

# 𝜙	, 𝐷! "!
# 𝜙∗=															(5) 

Euler-Lagrange equation for such Lagrangian density in 
fractional form can be given as  

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝜕ℒ
𝜕𝐴)

𝛿𝐴) +
𝜕ℒ
𝜕𝜙+

𝛿𝜙 +
𝜕ℒ
𝜕𝜙∗ 𝛿𝜙

∗

+
𝜕ℒ

𝜕 𝐷! "!
# 𝐴)

𝛿 𝐷! "!
# 𝐴)

𝜕ℒ
𝜕 𝐷! "!

# 𝜙
𝛿 𝐷! "!

# 𝜙 +
𝜕ℒ

𝜕 𝐷! "!
# 𝜙∗

𝛿 𝐷! "!
# 𝜙∗

⎦
⎥
⎥
⎥
⎥
⎥
⎤

= 0														(6) 

 
We can write the following using the variational principle: 
 
𝛿𝑆 = ∫𝛿ℒ		𝑑,𝑥=0   																																																														(7) 
 
The variation of L can be obtained from Equation. (5) as 
follows: 
𝛿ℒ

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝜕ℒ
𝜕𝐴)

𝛿𝐴) +
𝜕ℒ
𝜕𝜙+

𝛿𝜙+ +
𝜕ℒ
𝜕𝜙∗ 𝛿𝜙

∗

+
𝜕ℒ

𝜕 𝐷! "!
# 𝐴)

𝛿 𝐷! "!
# 𝐴) +

𝜕ℒ
𝜕 𝐷! "!

# 𝜙
𝛿 𝐷! "!

# 𝜙

+
𝜕ℒ

𝜕 𝐷! "!
# 𝜙∗

𝛿 𝐷! "!
# 𝜙∗

⎦
⎥
⎥
⎥
⎥
⎥
⎤

𝑑-𝑥						(8) 

 
By substituting Eq. (8) into Eq. (7) and using the 
commutation relation indicated below, we get: 
 

N
𝛿 𝐷! "!

# 𝐴) = 𝐷! "!
# 𝛿𝐴)

𝛿 𝐷! "!
# 𝜙 = 𝐷! "!

# 𝛿𝜙
𝛿 𝐷! "!

# 𝜙∗ = 𝐷! "!
# 𝛿𝜙∗

O																																																						(9) 

 
we get, 
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/

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕ℒ
𝜕𝐴)

𝛿𝐴) +
𝜕ℒ
𝜕𝜙 𝛿𝜙 +

𝜕ℒ
𝜕𝜙∗ 𝛿𝜙

∗

+
𝜕ℒ

𝜕 𝐷! "!
# 𝐴)

𝐷! "!
# 𝛿𝐴)

QRRRRRSRRRRRT
./0123

+
𝜕ℒ

𝜕 𝐷! "!
# 𝜙

𝐷! "!
# 𝛿𝜙

QRRRRSRRRRT
.4.23

+

𝜕ℒ

𝜕 𝐷! "!
# 5𝜙∗

𝐷! "!
# 𝛿𝜙∗

QRRRRRSRRRRRT
64"23 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑑,𝑥 = 0																		(10) 

 
Integrating the indicated terms in Eq. (10) with respect to 
time by parts yields the following: 
 

/

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ U

𝜕ℒ
𝜕𝐴)

− 𝐷! "!
# 𝜕ℒ
𝜕 𝐷! "!

# 𝐴)
V 𝛿𝐴)

+U
𝜕ℒ
𝜕𝜙 − 𝐷! "!

# 𝜕ℒ
𝜕 𝐷! "!

# 𝜙
V𝛿𝜙

+U
𝜕ℒ
𝜕𝜙∗ − 𝐷! "!

# 𝜕ℒ
𝜕 𝐷! "!

# 𝜙∗
V 𝛿𝜙∗

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑑,𝑥 = 0 

 
qA fractional Euler-Lagrange equation for such Lagrangian 
density is as follows: 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡U
𝜕ℒ
𝜕𝐴)

− 𝐷! "!
# 𝜕ℒ
𝜕 𝐷! "!

