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Abstract: Based on the modern time series analysis method, for single channel autoregressive moving average (ARMA) signals with
colored noise, a self-tuning weighted measurement fusion Kalman filter is presented when the model parameters and noise statistics are
unknown. By applying the recursive instrumental variable (RIV) algorithm and the Gevers-Wouters (G-W) iterative algorithm with dead
band, the local and fused estimates for the unknown model parameters and noise variances can be obtained. Then a self-tuning weighted
measurement fusion Kalman filter is obtained by substituting the fused estimates into the corresponding optimal fusion Kalman filter.
Further, applying the dynamic error system analysis (DESA) method, it is rigorously proved that the self-tuning weighted measurement
fusion Kalman filter has globally asymptotic optimality. A simulation example shows its effectiveness.
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1. Introduction

Information fusion has become one of the most popular
fields for its advantage of overcoming the inaccuracy of
single sensor. Two fusion methods were developed after
the occurrence of the information fusion theory [1]: the
centralized fusion method [2,3] and the distributed fusion
method [4-6]. The former needs to combine all the local
measurement equations into a high-dimension measure-
ment equation, according to which a centralized fusion es-
timator is obtained. This estimator has globally optimal-
ity but generates large computational burden to solve the
high-dimension equation. The latter includes the weighted
state fusion method and the weighted measurement fusion
method. The weighted state fusion estimator [7,8] is ob-
tained by weighting all local state estimators, it can fa-
cilitate fault detection more conveniently and increase the
input data rates significantly, but it is just globally subop-
timal and requires to compute the cross-covariance among
the local estimation errors. The weighted measurement fu-
sion estimator [9,10] is obtained by weighting all local
measurement equations, it may increase the computational
burden to obtain the fused measurement and the fused
measurement noise variance, however, it has asymptotical

global optimality as the centralized fusion estimator. In the
existing results, most of them are for the single-channel
system with white measurement noise [4,6,9], however,
the results for the multi-channel system [5,10] or for the
system with colored measurement noise [11] are seldom
because of their complexity.

In this paper, for the multisensor single channel
ARMA signal system with colored noise, when the model
parameters and noise variances are unknown, the local and
fused estimates of them can be obtained by the RIV algo-
rithm [12] and the Gevers-Wouters algorithm[13] . Further,
a self-tuning weighted measurement fusion Kalman filter
is obtained by substituting the fused estimates into the op-
timal weighted measurement fusion Kalman filter. Then
applying the DESA method [6,8], it is rigorously proved
that the self-tuning weighted measurement fusion Kalman
filter converges to the optimal weighted measurement fu-
sion Kalman filter.
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2. Problem Formulation

Consider a multisensor single channel ARMA signal sys-
tem with the common colored measurement noise

A(q−1)s(t) = C(q−1)e(t) (1)

yi(t) = s(t) + η(t) + vi(t), i = 1, · · · , L (2)

P (q−1)η(t) = R(q−1)ξ(t) (3)

where t is the discrete time, s(t) is the signal, yi(t) is the
measurement of the ith sensor, ξ(t) is white noise, e(t),
vi(t) and η(t) are white process noise, white measure-
ment noise and colored measurement noise, respectively.
A(q−1), C(q−1), P (q−1) and R(q−1) are stable polyno-
mials (i.e. all zeros of each polynomial lie inside the unit
circle) of backward shift operator q−1 with the following
form:

X(q−1) = 1 + x1q
−1 + · · ·+ xnxq

−nx (4)

and na > nc, np > nr.
Assumption 1. e(t), vi(t) and ξ(t) are uncorrelated

white noises with zero mean and variances σ2
e , σ

2
vi and σ2

ξ ,
respectively.

Assumption 2. The model parameters aj , cj and the
noise variance σ2

e are unknown, the parameters pj , rj and
the noise variances σ2

vi, σ
2
ξ are known.

Assumption 3. For each sensor i (i = 1, · · · , L), the
measurement data yi(t) are bounded, i.e. a realization of
the stochastic process yi(t) is bounded for t.

The problem is to find a self-tuning weighted measure-
ment fusion Kalman filter ŝs(t|t) and prove its asymptotic
optimality.

