

Journal of Radiation and Nuclear Applications An International Journal

Radon Concentrations and Annual Effective Dose in Cigarette Samples (Domestic and Importer) At the Iraqi Markets

Anes Mohammed Salih Qasim, Hayder Hamza Hussain and Ali Abid Abojassim*

Department of Physics, Faculty of Science, University of Kufa, Al-Najaf, Kufa, box (221) Najaf, Iraq.

Received: 5 Feb. 2018, Revised: 22 Apr. 2018, Accepted: 29 Apr. 2018 Published online: 1 May 2018

Abstract: In present work, radon gas concentrations were measured for (48) samples of cigarette that it was collected from market of Iraq, using plastic nuclear track detectors CR-39. The annual effective dose from use of these cigarette were determined. The results show that, Radon concentration ranges from (0.868 to 624.576) Bq/m³ with average value (123.375) Bq/m³. The radon concentrations emerged from most investigated samples was significantly higher than the background level.

Keywords: Radon gas, tobacco leave, cigarette, CR-39 detector and Iraqi markets.

1 Introduction

Tobacco is an agricultural product processed from fresh leaves of plants in the genus Nicotania. It contains minute quantities of radioactive isotopes that pose a radiation exposure hazard to those who intentionally or passively inhale it. Smokers inhale the Polonium (a radioactive component of Tobacco), which settles in "hot spots" in the lungs and can cause cancer. This is because, ²¹⁰Po emits alpha particles upon its decay and this radiation has a very destructive effect on tissues virtually all of its very high ionizing because is expended within the tissue. Due to its double energy positive charge, limited range in tissue and enormously high energy, an alpha particle can produce huge numbers of ion pairs in substances with which it interacts [1]. Tobacco fields and plants also have the higher concentration of Uranium and consequently large contents of ²¹⁰Po and ²¹⁰Pb belonging to Uranium and radium decay series. These radio-nuclides have long association with tobacco plants. ²¹⁰Pb and ²¹⁰Po, decay products of the Uranium series get dissolved in water and are first transported to plants and subsequently to the human being. Also, the uptake of radionuclides into roots from the soils and phosphate fertilizers along with direct deposition of ²¹⁰Pb by rainfall represents the principal mechanism of incorporation of ²¹⁰Pb and ²¹⁰Po into the tobacco plants. This phenomenon may cause high intake of Uranium and its radioactive decay products leading to harmful effects in human being [2].Radon-222 is one of many decay products of Uranium. Uranium occurs naturally in soil but in much

Higher, concentration in phosphate rock from which fertilizer is made. There are two pathways leading from

Uranium to Polonium in tobacco: through the air and through the roots [3]. The plants roots are naturally related to microorganisms, and these associations can have direct or indirect impacts on the mobility, availability and acquisition of elements by plants [4-7]. The radiological effect of the uses of fertilizers in soil is due to the internal irradiation of the respiratory organ by the alpha particles, short lived radon-thoron progeny and the external irradiation of the body by gamma rays emitted from the radionuclides. Radon is carcinogenic to humans and responsible for main natural radiation exposure to human being [8-11].Many studies worldwide have measured the radon concentrations in tobacco cigarette samples to ascertain the levels of contamination [12-15]. The aim of the present work is to measure the radon gas levels in different types of cigarette are available in Iraq markets using nuclear track CR-39 detector.

2 Experimental Section

2.1 Collection of the Samples

Forty eight types of cigarette (domestic and importer) are collected from market of Iraq. We divided these samples into 13 groups according to the producing country as shown in Table (1).

Table 1: Show cigarette Samples according to the producing country.