# 𝐴)
V +

U
𝜕ℒ
𝜕𝜙 − 𝐷! "!

# 𝜕ℒ
𝜕 𝐷! "!

# 𝜙
V

+ U
𝜕ℒ
𝜕𝜙∗ − 𝐷! "!

# 𝜕ℒ
𝜕 𝐷! "!

# 𝜙∗
V
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 0																																				(11)	

 
Expanding 𝐴) , 𝑥7	in terms of W𝐴8, 𝐴4 , 𝐴9X, 𝑎𝑛𝑑	(𝑡, 𝑥4) 
respectively, the Eq.11 has the form 
 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕ℒ
𝜕𝐴8

− 𝐷! 2
# 𝜕ℒ
𝜕 𝐷! 2

#𝐴8
− 𝐷! ""

# 𝜕ℒ
𝜕 𝐷! ""

#𝐴8
= 0								12. 𝑎

𝜕ℒ
𝜕𝐴4

− 𝐷! 2
# 𝜕ℒ
𝜕 𝐷! 2

#𝐴4
− 𝐷! ""

# 𝜕ℒ
𝜕 𝐷! ""

#𝐴4
= 0											12. 𝑏

𝜕ℒ
𝜕𝐴9

− 𝐷! 2
# 𝜕ℒ
𝜕 𝐷! 2

#𝐴9
− 𝐷! ""

# 𝜕ℒ
𝜕 𝐷! ""

#𝐴9
= 0									12. 𝑐

𝜕ℒ
𝜕𝜙 − 𝐷! 2

# 𝜕ℒ
𝜕 𝐷! 2

#𝜙
− 𝐷! ""

# 𝜕ℒ
𝜕 𝐷! ""

#𝜙
= 0										12. 𝑑

𝜕ℒ
𝜕𝜙∗ − 𝐷! 2

# 𝜕ℒ
𝜕 𝐷! 2

#𝜙∗
− 𝐷! ""

# 𝜕ℒ
𝜕 𝐷! ""

#𝜙∗
= 0								12. 𝑓

(12)					 

 

for 𝛼=1, 𝐷! "!
# = ∂7	using α= 1,  , we can rewrite Eq (11), 

become: 
 

U
𝜕ℒ
𝜕𝐴)

− 𝜕7
𝜕ℒ

𝜕W𝜕7𝐴)X
V + ]

𝜕ℒ
𝜕𝜙 − 𝜕7

𝜕ℒ
𝜕(𝜕7𝜙)

^ 

+]
𝜕ℒ
𝜕𝜙∗ − 𝜕7

𝜕ℒ
𝜕(𝜕7𝜙∗)

^ = 0																																															(13) 

 
 

4 Equations of Motion in terms of Hamiltonian 
Formulation 
 

We begin our approach by assuming that the Lagrangian 
density is a function of field amplitude 𝜙 and that its 
fractional derivatives with regard to space and time are as 
follows: 
 
ℒ =

ℒ _
𝜙	, 𝐷!	 2

#𝜙		, 𝐷!	 "#
# 𝜙	, 𝜑∗, 𝐷!	 2

#𝜙∗, 𝐷!	 "#
# 𝜙∗, 𝐴8, 𝐴4

, 𝐴9 , 𝐷!	 2
#𝐴9 , 𝐷!	 2

#𝐴4 , 𝐷!	 2
#𝐴8	, 𝐷!	 ""

#𝐴9

, 𝐷!	 "#
# 𝐴4 , 𝐷!	 ""

#𝐴8	, t	
b							(14)                           

The generalized momenta are defined as follows[26]: 
 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧𝜋#$%

' =
𝜕ℒ

𝜕( 𝐷! 2
#𝐴8)

𝜋#
$"
' =

𝜕ℒ
𝜕( 𝐷! 2

#𝐴4)

𝜋#$#
' =

𝜕ℒ
𝜕( 𝐷! 2

#𝐴9)

𝜋; =
𝜕ℒ

𝜕( 𝐷! 2
#𝜙)

𝜋;∗ =
𝜕ℒ

𝜕( 𝐷! 2
#𝜙∗)

,					,																																																			(15) 

 
The Hamiltonian depends on the fractional time derivatives 
and is written as 
 
H=	𝜋; 𝐷2#𝜙 +!

