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Abstract: Leibniz fractional (L-Fractional) derivative is used to model viscoelastic mechanical systems. Since this derivative has
important physical and mathematical meaning, it would be interesting to compare the theoretical with experimental data. Specifically
the relaxation behaviour of the Zener fractional viscoelastic model is verified by experiment. The experimental results of the viscoelastic
relaxation behaviour in a polymer mesh used for the surgicaltreatment of female urinary incontinence are used in order to check the
applicability of fractional modelling in these systems. Data from relaxation experiments are used in combination withtheoretical
analysis to prove the Zener-model fractional analysis concept.
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1 Introduction

Fractional Calculus is a novel mathematical concept with many applications in physics: particle physics, optics and
corrosion, mechanics of materials, electromagnetics, electrochemistry, hydrodynamics, quantum mechanics,rheology,
viscoelasticity etc. Especially in mechanics we have many studies that introduce fractional strain, Lazopoulos et. al[1,2]
Drapaca et al. [3], Di Paola et al. [4] , Carpinteri et al. [5], Atanackovic et al. [6], Agrawal [7], etc. There were many
attempts to introduce fractional calculus into viscoelasticity, especially from Atanackovic et. al. [8] and Mainardi et al.
[9]. To be more specific, Bagley and Torvik [10,11] and Koeller [12] introduced fractional calculus in viscoelasticity
while Atanackovic [8,13,14,15,16] and Mainardi et al. [9,17,18] have expanded the idea in many variational problems.
Of course, many other scientists have applied viscoelasticity in the frame of fractional calculus, such as: Meral et.al[19],
Muller et al. [20,21], Sabatier et al. [22], Adolfsson et al.[23]). It is also interesting to underline that many articles
concerning fractional viscoelasticity are connected to biomedical applications (Craiem et.al [24], Djorjevic et.al [25],
Doehring et.al [26], Magin et. Al [27]). Lazopoulos et al. used the Leibnitz Derivative in their work on viscoelasticity
[28]. This mathematical novelty has many advantages along withmathematical and physical meaning: The according
differential is defined and, in contrast to other fractionalderivatives, physical dimensions are not altered. In this article
the viscoelastic behaviour of the Zener model is revisited using Leibniz fractional time derivatives. Comparison of the
proposed model to experimental data is discussed. As a modelsystem, a polypropylene-filament mesh is used in the
female urinary incontinence treatment. Experimental datafrom stress-relaxation testing were reported in a previously
published work [32]. Furthermore,there is a discussion of the behaviour of theproposed model concerning its relaxation
and compared to the existing experimental data. The articlestarts with a presentation of the Leibnitz derivative, and
continues with the derivation of fractional Zener model forrelaxation. Finally the model is compared with experimental
data.
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Fig. 1: The Zener model (E1, E2, C).

2 Fractional Calculus:the Leibniz(-L)derivative.

Using the Adda [29] definition of a fractional differential and due to Lazopoulos et.al [2,31] the proposed L-fractional(in
honour of Leibniz) derivativeLaDa

x f (x) is defined by :

dα f (x) =L
a Da

x f (x)dax (1)

whereda f (x) is the fractional differential of function f(x) anddax the fractional differential of x. The Leibniz L-fractional
derivative is then defined as the ratio of the corresponding Caputo derivatives (See Lazopoulos et al.[2,31]):

L
aDa

x f (x) =
c
aDa

x f (x)
c
aDa

x f (x)
ds (2)

It is proven in Lazopoulos et al.[2,31] that among the various derivatives only the L-derivative has any geometrical or
physical meaning. Therefore,Leibniz derivative is definedby(Lazopoulos & Lazopoulos [2,30, and 31]):

L
aDa

x f (x) = (1−α).(x− a)(a−1)
∫ x

a

f
′

(s)
(x− s)a ds (3)

for the left Leibniz Fractional derivative, while for the right Leibniz fractional derivative it is defined by,

L
aDa

x f (x) = (1− a).(b− x)(a−1)
∫ b

x

f
′

(s)
(s− x)a ds. (4)

3 Theoretical Viscoelastic model.

The Zener model is a structure composed of 2 springs E1 and E2 and a dashpot C, as seen in Fig.1. This model is well
described and applied in the international literature and its solution as presented in [32] is:

σ(t) =
E1.E2

E1+E2
.ε0.(1− e(−

t
τ ))+σ0.e

(− t
τ ) (5)

whereE1 andE2 are the elastic constraints of the springs, t the time,σ(t) the relaxation stress,ε0 the initial strain and
σ(0) the stress fort = 0 andτ the time constant for which the following holds:

τ =
C

E1+E2
(6)

