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Abstract: A single server queueing system is considered in which tywesyof customers arrive according to independent Poisson
processes. Customers of type 1 are of priority nature andttiex customers of type 2 are of non-priority. Type 1 custsrhave non-
preemptive priority over type 2 customers. Assuming thatise times for both types of customers have exponentiatidigion with
mean Y, we obtain explicit expressions for the transient solutionthe state probability distribution. We deduce the stestdje
joint distribution of the number of customers of type 1 andtomers of type 2 and also obtain performance measures sfshem.
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1 Introduction Miller [ 7] analysed the stationary behaviour of a priority
queue in which different type of customers arrive at a
Queueing systems with priority customers have beerservice facility and each customer has a relative priority
studied very extensively in the past. Priority queueingfor order of service. Jaiswa8] obtained the queue length
systems (queueing systems dealing with priority probability generating function for a preemptive resume
customers) arise in variety of phenomena such agriority queue with Poisson arrivals and general service
telephone switching systems, computer systemsfime distributions by using supplementary variable
communication systems and health-care systemsmethod. Jaiswal9] obtained time-dependent solution of
McMillan [1] mentions the use of priority queueing the head-of-the-line priority queue characterized by
systems in cellular mobile networks. Choi and Cha?lg [ Poisson arrivals and general service-time distributions.
provide several examples such as telephone in th&eo [10] studied preemptive priority queues witK
restaurant, subscriber line modules of telephoneclasses of customers with a preemptive repeat and a
exchanges, communication protocols and channepreemptive resume policy. Takac$1] studied priority
allocation scheme in wireless networks. The monograpifjueues in which service is rendered with privileged
of Ng and Soong3] brings out various applications of interruptions or without interruption. Changd] studied
priority queues in communication networks. The a single server queueing system with non-preemptive and
monograph of Jaiswal] provides an excellent unified preemptive-resume priorities. Vasicek13] studied
account of queueing systems under priority disciplines.preemptive priority queues with single server in which the
Cobham §] introduced M/G/1 queueing system with preempted items do not return to service and are lost.
priority assignments in waiting line problems and Madan [l4] studied a queueing system in which a
obtained expression for the average elapsed time betweghechanical service channel serves the units one by one on
the arrival in the line of a unit of a given priority and its a priority basis and is subject to occasional breakdowns.
admission to the facility for servicing. White and Christie Miller [15 obtained steady-state distributions of
[6] defined preemptive priority and studied queueingexponential single server (preemptive and nonpreemptive)
systems with preemptive priorities or with breakdown. priority queues with two classes of customers by using
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Neut's theory of matrix-geometric invariant probability Q3={(0,},2)]j=1,2,---},

vectors. Choi et al. 6] studied aM/M/1 queue with S C A

impatient customers of higher priorié/. B/randt and Brandt={(L1, Dl =12}, 05 ={(i,},2)li,j=1.2,---}.

[17] studied a two-clastM/M/1 queueing system under

preemptive resume and impatience of the prioritized ) .

customers. Drekic and Woolford 1§ studied a 3 Governing Equations

single-server preemptive priority queue with balking.

Iravani and Balcioglu19] studied three different priority We assume tha{; (0) = 0,X(0) = 0,5(0) = 0. We define

queues with impatient customers. Using matrix-geometric¢he joint probability distribution of the queueing systeyn b

method, Krishnamoorthy and Manjunat(] studied . o

priority queues generated through customer induced  P(,1.Kt) =Pr{(Xy(t),Xz(t),S(t)) = (i, ], K)},

service interruption. Aibatov2[l] considered a single

server queueing system with preemptive resume servic

discipline and unreliable server and obtained the limit

distribution of the number of customers in the system.