	 𝜋;∗
∗ 𝐷2#𝜙∗ + 𝜋#$% 𝐷!	 2

#𝐴8 + 𝜋#$" 	!
	 –  

𝐷2#𝐴4 + 𝜋#$#!
	 𝐷!	 2

#𝐴9 	–                                                        

L_
(	𝜙	, 𝐷!	 2

#𝜙		, 𝐷!	 "#
# 𝜙	, 𝜙∗, 𝐷!	 2

#𝜑∗, 𝐷!	 "#
# 𝜙∗, , 𝐷!	 2

#𝐴4

𝐴8, 𝐴4 , 𝐴9 , 𝐷!	 2
#𝐴9 , 𝐷!	 2

#𝐴4 	, 𝐷!	 ""
#𝐴9 , 𝐷!	 "#

# 𝐴4 ,
	 𝐷!	 ""

#𝐴8	, t
b			(16) 

 
 
Take the total of the differentials on both sides. 
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𝑑ℎ

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜋𝑑( 𝐷!	 2
#𝜙) + 𝐷!	 2

#𝜙𝑑(𝜋) + 𝜋∗𝑑( 𝐷!	 2
#𝜙∗)

+ 𝐷!	 2
#𝜙∗𝑑(𝜋∗) 	−

𝜕𝐿
𝜕𝑡 𝑑𝑡 −

𝜕𝐿
𝜕𝜙 𝑑𝜙 −

𝜕𝐿
𝜕( 𝐷!	 2

#𝜙)𝑑
( 𝐷!	 2

#𝜙) −
𝜕𝐿

𝜕 k 𝐷!	 "#
# 𝜙l

𝑑 k 𝐷!	 "#
# 𝜙l

−
𝜕𝐿

𝜕 k 𝐷!	 "#
# 𝜙∗l

𝑑 k 𝐷!	 "#
# 𝜙∗l 		+ 𝑑𝜋#$#( 𝐷!

	
2
#𝐴9)

−	
𝜕𝐿

𝜕( 𝐷!	 2
#𝜙∗) 𝑑

( 𝐷!	 2
#𝜙∗) −

𝜕𝐿
𝜕𝜑∗ 𝑑𝜙

∗ 	−
𝜕𝐻
𝜕𝐴4 𝑑𝐴

4

−
𝜕𝐻
𝜕∅ 𝑑∅	 −

𝜕𝐿
𝜕W 𝐷!	 "#

# 𝐴4X
𝑑W 𝐷!	 "#

# 𝐴	4X	

−𝑑𝜋#$"( 𝐷!
	
2
#𝐴4) −

𝜕𝐻
𝜕𝐴9 𝑑𝐴

9 −

	
𝜕𝐿

𝜕W 𝐷!	 ""
#𝐴9X

𝑑W 𝐷!	 ""
#𝐴9X

−
𝜕𝐿

𝜕W 𝐷!	 ""
#𝐴8X

𝑑W 𝐷!	 ""
#𝐴8X	

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

		(17) 

But the Hamiltonian is function of the form 
                             

H=H 

_

𝜋	, 𝜙	, 𝜋∗, 𝜙∗, 𝐷"#
# 𝜙	, 𝐷"#

# 𝜙∗	, 𝐴8	, 𝐴4 	!
	 		!

	

, 𝐴9 , 𝑡	, 𝜋#$% 		, 𝜋#$" 		, 𝜋#$# , 𝐷!
	