3. Optimal Weighted Measurement Fusion
Kalman Filter

3.1. The conversion of signal model into state
space model

Making e(t) = e(t− 1) and from (1), we have

A(q−1)s(t) = C(q−1)e(t) (5)

where C(q−1) = q−1 + c1q
−2 · · ·+ cncq

−nc−1. Then we
have the state space model [6] as

α(t+ 1) = Āα(t) + C̄e(t) (6)

s(t) = H1α(t) (7)

where

Ā =


−a1
−a2 Ina−1

...
−ana 0 · · · 0

 , C̄ =


1
c1
...
cna−1

 , (8)

H1 =
[
1 0 · · · 0

]

with cj = 0(j > nc).
Similarly, making ξ(t) = ξ(t− 1), another state space

model with following form can be obtained from (3):

β(t+ 1) = P̄ β(t) + R̄ξ(t) (9)

η(t) = H2β(t) (10)

where

P̄ =


−p1
−p2 Inp−1

...
−pnp 0 · · · 0

 , R̄ =


1
r1
...
rnp−1

 , (11)

H2 =
[
1 0 · · · 0

]
with rj = 0(j > nr). According to the definition of e(t)
and ξ(t), we have σ2

e = σ2
e and σ2

ξ = σ2
ξ .

Then an augmented system can be obtained from (2)
and (6) – (11) as

x(t+ 1) = Φx(t) + Γw̄(t) (12)

yi(t) = Hx(t) + vi(t) (13)

s(t) = H̄x(t) (14)

where

x(t) =

[
α(t)
β(t)

]
, w̄(t) =

[
e(t)
ξ(t)

]
, Φ =

[
Ā 0
0 P̄

]
,

Γ =

[
C̄ 0
0 R̄

]
,

H =
[
H1 H2

]
, H̄ =

[
H1 0

]
(15)

It is obvious that w̄(t) and vi(t) are uncorrelated white
noises with zero mean, and

E

{[
w̄(t)
vi(t)

]
[w̄T (k) vTj (k)]

}
=

[
Qw̄ 0
0 σ2

viδij

]
δtk,(16)

Qw̄ =

[
σ2
e 0

0 σ2
ξ

]
(17)

where E denotes the mathematical expectation, T denotes
the transpose, δtt = 1, δtk = 0(t ̸= k).

3.2. The weighted measurement fusion model

From (13), the centralized fusion measurement equation is
obtained by combining all the measurement equations as

y(0)(t) = H(0)x(t) + v(0)(t) (18)

where

y(0)(t) = [ y1(t), · · · , yL(t) ]T (19)

H(0) = [HT, · · · ,HT ]T (20)

v(0)(t) = [ v1(t), · · · , vL(t) ]T (21)
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where the fused measurement noise v(0)(t) is a white noise
with zero mean and variance matrix

R(0) =

σ2
v1 0

. . .
0 σ2

vL

 (22)

The centralized fusion measurement equation (18) can be
viewed as a measurement model for Hx(t), so it can be
rewritten as

y(0)(t) = eHx(t) + v(0)(t) (23)

with the definition eT = [1, · · · , 1 ].
Then the Gauss-Markov estimate of Hx(t) can be

obtained by applying the weighted least squares (WLS)
method to (23):

y(t) = (eTR(0)−1e)−1eTR(0)−1y(0)(t) (24)

From (19), (24) and Assumption 3, it yields that a realiza-
tion of the stochastic process y(t) is bounded for t. Thus,
the weighted measurement fusion equation is given by

y(t) = Hx(t) + v̄(t) (25)

From (18), (24) and (25), it yields that

v̄(t) = (eTR(0)−1e)−1eTR(0)−1v(0)(t) (26)

with the noise variance

σ2
v̄ = (eTR(0)−1e)−1 (27)

3.3. The optimal weighted measurement fusion
Kalman filter

From (12), (15) and (25), we have

Ā(q−1)y(t) = B̄(q−1)w̄(t) + Ā(q−1)v̄(t) (28)

where

Ā(q−1) = A(q−1)P (q−1) (29)

B̄(q−1) = [C̄(q−1), R̄(q−1)]q−1, C̄(q−1) (30)
= C(q−1)P (q−1), R̄(q−1) = A(q−1)R(q−1)

with ā0 = c̄0 = r̄0 = 1,nā = na+np, nc̄ = nc+np, nr̄ =
na + nr.