No.	Grou	Samples Names	Sampl	Origin
	р		es	
			Code	
1		Nicepen	T1	UAE
2		Place	T2	UAE
3		Pylon	T3	UAE
4		Veteran	T4	UAE
5		MOND	T5	UAE
6		AFFIR	T6	UAE
7		BON	T7	UAE
8	G1	BOSS	T8	UAE
9	01	CARAVAN	T9	UAE
10		HATAMEN	T10	UAE
11		MURAD	T11	UAE
12		DZIRE	T12	UAE
13		MASTER	T13	UAE
14		BENTLY	T14	HKJ
15	G2	VICEROY MIKADO	T15 T16	HKJ HKJ
16	62	BLOWRED	T10 T17	HKJ
17		FIVE STARS	T17 T18	
18			-	HKJ HKJ
19 20		ROYAL FIVE KENT	T19 T20	GERMANY
20	G3	L8M	T20	GERMANY
21	05	ELEGANCE	T21 T22	GERMANY
22		ASHFORD	T23	GERMANY
23		GOLDSEAL	T24	GERMANY
25		FISHER	T25	USA
26	G4	MIDLOND	T26	USA
27	0.	GHAMDAN	T27	USA
28		MIAMI	T28	USA
29	G5	ASPEN	T29	ENGLAND
30		BUSINESS	T30	ENGLAND
31		MAIWAND5	T31	ENGLAND
32		ESSE	T32	KOREA
33	G6	PINE	T33	KOREA
34		GLORY	T34	KOREA
35	G7	SUMER	T35	IRAQ
36		IRAQ	T36	IRAQ
37	G8	BRILIANT	T37	FRANCE
38		PLATIEN	T38	FRANCE
39	G9	NAPOLI(SIV)	T39	ITALY
40		NAPOLI(RED)	T40	ITALY
41	G10	MM	T41	BULGARIA
42		PRESTTEGE	T42	BULGARIA
43	G11	CRAVEN	T43	TURKEY
44		LUCKYSTRIKE	T44	TURKEY
45	G12	GOULOISES	T45	EUROPEAN
46		OMEGA	T46	EUROPEAN
47	G13	ROSEMAN	T47	EGYPT
48		GOLDN (N)	T48	EGYPT

2.2 Preparation of the Samples

Tobacco of cigarette samples have been dried, ground homogenization and sieved. The samples are dried before radon concentrations measurement for (2-4) days at a temperature of (42-44) °C to avoid any humidity adsorption, and to maintain the actual weight. The dried tobacco was having been ground and milled using a blender to obtain equal size particles. Later, equal weight (8) g of each sample under study (using a high sensitive digital weighting balance with a percent of $\pm 0.01\%$). Then the samples have been kept in the containers. Then have been put in to the one container technique. A CR-39 SSNTD with a thickness of (1) mm and a density of (1.31) g.cm⁻³ has been used in this study. The containers are covered with a thin membrane, which separates radon from dust and other types of radiation, by permitting diffusion of radon into the container. We coded each sample into a specific code in order to distinguish between it. The containers have been left at room temperature for (48) days exposure time.

2.3 Sample Container

These containers of 6 cm mouth diameter, (4) cm bottom diameter and (7) cm height are made of polypropylene, to enhance electrical conductivity and to avoid the problem of electrostatic charge and is an impermeable with a tight container to prevent the escape of radiogenic gases (Radon). The SSNTD (CR-39) is cut into (2) cm² piece. A piece of (CR-39) detector was fixed at the top of the container shown in Figure (1).

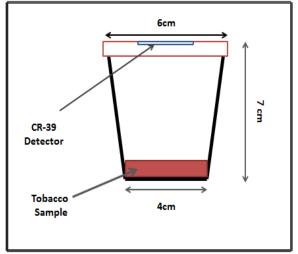


Fig.1: Sample container.

2.4 Chemical Etching

CR-39 detector is etchedof sodium hydroxide (NaOH) solution at (70) °C temperature for (5) hours, solution of (6.25) normality which is prepared by dissolving (100) gm of (NaOH) in (0.4) liter of distilled water [16]. After preparing the etching solution, it is kept for (24) hours until it becomes homogeneous. During this time the detectors are carefully removed from the plastic containers and as possible, taking care of keeping the surface of the detectors clean from scratches. At last the detectors have been

removed from the solution and extensively washed by distilled water, and dried by soft tissue papers.