""
#𝐴8,

	 𝐷!	 ""
#𝐴9 	, 𝐷!	 "#

# 𝐴4
b																	(18) 

 
As a result, the Hamiltonian's total differential takes the 
following shape: 
 
𝑑𝐻

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐻
𝜕𝜙 𝑑𝜙 +

𝜕𝐻
𝜕𝜋 𝑑𝜋 +

𝜕𝐻

𝜕 k 𝐷!	 "#
# 𝜙l

𝑑 k 𝐷!	 "#
# 𝜙l +

𝜕𝐻
𝜕𝜙∗ 𝑑𝜙

∗ +
𝜕𝐻
𝜕𝜋∗ 𝑑𝜋

∗ 	+
∂H

∂k D<	 ='
> 𝜙∗l

d k D<	 ='
> 𝜙∗l

+
∂H
∂π>('

dπ>(' +
∂H
∂π>()

dπ>() +
∂H
∂A? 𝑑𝐴

9

+
𝜕𝐻
𝜕𝐴4 𝑑𝐴

4 +
𝜕𝐻
𝜕𝐴8 𝑑𝐴

8 +
𝜕𝐻
𝜕𝑡 𝑑𝑡 +

𝜕𝐻
𝜕W 𝐷!	 ""

#𝐴8X
𝑑W 𝐷!	 ""

#𝐴8X +

𝜕𝐻
𝜕W 𝐷!	 ""

#𝐴4X
	𝑑W 𝐷!	 ""

#𝐴4X +
𝜕𝐻

𝜕( 𝐷!	 "#
# 𝐴9) 𝑑W 𝐷!

	
"#
# 𝐴9X

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

		(19) 

 
By comparing Eqs. (17) and (18), we obtain Hamilton's 
equations of motion. 
 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝜕𝐻
𝜕𝜋#$#

= 𝐷!	 2
#𝐴9 																							

𝜕𝐻
𝜕𝜋#$"

= 𝐷!	 2
#𝐴4

	

𝜕𝐻
𝜕𝜋#$%

= 𝐷!	 2
#𝐴8 																					

𝜕𝐻
𝜕𝑡 = −

𝜕ℒ
𝜕𝑡

	

											(20) 

 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧

𝜕𝐻
𝜕W 𝐷!	 ""

# ∅X
= −

𝜕𝐿
𝜕W 𝐷!	 ""

# ∅X
																																												
	

𝜕𝐻
𝜕W 𝐷!	 ""

#𝐴9X
= 		−

𝜕𝐿
𝜕W 𝐷!	 ""

#𝐴9X
																																			 .

	
𝜕𝐻

𝜕W 𝐷!	 "#
# 𝐴4X

= −
𝜕𝐿

𝜕W 𝐷!	 "#
# 𝐴4X

																																					.		

𝜕𝐻
𝜕W 𝐷!	 "#

# 𝜙∗X
= −

𝜕𝐿
𝜕W 𝐷!	 "#

# 𝜙∗X
																																							 .

𝜕𝐻
𝜕W 𝐷!	 "#

# 𝜙X
= −

𝜕𝐿
𝜕W 𝐷!	 "#

# 𝜙X
																																				 .

	
	

		(21) 

The result of calculating these derivatives is 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
𝜕𝐻
𝜕∅ = −

𝜕𝐿
𝜕𝐴8	

𝜕𝐻
𝜕𝐴4 = −

𝜕𝐿
𝜕𝐴4

𝜕𝐻
𝜕𝐴9 = −

𝜕𝐿
𝜕𝐴9

𝜕𝐻
𝜕𝜙 = −

𝜕𝐿
𝜕𝜙

𝜕𝐻
𝜕𝜙∗ = −

𝜕𝐿
𝜕𝜙∗

																																																																			(22)	 

 
We can rewrite these equations using the Euler-Lagrange 
formulation, which results in the following equations: 
 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

𝜕𝐻
𝜕𝐴1 = − 𝐷5	 7

8 𝜕𝐿
𝜕( 𝐷5	 7

8𝐴1) − 𝐷5	 	<!
8 𝜕𝐿
𝜕= 𝐷5	 	<!

8 𝐴1>
							23𝑎

	
𝜕𝐻
𝜕𝐴B = − 𝐷5	 7

8 𝜕𝐿
𝜕( 𝐷5	 7

8𝐴B) − 𝐷5	 	<!
8 𝜕𝐿
𝜕= 𝐷5	 	<!