Thus the ARMA innovation model is obtained as

Ā(q−1)y(t) = D(q−1)ε(t) (31)

where D(q−1) = 1 + d1q
−1 + · · · + dnd

q−nd(nd = nā)
is a stable polynomial, and innovation process ε(t) ∈ R is
white noise with zero mean and variance σ2

ε .

D(q−1)ε(t) = B̄(q−1)w̄(t) + Ā(q−1)v̄(t) (32)

D(q−1) and σ2
ε can be obtained by Gevers-Wouters itera-

tive algorithm [13].

Lemma 1 [14]. For the state space model (12) and
(25), the steady-state optimal weighted measurement fu-
sion Kalman filter is given by

x̂(t|t) = Ψf x̂(t− 1|t− 1) +Kfy(t) (33)

Ψf = [Inā −KfH]Φ (34)

where Ψf is a stable matrix. The filter gain Kf is given as

Kf =


H
HΦ
...
HΦnd−1


−1 

1− σ2
v̄/σ

2
ε

m1

...
mnd−1

 (35)

where the mj can recursively be computed as

mj = −ā1mj−1−· · ·−ānd
mj−nd

+dj , j = 1, · · · , nd(36)

with mj = 0(j < 0),m0 = 1.
Theorem 1. For the multisensor single channel

ARMA signal with colored noise, the steady-state optimal
weighted measurement fusion Kalman signal filter is given
by

ŝ(t|t) = H̄x̂(t|t) (37)

Proof. Making the projection to (14) directly yields (37).
The proof is completed.

4. Estimates of the Unknown Model
Parameters and Noise Variance

4.1. The estimate of A(q−1) based on the RIV
algorithm

Introduce a new measurement

zi(t) = P (q−1)yi(t) (38)

From (1), (2) and (3), we have

A(q−1)zi(t) = C̄(q−1)e(t)+R̄(q−1)ξ(t)+Ā(q−1)vi(t)(39)

where Ā(q−1), C̄(q−1) and R̄(q−1) are defined in (29) and
(30).

Hence for the ith sensor, we have the corresponding
least squares (LS) structure as

zi(t) = φT
i (t)θ + hi(t) (40)

φi(t) = [−zi(t− 1), · · · ,−zi(t− na) ]
T (41)

θ = [a1, · · · , ana ]
T (42)

hi(t) = e(t) + c̄1e(t − 1) + · · · + c̄nc̄e(t − nc̄) + ξ(t) +
r̄1ξ(t− 1) + · · ·+ r̄nr̄ξ(t− nr̄)
+ vi(t) + ā1vi(t − 1) + · · · + ānāvi(t − nā) Applying
the recursive instrument variable (RIV) algorithm [12], the
local estimates θ̂i(t) of θ are obtained and they converge
to the true value with probability one, i.e.

θ̂i(t) → θ, as t → ∞, w.p.1, i = 1, · · · , L (43)
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Then the fused estimate θ̂f (t) of θ is defined as

θ̂f (t) =
1

L

L∑
i=1

θ̂i(t) (44)

So it is obvious that θ̂f (t) is also strongly consistent, i.e.

θ̂f (t) → θ, as t → ∞, w.p.1 (45)

Hence, the strongly consistent fused estimates
âjf (t)(j = 1, · · · , na) are obtained, i.e. Â(q−1) is
obtained. Then substituting âjf (t) into (29) and (30),
ˆ̄aj(t)(j = 1, · · · , nā) and ˆ̄rj(t)(j = 1, · · · , nr̄) are
obtained, i.e. ˆ̄A(q−1) and ˆ̄R(q−1) are obtained.