In Eq. (6) C is the viscosity constant of the dashpot. As far as the fractional Zener model is concerned, Leibnitz L-
Fractional model has true physical meaning since it defines adifferential and at the same time does not alter physical
dimensions. Therefore it is most suited for expressing the L-Fractional Zener model. Following the steps of Lazopoulos
et.al in fractional viscoelasticity [28] we have:

[1+
C

E1+E2

L

0
Da

t ]σt =
E2

E1+E2
[E1+CL

0Da
t ]ε(t). (7)
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As far as the relaxation behaviour of the Fractional Zener Viscoelastic model is concerned, the constant strainε(t) = ε is
considered. Then Eq. (7) becomes:

CL
0Da

t
σ(t)

ε
+(E1+E2)

σ(t)
ε

= E1E2 (8)

For the relaxation modulusy(t) = G(t) = σt
ε , the Eq.(8) above takes the form:

CL
0Da

t y(t)+ (E1+E2)y(t) = E1E2. (9)

Looking for solution of the type

y(t) =
∞

∑
k=0

yktk
, (10)

and substituting in Eq.(9), we get,

∞

∑
k=0

Cyk+1
Γ (2− a)Γ (k+2)

Γ (k+2− a)
tk +

inf

∑
k=0

(E1+E2)yktk = E1E2. (11)

Since Eq.(11) is valid for any t , it is an identity. Hence,

y1 =−
E1+E2

C
y0+

E1E2

C
. (12)

with

yk+1 =−(
E1+E2

C
)

Γ (m+2−a)
Γ (2−a)Γ (k+2)

yk, ∀ k ≥ 2. (13)

Those relations yield,

yk = (−
E1+E2

CΓ (2−a)
)k−1

k−1

∏
m=1

Γ (m+2−a)
Γ (m+2)

y1, ∀ k ≥ 2. (14)

4 Experimental procedures

The biomaterial used as a model for this study is thoroughly examined in stress-relaxation experiments which are reported
in full detail in a previous article [32]. Summarizing, a polypropylene- based commercially available mesh, used for the
treatment of urinary incontinence in females, was studied in dry isothermal conditions (37oC) and after immersion in
a ringers solution. Experimental isothermal stress-relaxation testing is carried out at a strain level ofε0 = 5%. For the
purposes of the fractional modeling process experimental stress-relaxation data of one of the specimens stored for 20 days
in a ringers solution (Case1) and one of the pristine meshes (Case 2) are used respectively. The results of the fractional
modeling are compared against those from the conventional analytical Zeners model equation.

5 Comparison of the theoretical with experimental data

The solution to the theoretical model of relaxation viscoelasticity for Zener model is given by the formula described in
Eq. (5) [32]. It is evident from paragraph 3 that the solutionhas the form:

yt =
∞

∑
k=0

yktk
. (15)

where we must find the coefficientsyk. In case of relaxation, where strain remains constant, the following occurs:

yk = (−
E1+E2

CΓ (2−a)
)k−1

k−1

∏
m=1

Γ (m+2−a)
Γ (m+2)

y1 ∀ k ≥ 2 and y1 =−
(E1+E2)

C
y0+

E1E2

C
. (16)
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Table 1: Values of constants of the Zener model in the Ringer Solutioncase.
E12(MPa) E2(MPa) C(MPa.min)
1043.38 0.22815 9742.43

Fig. 2: The stress-time diagram for case 1(Ringer Solution).

Fig. 3: The stress-time diagram for case 2 (Pristine sample).

With the help of these formulas we are going to examine two cases of relaxation viscoelasticity, as described in paragraph
4. The first case, that of Ringer Solution has the following input data: The initial deformationε0 is 5%. The diagram of the
stress-time is shown in the figure 2. In this diagram the relaxation stress-time is shown. There are the experimental data
points (Scattered points without line), the theoretical curve, which is given by Eq.5, and finally the curve which occurs
by the solution of the fractional Zener model. It is obvious from the diagram that the fitting of the fractional data is best:
Although the differences are not great, these differences are significant when pictured on the diagram. The diagram shows
a completely different picture when the fractional approximation is shown. This proves that fractional analysis givesa
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much more accurate picture of the phenomenon. On the other hand, while studying case 2 we can conclude that fractional
analysis is better. The input data is given from Table2.

Table 2: Values of constants of the Zener model in the Pristine Solution case.
E12(MPa) E2(MPa) C(MPa.min)
1235.25 0.40977 7949.81

More specifically, we can see from Figure3. From this figure we can observe that the fractional data curve gives a
much better picture of the phenomenon that the theoretical curve. It is obvious in this second case that fractional analysis
has a better performance than theoretical analysis.

6 Conclusions

Our study indicates that fractional analysis in the viscoelastic Zener model is more accurate and effective. The picture
that is presented from cases 1 and 2 is so clear that it makes uswonder whether the fractional model is accurate and not
the classical model. Is nature best described by fractionalderivatives? This is a question that could only be answered by
thorough investigation of the phenomena.
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