2.5 Track Observation and Counting

The TASLIMAGE system is designed for both easy use in routine neutron and radon dosimetry and as a more flexible research analysis system shown in Figure (2).

The unique feature of the system is our TASLIMAGE software, developed by TASL. The software scans the plastic at a higher magnification than many other etched track readers, providing a better quality of track image for processing and better discrimination between tracks and background features.

The key features of TASLIMAGE are:

- Fully automatic scanning of dot-codes and etched tracks.
- Fully automatic focus by software.
- Highly sophisticated image analysis techniques to discriminate between etched tracks and background features.
- Automatic background assessment of each detector.
- Complete detector readout takes between 30 and 60 seconds depending on user selectable options.
- The scan data is automatically converted to dose, and the results are displayed immediately in the record-keeping database provided as part of the **TASLIMAGE** software. The data can also be exported to other programs such as Excel [17]

Fig.2: TASL*IMAGE* System. 2.6 Calculations

The track density (ρ) recorded on the detector, attenuation factor of ²²²Rn, (k) is the calibration coefficient of measuring system in terms of (0.0324 Track cm⁻² day⁻¹/Bq.m⁻³)[11] and the exposure time (t) were applied to determine the²²²Rn concentration (C) from the relation [18-19]:

$$C = \frac{\rho}{K t} \tag{1}$$

The annual effective dose equivalent, D (in units of mSv.y⁻¹)is computed from the integrated ²²²Rn concentration using the following formula [18-19]:

$$\boldsymbol{D} = \frac{0.4 \times C \times 3.88 \times 7000}{3700 \times 170} \tag{2}$$

Where C is the integrated ²²²Rn concentration in Bq/m, 0.4 is the equilibrium factor, 3.88 mSv.WL/M is the ICRP conversion factor [20].

3 Results and Discussion

Radon concentrations ranges from (0.868 to 624.576) Bq/m^3 with average value (123.3754) Bq/m^3 .Whereas highest value has been recorded in sample (T9) which is made in UAE, while lowest value has been recorded in (T8) which is made in UAE as shown in Table (2) and in Figure (3). Also from Table (2), it can be noticed that, the annual effective dose (D) in all samples of tobacco were varied from (0.01mSv /y) to (10.79mSv/y) with an average value of (2.13mSv/y).

Table (3) and Figure (4) show average radon concentrations in tobacco samples for (13) groups, the highest value of radon concentration has been found in G2 which is made in HKJ (Hashemite Kingdom of Jordan) and lowest value of radon concentration has been found in G7 which is made Iraq.

In all the for 48 samples different cigarette in Iraqi market surveyed in the present work, the annual effective dose is less than even the lower limit of the recommended range (3-10 mSv/y) (ICRP, 1993) [21]. Finally, we can say that all the results obtained in this study are less than the results obtained by some researchers earlier study conducted on some of the samples tobaccos used in the Iraqi mark and other countries [22].

4 Conclusions

The results of this study indicate the existence of a wide range of variations in radon contents of cigarette consumed in the Iraqi markets. Based on the results obtained from this study the concentrations of ²²²Rn in 48 cigarette samples showed that the highest value of radon concentration appears in HKJ (Hashemite Kingdom of Jordan) cigarette and lowest value of radon concentration appears in Iraqi tobaccos. Annual effective doses due to radon from the inhalation of various cigarette smokers are less than even the lower limit of the recommended by ICRP1993.

Acknowledgement

I would like to knowledge all those contributed in declaring this issue. Special thanks to Prof. Dr. Atef El-Taher and Prof. Dr. Laith Najamfor the help in this work.