The above survey indicates that transient analysis of

priority queueing systems has not been studied in man);

cases. In this paper, we provide a new approach foXNa . .

obtaining the transient analysis of a non-preemptive (i) NO customer arrived up to time .

priority queueing system and also deduce the steady-state (1)) The system occupied the stde 0, 1) at some time

solution for the queueing system. u beforet, the server completgd the service(imu+ du)
The paper is organised as follows: In Section 2, we&nd N0 customer arrived i, t);

describe the model. Section 3 provides the governing, (i) The system occupied the sta®,1,2) at some

equations of the model. The transient solution is obtained'™e U beforet, the server completed the service in

in Section 4. Section 5 contains the steady-statelUsU+du)and no customer arrived ffu.t). .

distribution. Performance measures are obtained in COnsequently, we obtain the renewal type integral

Section 6. A numerical illustration is provided in Section equation ArtAt

7. Section 8 provides a conclusion. P(0,0,0,t) = e M1+42)

here(i, j,k) € Q. Using probability laws, we obtain the
ollowing cases:
Casel: Xi(t) =0,X(t) =0,5(t) =0
Since the system started at the stg@e0,0) at time
= 0, we have the following three mutually exclusive and
xhaustive events:

t
+u/ [P(1,0,1,u) +P(0,1,2, U)]e_“l“‘?)(t‘u)du,
0

2 2. Model description

. __Using the notatiorf (t)©g(t) = s f(u)g(t — u)du for the
Customers are of two types, priority and non-priority conyolution of two functionsf(t) and g(t), the above
customers. These customers arrive independently to @quation (1) can be written as

service station, priority customers arrive according to a

Poisson process with rafg and non-priority customers P(0,0,0.0)=e A1H42) 4 yp(1,0,1,1)+ PO, 120 @6 M1 H2). @Y
arrive according to a Poisson process with vgteThere

is a single server and the service time of each customeris Case2: X;(t) = 1,X(t) =0,(t) = 1

exponentially distributed with mearj;. Al arriving To be in the statg1,0,1) at timet, there are three
customers queue-up when the server is busy. We assunfgutually exclusive and exhaustive events:

that the buffer capacity is infinite. Priority customerséay (1) (0,0,0) at some timeu beforet, a priority customer
non-preemptive priority over non-priority customers in arrlveq in (u,u+du) and no arrival and no service took
service. LetS(t) be the state of the server at tiheWwe  Place in(u,t);

define (i) (2,0,1) at some timeu beforet, the service of a
. — priority customer was completed ifu,u + du) and no
Oifthe severisidle; o _ arrival and no service took place fo,t);
S(t) = | 1 ifthe server is busy with a priority customer; (iii) (1,1,2) at some timau beforet, the service of the
2 if the server is busy with a non-priority customer. ) ’

non-priority customer was completed(im u+ du) and no
Let X, (t) denote the number of priority customers in the arrival and no service took place (o,t).

system at timet and Xy(t) denote the number of Consequently, we have
non-priority customers in the system at tirneThen the
three dimensional stochastic process P(1.0.10)= P(0,0.0.04 + P(2.0. 10K+ P(L, 1 2@ AL HA2 T, 32

{(Xa(t),Xa(t),S(t)),t > 0} is a Markov process. The state
space of the process is

Q=0,UQ,UQ3UQ4UQs,

In the same way, we obtain the other cases.
Case3: Xi(t) =i,X(t)=0,5t)=1,i>2

where P(i,0,1,t) = [P(i—1,0,1,t)A1 + P(i+1,0,1,t)u

Q1 =1{(0,0,00},Q,={(i,0,1)i =1,2,---}, +P(i,1,2,t)u]©e PatAzrHlt, (3.3)
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Cased: Xi(t) =1, %(t)=j,St)=1,j>1
P(L,j,1.0) = [P(L j — 1,L0A2+ P2 |, LOu+P(L | + L 2. @~ M1 HA2 KL, (34)
Caseb: Xi(t) =i, %(t)=],St)=1i>2,j>1
P(iLj, 1.0 = [P(i, ]~ L LA+ P~ 1, LOAL +P( 41, 1. LOp+ P, +1,2, ) ©@e~ A2+ (35)
Case6: X1(t) =0,X(t) =1,9(t) =2
P0.1.2,0)— [P(0.2. 2,08+ P(L L LU+ P(0.0,0,)4g @6 M1 HA2 -t @)
Case7: X1(t) =0, X%(t) =j,St)=2,j>2
P(0,].2.0)= [P(0. + 1, 2.)p+ P(0,j ~ 1.2.)A + P(L . 1.y @~ M1 HA2 AL, @7
Case8: Xi(t) =i, X(t)=1,S(t)=2,i>1
P(i,1,2,t) = P(i—1,1,2,t)A;©e Arth2tit (3 g)
Case9: Xy(t) =i, X(t)=j,St)=2,i>1,j>2