4.2. The estimates of C(q−1) and σ2
e based on

the Gevers-Wouters algorithm with dead band

From (38), (39) and (4.1) we have

hi(t) = Ā(q−1)yi(t) (46)

It is clearly that Ā(q−1) is a stable polynomials of q−1,
yi(t) is a stationary stochastic process, so it yields that
ri(t) is also a stationary stochastic process with correla-
tion function as

Rhi(k) = E[hi(t)hi(t− k)], k = 0, 1, · · · , nā (47)

with a cut-off as lag nā. At time t, the estimate of the mea-
surement process hi(t) is defined as

ĥi(t) =
ˆ̄A(q−1)yi(t) (48)

then the on-line sample estimate of Rhi(k) is defined as

R̂t
hi(k) =

1

t

t∑
α=1

ĥi(α)ĥi(α− k) (49)

which has the recursive formula

R̂t
hi(k) = R̂t−1

hi (k) +
1

t
[ĥi(t)ĥi(t− k)− R̂t−1

hi (k)], (50)

t = 2, 3 · · ·

with the initial value R̂1
hi(k) = ĥi(1)ĥi(1− k).

Defining m(t) = C̄(q−1)e(t), then its correlation
function Rm(k) = E[m(t)m(t− k)] has the formula as

Rm(k) = σ2
e

nc̄∑
j=k

c̄j c̄j−k, k = 0, 1, · · · , nc̄ (51)

Computing the correlation function of the two sides of
(4.1), we have that

Rm(k) = Rhi(k)− σ2
ξ

nr̄∑
j=k

r̄j r̄j−k (52)

−σ2
vi

nā∑
j=k

āj āj−k, k = 0, 1, · · · , nc̄

Substituting ˆ̄aj(t), ˆ̄rj(t) and the sample estimates R̂t
hi(k)

into (52), the local estimates R̂mi(k) of Rm(k) are ob-
tained. Applying Gevers-Wouters algorithm with dead
band, the local on-line estimates ˆ̄cji(t), σ̂2

ei(t) at time t are
obtained. Then the local estimates ĉji(t) of cj can be ob-
tained by solving the linear equation (30). Further, the in-
formation fusion estimates ˆ̄cjf (t), ĉjf (t), σ̂2

ef (t) based on
all sensors are defined as

ˆ̄cjf (t) =
1

L

L∑
i=1

ˆ̄cji(t), ĉjf (t) (53)

=
1

L

L∑
i=1

ĉji(t), σ̂
2
ef (t)

=
1

L

L∑
i=1

σ̂2
ei(t), j = 1, · · · , nc̄

with ĉjf (t) = 0(j > nc).
Remark: The Gevers-Wouters algorithm with dead

band means running Gevers-Wouters algorithm every T
steps, where T is a domain selected ahead. Compared
with running Gevers-Wouters algorithm every time, this
method can reduce the computational burden.

5. Self-tuning Weighted Measurement Fusion
Kalman Filter

For the multisensor single channel ARMA signal (1)-(3)
with Assumptions 1-3, the self-tuning weighted measure-
ment fusion Kalman signal filter ŝs(t|t) can be realized by
the following four parts:

Step 1. From (44), the fused estimates âjf (t) at time
t can be obtained by taking the average of all local esti-
mates, which are obtained by applying the RIV algorithm.
Then from (29) and (30), the estimates ˆ̄aj(t) and ˆ̄rj(t) are
obtained.

Step 2. From (48) and (50), the estimates ĥi(t) and
the sampled correlation function estimates R̂t

hi(k) are ob-
tained. Applying these estimates and the Gevers-Wouters
algorithm to (52) and (51) respectively, the local estimates
ˆ̄cji(t) and σ̂2

ei(t) at time t are obtained. Then the local es-
timates ĉji(t) can be obtained by solving linear equation
(30). Further, the fused estimates ˆ̄cjf (t), ĉjf (t) and σ̂2

ef (t)
are obtained by taking the average of all corresponding lo-
cal estimates.

Step 3. Substituting all the fused estimates obtained in
step 1 and 2 into (8), (11), (15) and (16), Φ̂(t), Γ̂ (t), Q̂w̄(t)

are obtained. Then from (30), ˆ̄B(q−1) are obtained. Fur-
ther, from (32), based on the Gevers-Wouters iterative al-
gorithm with dead band, the estimates d̂j(t) and σ̂2

ε(t) of
the ARMA innovation model parameters and noise vari-
ance are obtained.