8 𝐴B>
									23𝑏

𝜕𝐻
𝜕𝐴D = − 𝐷5	 7

8 𝜕𝐿
𝜕( 𝐷5	 7

8𝐴D) − 𝐷5	 	<!
8 𝜕𝐿
𝜕= 𝐷5	 	<!

8 𝐴D>
					23𝑐

𝜕𝐻
𝜕𝜙 = − 𝐷5	 7

8 𝜕𝐿
𝜕= 𝐷5	 	<!

8 𝜙>
− 𝐷5	 	<!

8 𝜕𝐿
𝜕= 𝐷5	 	<!

8 𝜙>
										23𝑑

𝜕𝐻
𝜕𝜙∗ = − 𝐷5	 7

8 𝜕𝐿
𝜕= 𝐷5	 	<!

8 𝜙∗>
− 𝐷5	 	<!

8 𝜕𝐿
𝜕= 𝐷5	 	<!

8 𝜙∗>
											23𝑓

				(23) 

 
5 Illustrative Examples 
 
We begin with the Lagrangian of the combined scalar and 
electromagnetic fields [27]. 

 



  Inf. Sci. Lett. 11, No. 1, 21- 27 (2022)  /http://www.naturalspublishing.com/Journals.asp                                       25                                      
 

 
 
© 2022 NSP 
 Natural Sciences Publishing Cor. 

 

L = − '
,
𝐹)@𝐹)@ + W	:(𝜕) + 𝑖𝑒𝐴)=𝜙X

∗W:𝜕) + 𝑖𝑒	𝐴)=𝜙X −
𝜇𝜙∗𝜙																																																			(24)	 

 
Where 𝐹)A is a four-dimension antisymmetric second rank 
tensor and	𝐴) is a the four – vector potential. Rebuild the 
complex scalar field interacting with the electromagnetic 
Lagrangian density in Riemann – Liouville fractional form 
using these relations. 
 

U
𝐹)A = 𝐷! "I

# 𝐴@ − 𝐷! "J
# 𝐴)

𝐹)A = 𝐷! "I
# 𝐴@ − 𝐷! "J

# 𝐴)
V																																													(25) 

 

x
𝜕) = 𝐷! "I

# = W 𝐷! 2
# , 𝐷! ""

# X

𝜕) = 𝐷! "I
# = W 𝐷! 2

# , − 𝐷! ""
# X
y																																							(26) 

 
𝐹)A𝐹)A = 2 z 𝐷! "I

# 𝐴@ 𝐷! "I
# 𝐴@ − 𝐷! "I

# 𝐴@ 𝐷! "J
# 𝐴){					(27) 

 

U
A> = WA8, A||⃗ X
A> = WA8, −A||⃗ X

V																																																																	(28) 

 
When µ, ν is expanded in terms of 0,i and 0,j, and the 
definition of left Riemann – Liouville fractional derivative is 
applied, the fractional electromagnetic lagrangian density 
formulation takes the form 
 

ℒ=− '
B
_
− 𝐷!	 2

#𝐴9 𝐷!	 2
#𝐴9 + 𝐷!	 2

#𝐴9 𝐷!	 	"#
# A8	

– 𝐷!	 	""
# A8 𝐷!	 ""

# A8 +	 𝐷!	 ""
# A8 𝐷!	 2

#𝐴4

𝐷!	 	""
# 𝐴9 𝐷!	 	""

# 𝐴9 − 𝐷!	 	""
# 𝐴9 𝐷!	 	"#

# 𝐴4
b +

																													

⎣
⎢
⎢
⎢
⎡

	
𝐷2#!
	 𝜙∗ 𝐷2#!