P, j,2.t)= [P(i. ]~ L.2.)Ap+P(i — 1 j, 2.)Ag @~ A1TA2 i)t (3.9)

4 Transient solution

We denote the Laplace transformfff, j, k,t) by
P(i, ],k 8) = L[P(i, ], k,t)] :/ e ®P(i, |,k t)dt.
0

Taking Laplace transform, equations (3.1)-(3.9) yield

(6+A1+A2)P*(0.0,0,6)= 1+ u[P*(1,0.1,6) +P*(0,1.2.6)]. (4.1)

(6+A1+Ap+1)P*(1,0,1,6)=P*(0,0,0,6)A1 +P*(2,0,1,0)u+P* (1,1,2,0)u, (4.2)
(8+A1+Ap +H)P*(1,0,1,8)=P*(i—1,0,1,)A1 +P* (i +1,0,1,8)u+P*(i,1,2,0)p,i> 2, (4.3)
(0+A1+Ap +H)P*(1,1,1,0)=P*(1,j —1,1,8)Ap+P*(2,},1,0)u+P*(1,j +1,2,0)u,j > 1,  (44)

(0+A1+Ag+p)P*(i,j,1.0)=P*(i,j—1,1,0)Ap+P*(i—1,j,1,0)Ay
+P*(i+1,],1,0)u+P*(i,j+1,2,0)u,i>2,j>1, (4.5
(6+A1+Ap+1)P*(0.1,2,6)=P*(0,2,2.6)u+P*(1,1,1,6)u+P*(0.0,0,6)A;, (4.6)
(0+A1+A2 +1)P*(0.],2,8)=P*(0,j+1,2,0)u+P*(0,j —1,2,0)Ap+ P*(1.},1,0)u,j > 2, (4.7)
(0+A1 +Ap+)P*(1,1,2,0)=P*(i—1,1,2,8)A1,i > 1, (4.8)

(8421 + A0+ H)P*(i,],2,0) = P* (i, ] —1,2,0)A0+ P*(i—1,],2,0)A1,i > 1,j > 2. (4.9)

We define

0 00

GV (u,v,0) = P*(i,,1,0)ulV,
22

==

N P*(i,},2,0)u'v.
i=0]=1

G*(u,v,0) = G*(u,v, 8) + G@*(u,v, 8) + P*(0,0,0,8).

G2*(u,v,0) =

Then, we have

GWM*(1,1,0)+G@*(1,1,6)+P*(0,0,0,0) = %. (4.10)

We also define

o0 N 00 .
M o= 5 P Loni—12.6P o) = T P28 =012 ..
iZo =

Then, we get

(2)%

G(l)*(uAvA 0)= § Gi(l)*(\n G)UiAG(Z)*(u.v. 0)= § G 9)ui,
i=1 i=0

By using (4.1), (4.6) and (4.7), we get

1 *

uGY* (v, 0) — [0+ A1 +A2(1—V)|P*(0,0,0,6) + 1. (4.11)
By using (4.8) and (4.9), we get
[0+ A1+ A2(1—v) + t]GP" (v, ) = 1 G2r (v,0),i > 1.
(4.12)
Settingi = 1 in (4.12), we obtain
0+ A1+ A2(1— V) + G2 (v, 8) = G (v, 0).  (4.13)
By using (4.2) and (4.4), we get

(8 hq +Ap(1—v) + HIGY" (v.0) = 41P*(0,0,0.0) + pCSH* (v.0) + %Gf)* (v.6). (4.14)

By using (4.3) and (4.5), we get

[6+41 +2p(1—)+ w6 () = 2161 (v.0) + pe( Py (v 0)+ %efz)*w. 0).i>2 (415
By using (4.12), we get
(84 A (L) + Ap(1—v) + G (U, 0) = (B4 Mg + dp(L—) + HIGE)" (). (4.16)

From (4.16), we obtain

[0+ A1+ A2(1—V) + G2 (v, )