Step 4. Applying (33)-(37), the self-tuning weighted
measurement fusion Kalman signal filter is given by

ŝs(t|t) = H̄x̂s(t|t) (54)

c⃝ 2012 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 6, No. 1, 1–7 (2012) / www.naturalspublishing.com/amis/ 5

x̂s(t|t) = Ψ̂f (t)x̂
s(t− 1|t− 1) + K̂f (t)y(t) (55)

Ψ̂f (t) = [Inā − K̂f (t)H]Φ̂(t) (56)

K̂f (t) =


H

HΦ̂(t)
...
HΦ̂(t)nd−1


−1 

1− σ2
v̄(t)/σ̂

2
ε(t)

m̂1(t)
...
m̂nd−1(t)

 (57)

m̂j(t) = −ˆ̄a1(t)m̂j−1(t)−· · ·−ˆ̄and
(t)m̂j−nd

(t)+d̂j(t)(58)

with m̂j(t) = 0(j < 0), m̂0(t) = 1.

6. Convergence Analysis

Theorem 2. For the multisensor system (1)-(3) with As-
sumptions 1-3, we have âjf (t) → aj , ˆ̄aj(t) → āj , ˆ̄rj(t)
→ r̄j , ˆ̄cjf (t) → c̄j , ĉjf (t) → cj , σ̂

2
ef (t) → σ2

e ,
as t → ∞, i.a.r.

d̂j(t) → dj , σ̂
2
ε(t) → σ2

ε , as t → ∞, i.a.r. (59)

Φ̂(t) → Φ, Γ̂ (t) → Γ, K̂f (t) → (60)

Kf , Ψ̂f (t) → Ψf , as t → ∞, i.a.r.

where ”i.a.r.” denotes ”in a realization”.
Proof. From (42) and (45), we have âjf (t) → aj ,

as t → ∞, i.a.r. Then from (29) and (30), ˆ̄aj(t) →
āj , ˆ̄rj(t) → r̄j . From (46), (48) and Assumption 3 we
have ĥi(t) → hi(t), then R̂t

hi(k) → Rhi(k). From
(51), (52) and the existence theorem of implicit func-
tion, it follows that in a sufficiently small neighbor-
hood of the elements of Rhi(k), c̄j and σ2

e are the
continuous functions of Rhi(k), āj , r̄j and σ2

ξ , σ
2
vi. Sub-

stituting R̂t
hi(k), ˆ̄aj(t), ˆ̄rj(t) into (51) and (52), apply-

ing the Gevers-Wouters algorithm to (51) will yield
ˆ̄cji(t), σ̂

2
ei(t), then by solving the linear equation (30),

ĉji(t) are obtained. From (53), the fused estimates
ˆ̄cjf (t), ĉjf (t), σ̂

2
ef (t) are obtained. Therefore, according

to the continuity of function, it follows that ˆ̄cjf (t) →
c̄j ,ĉjf (t) → cj , σ̂2

ef (t) → σ2
e . Further from (30) and (32),

d̂j(t) → dj , σ̂
2
ε(t) → σ2

ε . From (15) and Lemma 1, it can
be easily obtained that Φ̂(t) → Φ, Γ̂ (t) → Γ, K̂f (t) →
Kf , Ψ̂f (t) → Ψf . The proof is completed.

Theorem 3. For the multisensor single channel ARMA
signal (1) - (3) with Assumptions 1-3, the self-tuning
weighted measurement fusion Kalman signal filter ŝs(t|t)
converges to the steady-state optimal weighted measure-
ment fusion Kalman signal filter ŝ(t|t) in a realization

[ŝs(t|t)− ŝ(t|t)] → 0, as t → ∞, i.a.r. (61)