No.	Groups	rations and annual Samples Codes	$C (Bq/m^3)$	D (mSv/y)
1	Groups	T1	32.99	0.57
2		T2	25.17	0.43
3		T3	140.63	2.43
4	G1	T3	28.19	0.49
5		T5	42.53	0.49
6		T5	118.14	2.04
7		10 T7	118.14	3.27
8		T8	0.87	0.01
<u> </u>		18 T9	624.58	10.79
9 10		T10	143.26	2.47
10		T10		1.24
			72.05	
12		T12	23.44	0.40
13		T13	135.42	2.34
14		T14	290.80	5.02
15	G2	T15	609.38	10.53
16		T16	12.15	0.21
17		T17	136.28	2.35
18		T18	40.80	0.70
19		T19	314.24	5.43
20		T20	206.73	3.57
21		T21	169.27	2.92
22	G3	T22	159.72	2.76
23		T23	59.90	1.03
24		T24	20.23	0.35
25		T25	175.56	3.03
26		T26	209.24	3.61
27	G4	T27	224.83	3.88
28		T28	155.38	2.68
29		T29	158.85	2.74
30	G5	T30	167.19	2.89
31		T31	46.01	0.79
32		T32	20.18	0.35
33	G6	T33	27.78	0.48
34	00	T34	41.67	0.72
35	G7	T35	24.31	0.42
36		T36	13.02	0.22
37	G8	T37	20.83	0.36
38	Uð	T38	148.44	2.56
39	G9	T39	122.02	2.11
40		T40	154.96	2.68
41	G10	T41	308.16	5.32
42	010	T42	24.31	0.42
43	G11	T43	27.24	0.47
44	011	T44	94.62	1.63
45	C12	T45	54.69	0.94
46	G12	T46	55.56	0.96
47	012	T47	50.35	0.87
48	G13	T48	0.88	0.01
Average			123.38	2.13

 Table 2: Radon concentrations and annual effective dose in cigarette samples.

187

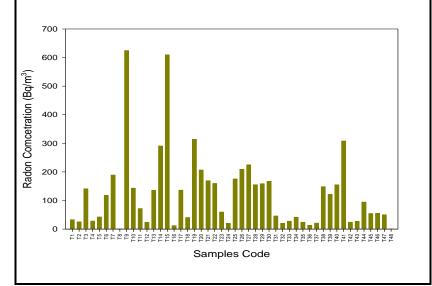


Fig. 3: Radon Concentrations of cigarette Samples.

No.	Groups	Average Radon Concentration (Bq/m ³).
1	G1	121.268
2	G2	233.940
3	G3	123.169
4	G4	191.251
5	G5	124.017
6	G6	29.873
7	G7	18.662
8	G8	84.635
9	G9	138.491
10	G10	166.232
11	G11	60.928
12	G12	55.121
13	G13	25.607

Table 3: Average radon concentration of cigarette samples in all groups.

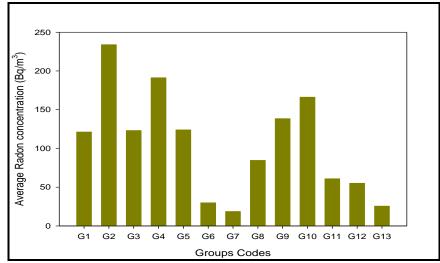


Fig. 4: Represented average radon concentrations in cigarette samples in all groups.