G@*(u,v,0) = 41

WvO) = - nav+g

By using (4.14) and (4.15), we get

{9+/\1(1—u)+/\2(1—v)+u <17 %)} GW*(u,v,8) = A,uP*(0,0,0,8)
+%G(2>*(u,v, 6)— [uG(ll)*(v. 0)+ %ng)*(v. o). (4.18)
From (4.11), we get
%Géz)*(v.e)we(ll)*(v,s): [0+ 2+ dp(1—v)+ 1] D" (v6)

+[0+A1+Ap(1—v)| P*(0,0,0,6) 1. (419)

Substituting (4.19) into (4.18), we get
[9+)\1(1—u)+)\2(1—v)+u (17 é)} Wy, 9):Alup*<voAer)+%G(Z)*m.v. 0)

S0+ Ag + A+ 1] G2 (18) — [6:+ Aq +An(1-v)] P*(0,0,0.6) + 1. (4.20)
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Substituting (4.17) into (4.20), we get
{9+/\1(1—u)+/\2(1—v)+u (17 %)} cW*(u,v,0)=

w10+ 21 + A1)+ e (v 6)
v

[6+A1(1—u)+A2(1—Vv)+ 4]

— [0+ A+ A1)+ 4] Géz)*(v. 6)— [8+A1(1—u) +Ap(1—v)] P*(0,0,0,6) + 1. (4.21)

From (4.21), we get

NGY*(u,v, 0)

1) _
cY (uv,08) = DGT(U,V’Q)’

where

NGW*(U,v,8) = 1— {8+ A (1—u) + Ap(1—V)}P*(0,0,0,0)

1
+{9+/\1+/\2(1—v)+u){%

_ (2)*
A0+ AV + 1] 1} G (6)

(4.22)

DGW* (U,v,8) = 8+ A1 (1—U) + Ap(1—V) + 1 (17 %) . (4.23)

The functionG(M*(u,v,0) converges when Ré > 0,
lu < 1 and |v] < 1. So NGW*(u,v,8) must vanish
whereveDG(Y*(u,v, 8) vanishes in the regio® defined
by Ref > 0, |u| < 1 and|v| < 1. As a quadratic iru, the
denominatoDGM*(u,v, 8) of (4.21) has two roots

0+ A1 +A2(L—V)+ H—\/[04+A1 +Ap(1—V) + )2 —4Aq
up(v) = o R

0+ A1 +A2(1—V) + H+1/[0+A1 +A2(1—V) + p]2 —4A
- 1+42 V[0+A1+22 | 1 (425

up(V) 2y

(4.24)

These roots satisfy the following conditions

lu (V)| < |uz(V)[, (4.26)
O+A1+A(1—
(V) + up(v) = ST AL A= U, o0
2A1
uz(V)uz(v) = iR (4.28)
1
6+A1(1-u)+Ax(1-v)+u (1— %) = Lul (u—ug(v))(up(v) —u), (4.29)
0+ A(1— (V) +Aa(l—V)+u=—FH (430
uz(v)

When|u| =1, |v| < 1 and Ref > 0, we have

AU+ | A+ < |84+ A1+ Ax(1— V) + Y

=[[0+ A1+ A2(1—V) + p]u]. (4.31)
Consequently, by Rouche’s theoreBGV*(u,v,8) has
only one zero in the regio®. Since|ui(V)| < |u2(V)|,
that zero isuy(v). Hence NGM*(uy(v),v,0) = 0. This
leads to the equation

1—{0+A1(1—ug (V) +A2(L—V)}P*(0,0,0,6)
+{9+)\1+/\2(17V)+“){% [9+/\1(1—U1(v)1)+/\z(17v)+u] 71}682)*(“9):0' s

Using (4.30) in (4.32) and simplifying, we get

V[u {1 - Ul(V)} P* (05 07 07 6) - Ul(V)]
Ul(V){e + A1+ )\2(1— V) + IJ} (Ul(V) — V) '
(4.33)