	 𝜙 + 𝐷""
#

!
	 𝜙∗ 𝐷""

#
!
	 𝜙 +	

𝑖𝑒∅𝜓 𝐷2#!
	 𝜙∗ + 𝑖𝑒𝐴C𝜙 𝐷""

#
!
	 𝜙∗ −

𝑖𝑒∅𝜙∗ 𝐷2#!
	 𝜓 − 𝑖𝑒𝐴C𝜙∗ 𝐷""

#
!
	 𝜙 +

𝑒B∅	B𝜙∗𝜙 + 𝑒B𝐴CB𝜙∗𝜙 − 		𝜇𝜙∗𝜙⎦
⎥
⎥
⎥
⎤

				(29) 

 
If 	𝛼 = 1 then Eq. (39) become   

 
ℒ = − '

,
𝐹)@𝐹)@ + W	:(𝜕) + 𝑖𝑒𝐴)=𝜙X

∗W:𝜕) + 𝑖𝑒	𝐴)=𝜙X −
𝜇𝜙∗𝜙																																																	(30)		 

 
This is the well-known complex scalar field that interacts 
with the electromagnetic equation. 
 
6 The Euler-Lagrangian Equation in Fractional 
Form 
 

Let us begin with a definition of fractional Lagrangian 
density and then use the generalization formula of the Euler 
– Lagrange equation (16) to produce equations of motion 
from a complex scalar field interacting with the 
electromagnetic Lagrangian density. 
 
Take the first fields variable 	𝐴8	, then 

 
𝜕ℒ
𝜕𝐴8

− 𝐷! 2
# 𝜕ℒ
𝜕 𝐷! 2

#𝐴8
− 𝐷! ""

# 𝜕ℒ
𝜕 𝐷! ""

#𝐴8
= 0																		(31) 

 
𝜕ℒ
𝜕𝐴8	

=	 

		𝑖𝑒𝜙 𝐷2#!
	 𝜙∗ − 	𝑖𝑒𝜙∗ 𝐷2#!

	 𝜙	 − 		2𝑒B𝐴8	𝜙∗𝜙																			(32) 
 

		
𝜕ℒ

𝜕( 𝐷2#!
	 𝐴8	) 	= 	0																																																																(33) 

 
𝜕ℒ

𝜕 k 𝐷"##!
	 𝐴8l

	= 		 (− 𝐷""
#

!
	 𝐴8	 − 𝐷2#!

	 𝐴4)																										(34)		 

 
Equation (16) is obtained by substituting equations (17, 18, 
and 19) for equation (16). 
 

�
− 𝐷! 2

# ,
𝑖𝑒𝜙 𝐷2#!

	 𝜙∗ − 	𝑖𝑒𝜙∗ 𝐷2#!
	 𝜙	 −

		2𝑒B𝐴8	𝜙∗𝜙 .

− 𝐷""
#

!
	 (− 𝐷""

#
!
	 𝐴8	 − 𝐷2#!

	 𝐴4)			
� = 0																(35) 

 
Now use the general formula (7) to obtain other equations         
of motion from the other fields' variables  
𝜕ℒ
𝜕𝐴9

− 𝐷! 2
# 𝜕ℒ
𝜕 𝐷! 2

#𝐴9
− 𝐷! ""

# 𝜕ℒ
𝜕 𝐷! ""

#𝐴9
= 0																			(36) 

 
𝜕ℒ
𝜕𝐴9		

= 

+𝑖𝑒𝜙 𝐷"#
#

!
	 𝜙∗ − 𝑖𝑒𝜙∗ 𝐷"#

#
!
	 𝜙	 + 2𝑒B𝐴4	𝜙∗𝜙																				(37) 

 
𝜕ℒ

𝜕( 𝐷2#!
	 𝐴9	) = −

1
2 W−2 𝐷!	 2

#𝐴9 + 𝐷!	 ""
# X																											(38) 

 
𝜕ℒ

𝜕W 𝐷""
#

!
	 𝐴9X

= −
1
2	W2 𝐷""

#
!
	 𝐴9 − 𝐷"#

#
!
	 𝐴4X																								(39) 

 
Substituting equations (37, 38, and 39) in equation (36) we 
get 
 

⎣
⎢
⎢
⎢
⎢
⎡k𝑖𝑒𝜙 𝐷"#

#
!
	 𝜙∗ − 𝑖𝑒𝜙∗ 𝐷"#

#
!
	 𝜙	 + 2𝑒B𝐴4	𝜙∗𝜙l

+
1
2 𝐷! 2

#W2 𝐷!	 2
#𝐴9 + 𝐷!	 ""