References

- Emmanuel, A. H., Terhemba, K. S., & Becky, A. N. Radioactivity of local tobacco and some selected brands of cigarettes. International Journal of Physical Sciences., 7(2), 205-213, (2012).
- [2] Nain, M., Gupta, M., Chauhan, R. P., Kant, K., Sonkawade, R. G., &Chakarvarti, S. K. Estimation of radioactivity in tobacco, (2010).
- [3] Karagueuzian, H. S., White, C., Sayre, J., & Norman, A. (2011). Cigarette smoke radioactivity and lung cancer risk. Nicotine & Tobacco Research, 14(1), 79-90, (2011).
- [4] A .El-Taher Determination of chromium and trace elements in El-Rubshi chromite from Eastern Desert, Egypt by neutron activation analysis. Applied radiation and isotopes., 68(9), 1864-1868(2010).
- [5] A. El-TaherElemental studies of environmental samples from Upper Egypt by neutron activation analysis PhD. thesis, Al-Azhar University, Assuit, Egypt, (2003).
- [6] Robinson, D. S.Food-biochemistry and nutritional value. Longman Scientific & Technical, (1987).
- [7]Hashem Abbas Madkour Mohamed Anwar K Abdelhalim and A. El-Taher Assessment of heavy metals concentrations resulting natural inputs in Wadi El-Gamal surface sediments, Red Sea coat. Life Science Journal., 10(4), 686-694(2013).
- [8] A El-Taher Terrestrial gamma radioactivity Levels and their corresponding extent exposure of environmental samples from Wadi El Assuity Protective area, Assuit, Upper Egypt Radiation protection dosimetry., 145(4), 405-410(2010).
- [9] A.El-Taher and J. H. Al-Zahrani, Radioactivity Measurements and Radiation Dose Assessments in Soil of Al-Qassim region, Saudi Arabia. , Indian Journal of pure and applied physics., (52), 147-154(2014).
- [10] Ielsch, G., Thieblemont, D., Labed, V., Richon, P., Tymen, G., Ferry, C., ...&Bechennec, F. Radon (222Rn) level variations on a regional scale: influence of the basement trace element (U, Th) geochemistry on radon exhalation rates. Journal of Environmental Radioactivity., 53(1), 75-90(2001).
- [11] Wiegand, J. A guideline for the evaluation of the soil radon potential based on geogenic and anthropogenic parameters. Environmental Geology., 40(8), 949-963(2001).
- [12] Hashim, A. K., Najam, L. A., & Tettey-Larbi, L. (2015). A study of radon concentration in different brands tobacco cigarette in Iraqi market, influencing factors and lung cancer risk. International Journal of Science and Technology., 5(10), (2015).
- [13] Torres-Durán, M., Ruano-Ravina, A., Parente-Lamelas, I., Leiro-Fernández, V., Abal-Arca, J., Montero-Martínez, C., ...&Guzmán-Taveras, R. Residential radon and lung cancer characteristics in never smokers. International journal of radiation biology, **91(8)**, 605-610, (2015).
- [14] Ruano-Ravina, A., Torres-Durán, M., Kelsey, K. T., Parente-Lamelas, I., Leiro-Fernández, V., Abdulkader, I., ...& Castro-Añón, O. Residential radon, EGFR mutations and ALK alterations in never-smoking lung cancer cases. European Respiratory Journal., 48(5), 1462-1470(2016).
- [15] Minina, V. I., Sinitsky, M. Y., Druzhinin, V. G., Fucic, A., Bakanova, M. L., Ryzhkova, A. V., ... &Volobaev, V. P. Chromosome aberrations in peripheral blood lymphocytes of lung cancer patients exposed to radon and air

pollution. European Journal of Cancer Prevention., **27(1)**, 6-12(2018).

- [16] Ali Abid Abojassim, Suha Hadi Kadhimand, AllawiHamedAlasadi and Abdul Amir Hashim Ali. Radon, Radium Concentrations and Radiological Parameters in Soil Samples of Amara at Maysan, Iraq. Asian Journal of Earth Sciences., **10(2)**, 44-49(2017).
- [17] TASLIMAGE Dosimetry system, Track Analysis Systems Ltd,(2015), www.tasl.co.uk.
- [18] Ghany, H. A. A. The association between indoor radon and tobacco smoke. Indoor and Built Environment., 15(3), 289-293(2006).
- [19] Abdel Ghany, H. A. Enhancement of radon exposure in smoking areas. Environmental geochemistry and health., **29(3)**, 249-255(2007).
- [20] ICRP-65. (1993). Protection against radon-222 at home and at work. ICRP Publication 65, Pergamum press, Oxford.
- [21] Farid, S. M. A Study on the Radon Concentrations in Tobacco in Jeddah, Saudi Arabia and the Associated Health Effects. Medical Journal of Islamic World Academy of Sciences., 20(3), 84-93(2012).
- [22] Hashim, A. K., Najam, L. A., &Tettey-Larbi, L. A Study of Radon Concentration in Different Brands Tobacco Cigarette in Iraqi Market, Influencing Factors and Lung Cancer Risk. International Journal of Science and Technology., 5(10), (2015).