Gy (v.6) =

The functionng)*(v, @) converges when Ré > 0 and
|v| < 1. As before, by invoking Rouche’s theorem, we get

p{l-u(v1)}P*(0,0,0,8) —uy(v1) =0,  (4.34)
wherev; is a root of the equation
up(v) —v=0 (4.35)
such thatvi| < 1. Simplifying (4.35), we get
AL+ AV — (B + A1+ Ao+ u)v+u=0.  (4.36)

Solving (4.36), we get

v 9Tt dat = V(04 M+ Ag+ p)2 —4(As + Ag)
-

2(A1+A2) '
(4.37)
Substitutingv = v; in (4.24), we get
Ul(Vl) = V1. (4.38)

Equation (4.38) agrees with the fact thatis a root of
u(v) = v. From (4.34), we get

* _ Vi
P*(0,0,0,0) = - (4.39)
Consequently, (4.33) becomes
GS)Z)*("’ o= {9+)\1+/\2(1“—vv)+ Hug(Vvy (vjlzvzllf(y) P*(0,0,0,6). (440
From (4.24), we get
A {9+A1+A2+u7(z/\lvl+Z\2/)vi(v\/i[evi>h+A2(17v)+“]2,4A1u}' (@
W) -v= 2v—vi){(M1 +Ap)ws — 1} @42

V1{9+/\1+)\2+u*(2/\1+)\2)v+ \/m} 7
Consequently, we obtain

up (V) —vq
up(v)—v

vi-—u(v)
uv-v

28 {9+)\1 A+~ (20 +Ap)V+ 1/ [B+Ag +Ap(1—v) + )2 —4/\1u}
= - (443
{H—=(A1+A2)wg H{O+A1 +Ap+ 1 —(2A1vy +ApV) + \/[9+)\1+)\2(1—v)+u]2—4)\1u)

Substituting (4.43) in (4.40), we obtain

8 0 s i g 000 w49
where
X=0+A1+A2(1—V)+ U, (4.45)
y =X+ /X2 — 4A1 . (4.46)
From (4.39), we get
P*(0,0,0,8) = %nivg“. (4.47)
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Taking inverse Laplace transform of (4.47), we get where
Bt S Ry A 89
H & ul ’
j=2
P(0,0,0,t) S Lt V. (4.48) o
o § 5t Ak Moo I (6
2 Son HM(O+Ap + A+l M i
From Abramowitz and Stegui2f], we get - )
Ty Mg 2 < My (A1 +A)™ I vi (4.62)
2 n 3T WE A AT 122%1 HM(0+Ag +2g + )i =ML T '
() =L L[] e Outdgrpn - | ((EVO 40 A
2(A1 +2) 1
- o (71)k)\p2(3)22k71“k71\,1
& (0+A1+Ap+p)%K
(g Agpt (A b )”/2 In+1 (2 A1+Az> (449 = re
+
. . 1742 o | @ (- 1)i+k— m)\k/\] m+1(k)( Zrlmzzk 1(/\1+/\2)m 1y k— m\,m . 63
Putting (4.47) into (4.46), we get RIPIpN @ +Ag I Em (489
@i n o ()l LKMo g mLy g vtk
= v
P(O 0,0, t z)mprl (4.50) 122nz1n;1k21 Gono 1)'um(9+A1+A2+u)” M . (4.64)
. . E ZkAi(“Azuo(wk)vl{*Zv
When|v| < 1, we find|(A1 +A2)wi| < 1,0 < |2A1v] < V. 0T MO A
Ptr)oc.eedlng to expand (4.44) in power seriey,iwe first R R T T e
. 4.65)
obtain +jZZanZ1k 1 HM(j = (O+Ag +Ag + )N ML “69
6@* 9= Agwy . /\1‘/ /\1‘/1 k(3 Pk ; i j i
o 0= iy Agwil g (2) == Equating the coefficient of in (4.59),
(i) for j =1, we get
o JOKELK | w plkilktl
Y 1oy =21 P 00006). (451)
=T =T o . - vy MAg?
. P*(0,1,2,6) = P*(0,0,0,8) RN ye re)
Further, we obtain
1
1o L = L -3 e (4.52) 5 (71)“'1“2(%)22“1“‘(71‘,1 + s ZkAlﬁlAzuO(wk)‘){ﬂ (4.66)
X 0+A+Ap(A-V)+p  OFAp+tAg+p—Apv 7r:0 (0+ Ay +Ag+p) L’ i &1 (0+A1+Ap+ )2 &1 HO+AL+Ag+ 1) i
1 1 2K ARV 1 | — e
W& = (8421 +Ap(1-v)+py2K rzo = ( r >W 9 (”) for J o 2’ 3’ , We get
1 32 uyk < ur (y:k) -1 - i-m -1
W :rgo rr! x—y) = ;(,DrfT,\g\/, (4.54) P*(0.].2,6)— P*(0.0.0.6) /\2(/\1+)\j2)1 v 71 1/\1n)]\(29+;/\1+4;/\242m)j7\,r£
H m=1 H 1+tA2+H
o i (—1)i~ r,\zul (k) .
A e L AR 4.55) :
SRR e A ( i agAf ™oy i
Where =t} UM(O+ A +Ag+p)i—mMHT
1 i e (cp)itke m/\k/\l m+1 zrlﬁ)ZZk 1()\1+)\2)m 1k m‘,m
Up(X,K) = W’ y=0+A1+2A2+ 4, AP I <9+A1+A2+ml+2k m
R Y Y R L Ly g (vilvprk
d’ 1 *nilmilk 1 (i-n- 1)'um<9+A1+Az+u>” I
(Vk) dr W 3r:071527"" ) _
X x=y 0w i G ety (e e
+nzlrrh1k 1 HM(j =) (8+A1 +Ag + )M ' “en