# X −
1
2𝐷""

# 	W2 𝐷""
#

!
	 𝐴9 − 𝐷"#

#
!
	 𝐴4X ⎦

⎥
⎥
⎥
⎥
⎤

= 0								(40) 

 
And 
 
𝜕ℒ
𝜕𝐴4

− 𝐷! 2
# 𝜕ℒ
𝜕 𝐷! 2

#𝐴4
− 𝐷! ""

# 𝜕ℒ
𝜕 𝐷! ""

#𝐴4
= 0																				(41) 

 
𝜕ℒ
𝜕𝐴4 		

= 0																																																																																(42) 
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𝜕ℒ

𝜕( 𝐷2#!
	 𝐴4 	) = −

1
2 W 𝐷""

#𝐴8!
	 X																																															(43) 

 
𝜕ℒ

𝜕W 𝐷"#
#

!
	 𝐴4X

	= 		−
1
2 (−	 𝐷"#

#
!
	 𝐴4)																																								(44) 

 
Equation (45) is obtained by substituting equations (42, 43, 
and 44) for equation (41). 
1
2 𝐷! 2

#W 𝐷""
#𝐴8!

	 X +
1
2 𝐷"#

#
!
	 (	 𝐷"#

#
!
	 𝐴4)																															(45)	 

 
Applying Euler-Lagrange equation (Eq. (5)) with respect 
to	𝜙		, we get 

 

	

⎣
⎢
⎢
⎢
⎡
𝑖𝑒𝐴) 𝐷2#!

	 𝜙∗ 	+ 	𝑖𝑒𝐴) 𝐷"#
#

!
	 𝜙∗ +	

𝑒B𝐴)B𝜑∗ − 𝜇	𝜙∗

− 𝐷! 2
#( 𝐷2#!

	 𝜙∗ − 	𝑖𝑒∅𝜙∗) −
𝐷! ""
# k 𝐷"#

#
!
	 𝜑∗ − 	𝑖𝑒𝐴9𝜑∗l ⎦

⎥
⎥
⎥
⎤

= 0																											(46) 

 
Using the Euler-Lagrange equations Eq.(5) and calculating 
the derivative with respect to 		𝜙∗, we get the following 
equations of motion: 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎡

−	𝑖𝑒𝐴) 𝐷2#!
	 𝜑	 −

	𝑖𝑒𝐴) 𝐷"#
#

!
	 𝜑

+𝜇	𝜑 +	𝑒B𝐴)B𝜑
− 𝐷! 2

#( 𝐷2#!
	 𝜑	 + 	𝑖𝑒∅𝜑)

− 𝐷! ""
# k 𝐷"#

#
!
	 𝜑	 + 	𝑖𝑒𝐴9𝜑	l⎦

⎥
⎥
⎥
⎥
⎥
⎤

= 0																																																																																							(47) 
 
Taking the derivative with respect to 𝐴8 from Hamiltonian 
equation (23a), we get: 
  

�
− 𝐷! 2

# ,
𝑖𝑒𝜙 𝐷2#!

	 𝜙∗ − 	𝑖𝑒𝜙∗ 𝐷2#!
	 𝜙	

−		2𝑒B𝐴8	𝜙∗𝜙 .

− 𝐷""
#

!
	 (− 𝐷""

#
!
	 𝐴8	 − 𝐷2#!

	 𝐴4)			
� = 0																				(48) 

 
The above equation is exactly the same as the equation that 
has been derived by (equation. (46)) in fractional form 
 
Now take other fields variables 𝐴4 , 𝐴9        
 
𝜕𝐻
𝜕𝐴4 = − 𝐷!	 2

# 𝜕ℒ
𝜕( 𝐷!	 2

#𝐴4) − 𝐷!	 	""
# 𝜕ℒ
𝜕W 𝐷!	 	""

# 𝐴4X
																	(49) 

 
We get  
 
1
2 𝐷! 2

#W 𝐷""
# ∅!