Proof. Setting K̂f (t) = Kf +∆K̂f (t), Ψ̂f (t) = Ψf +

∆Ψ̂f (t), from (60) we have that ∆K̂f (t) → 0, ∆Ψ̂f (t) →

0. Denoting δ(t) = x̂s(t|t)− x̂(t|t), subtracting (33) from
(55) yields a dynamic error system

δ(t) = Ψfδ(t− 1) + u(t) (62)

u(t) = ∆Ψ̂f (t)x̂
s(t− 1|t− 1) +∆K̂f (t)y(t) (63)

Applying (60) and the boundness of y(t) yields that
K̂f (t)y(t) is bounded. Noting that Ψ̂f (t) → Ψf , and
Ψf is a stable matrix, from (55) it yields that x̂s(t|t) is
bounded in a realization [6,8]. Hence from (63), it yields
that u(t) → 0 based on the boundness of y(t) and x̂s(t|t).
Then from (62) we that δ(t) → 0 [6,8]. Further, from (37)
and (54), it can be easily obtained that (61) holds. The
proof is completed.

7. Simulation Example

Consider a 3-sensor single channel ARMA signal system
with colored measurement noise

(1 + a1q
−1 + a2q

−2)s(t) = (1 + c1q
−1)e(t) (64)

yi(t) = s(t) + η(t) + vi(t), i = 1, 2, 3 (65)

(1 + p1q
−1 + p2q

−2)η(t) = (1 + r1q
−1)ξ(t) (66)

where yi(t) is the measurement of the ith sensor,
e(t), vi(t), ξ(t) are independent Gaussian white noises
with zero mean and variances σ2

e , σ
2
vi, σ

2
ξ , respectively. In

simulation we take a1 = −1.7, a2 = 0.72, c1 = 0.4,
p1 = 1, p2 = 0.21, r1 = −0.2, σ2

w = 2,σ2
v1 = 0.2,

σ2
v2 = 0.4, σ2

v3 = 0.6, σ2
ξ = 0.3.

The problem is to find the self-tuning weighted mea-
surement fusion Kalman signal filter ŝs(t|t), when the
model parameters a1, a2, c1 and noise variance σ2

e are un-
known.

The simulation results are shown in Figure 1-6.
Applying the RIV algorithm, the estimates of aj are

obtained in Figure 1 and Figure 2. Then applying the
Gevers-Wouters algorithm with the dead band Td = 400,
the estimates of c1 and σ2

e are obtained in Figure 3. The
dotted curves denote the local estimates, the solid curves
denote the fused estimates, the straight lines denote the
true values in Figure 1 - Figure 3. The curves of the signal
s(t) and measurement yi(t) are given in Figure 4. Apply-
ing the optimal and the self-tuning weighted measurement
fusion Kalman filtering algorithm, we can obtain the op-
timal and self-tuning filters ŝ(t|t) and ŝs(t|t) in Figure 5.
Compared Figure 4 with Figure 5, it is obvious that the
accuracies of the optimal and self-tuning fusers are higher
than that of local measurements. The error curve between
the optimal and self-tuning fused Kalman signal filters is
shown in Figure 6, from which we see that the self-tuning
fused filter converges to the optimal fused filter, i.e. the
error converges to zero.
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1 1i f
ˆ ˆa ( t ),a ( t )

Figure 1 The local and fused estimates of a1
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Figure 2 The local and fused estimates of a2
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Figure 3 The local and fused estimates of c1 and σ2
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Figure 4 The signal s(t) and the measurement yi(t)
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Figure 5 The signal s(t), the optimal fused filter ŝ(t|t) and the
self-tuning fused filter ŝs(t|t)

Figure 6 The error curves between the self-tuning and optimal
weighted measurement fusion Kalman signal filters

8. Conclusion

For the multisensor single ARMA signal system with col-
ored measurement noise, when the model parameters and
the noise variance are unknown, the local and fused esti-
mates of the model parameters and noise variances can be
obtained by the RIV algorithm and the Gevers-Wouters al-
gorithm with dead band. Then a self-tuning weighted mea-
surement fusion Kalman filter is presented by applying the
fused estimates as the true values. Further, applying the
DESA method, it is rigorously proved that the self-tuning
weighted measurement fusion Kalman filter converges to
the corresponding optimal fusion Kalman filter in a real-
ization, i.e. it has asymptotical optimality.
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