	 X +
1
2 𝐷"#

#
!
	 (	 𝐷"#

#
!
	 𝐴4) = 0																									(50)	 

 
And 

 
𝜕𝐻
𝜕𝐴9 = − 𝐷!	 2

# 𝜕ℒ
𝜕( 𝐷!	 2

#𝐴9) − 𝐷!	 	""
# 𝜕ℒ
𝜕W 𝐷!	 	""

# 𝐴9X
															(51) 

 

0=

⎣
⎢
⎢
⎢
⎡k𝑖𝑒𝜑 𝐷"#

#
!
	 𝜙∗ − 𝑖𝑒𝜙∗ 𝐷"#

#
!
	 𝜙	 + 2𝑒B𝐴4	𝜙∗𝜙l

− '
B
𝐷! 2
#W−2 𝐷!	 2

#𝐴9 + 𝐷!	 ""
# X

− '
B
𝐷""
# 	W2 𝐷""

#
!
	 𝐴9 − 𝐷"#

#
!
	 𝐴4X ⎦

⎥
⎥
⎥
⎤
											(52) 

 
This is the same as the results obtained using Euler-
Lagrange, see equation (46). 
 
Using Hamiltonian equation (23d), by taking the derivative 
with respect to	𝜙, we get 

⎣
⎢
⎢
⎢
⎡
𝑖𝑒𝐴) 𝐷2#!

	 𝜙∗ 	+ 	𝑖𝑒𝐴) 𝐷"#
#

!
	 𝜙∗ +

	𝑒B𝐴)B𝜑∗ − 𝜇	𝜑∗

− 𝐷! 2
#( 𝐷2#!

	 𝜑∗ − 	𝑖𝑒∅𝜑∗) −
𝐷! ""
# k 𝐷"#

#
!
	 𝜑∗ − 	𝑖𝑒𝐴9𝜑∗l ⎦

⎥
⎥
⎥
⎤

= 0																													(53) 

 
By using (23f) the fractional equation of motion is given 
bellow 

			

⎣
⎢
⎢
⎢
⎡
−	𝑖𝑒𝐴) 𝐷2#!

	 𝜑	 − 	𝑖𝑒𝐴) 𝐷"#
#

!
	 𝜑 +	

𝑒B𝐴)B𝜑 + 𝜇	𝜑
− 𝐷! 2

#( 𝐷2#!
	 𝜑	 + 	𝑖𝑒∅𝜑) −

𝐷! ""
# k 𝐷"#

#
!
	 𝜑	 + 	𝑖𝑒𝐴9𝜑	l ⎦

⎥
⎥
⎥
⎤

= 0																												(54) 

 
 

7 Application of Fractional Calculus 
 
This section will look at how fractional calculus can be used 
to look at complex scalar fields and interacting fields. Here 
are a few examples of applications.  

• This method can also be used to calculate the 
potential energy of a fractional order energy. 
Fractional calculus is used to compute the force by 
increasing the slope of the potential energy scalar 
field by a gradient factor. Fractional derivatives are 
used to calculate the results. Potential fields, often 
called scalar fields, are used to describe well-
known forces like Newton's gravitational potential 
and the electrostatic potential. 

• Such technique can also be used to see how the 
fractional-order derivative affects the shape and 
structure of interacting field equations derived from 
order fractional complex scalar fields. 

• The approach of fractional derivatives in complex 
scalar fields as interacting fields has the advantage 
of allowing for the calculation of energy and 
distance scales. The fractional derivative method 
was also utilized to look at uncertainty relationships 
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in the relativistic realm and the necessity for many-
particle descriptions. 
 

8 Conclusions 
 

 

The Hamilton equations as well as the Hamiltonian 
formulation of complex scalar fields interacting with 
electromagnetic field systems are investigated. Fractional 
Euler-Lagrange equations and fractional Hamilton's 
equations of motion yield the same outcomes for a given 
Lagrangian density. We developed Lagrangian and  
Hamiltonic formulations for complex scalar fields 
interacting fields by using fractional derivatives from the 
Riemann-Liouville and Hamilton equations. The classical 
results (combined scalar and electromagnetic equations) are 
obtained as a special instance of the fractional formulation.  
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