Using the Leibnitz rule of successive differentiation (see

Kaplan 3]), we obtain From Abramowitz and Stegur2] and Schiff 4], we

have the inverse Laplace transforms

2_2
(@2 (60~ (24 DWa (K)o w56

Uryo(vik) =
(2 —4rgn) vl va¥
L’l[(e— 92—a2) }: v,

The recurrence relation (4.56) is easily solved by using

the conditions v
1 L71{<97 9227;:2) }:avhj(a()'
Uo(y; K) = —, (4.57)
(y+ V2—4)\1I-1)k Lfl[ 1 } \/ﬁ( ) *% @).
1
K (yk) (62—a2)k| Tk \2a e
ui(y;K) = —m- (4.58)  settingk; (t;k) = L~ur (y;K)], we get
Substituting (4.52)-(4.55) in (4.51) and simplifying, we otk =L Lig(ek) =e 1 () ().
obtain
Kq(t; :L’1 u: =—e " I
2 (v,0) = [Ty~ To+ Ts+ Ta— Ts+ T6]P*(0,0,0,6), ) (s
(4.59) Kotk =e M |12 -2 S'"“‘@;q(t K) - (2r+1)cosrm©xr+1(r;k)},r:o.l.z.---.
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wherea? =
get

4A1u. Taking inverse transform of (4.66), we

P(0,1,2,t) = P(0,0, O.t)©% [Azgol(t) Mgt ©e ArtAz it

1
(*1)k/\f/\z( E )ZZk—luk%n)@ef (A +Ap+p)t 2k—1
k1)

o
+
&

w
+ 212k/\ll(+1/\zko(t;k)©¢k+2(t)©e’()‘l+)‘2+“)t . (4.68)

Taking inverse transform of (4.67), we get

oA +20) Lot
P(0,j,2,t)=P(0,0,0.) © [M
u
(Aq+A)M Lam(t) @e~ ArHAz it j—m-1

it ™
- MM —m—1)!

m=1

Lo ™0 4™ Lgn g @e AatAz it -m
+ m 1
HM(j—m)!

m=1

: 1
j-+k— - 1
© (71)j+k m/‘lf)‘é m- E)( Zrl;'\)ZZk 1()\1+/\2)m 1 k— Mom(t) ©e™ (Ag+A+m)tyj+2k—m-1

i
+rr;1k:1 (r2k—m_1)
LI n e (IR M0 )™k (K @) @ 1Azt
nzlmzlkzl (j=n—Din—m:um

i j—m+1 — - _
nowo (_y) nzk/‘lfﬂ/‘é M- (M +A)™ 1Kj,n(t.k)©¢m+k+1(t)©e (Ay+A2+p)tin-m

e1nE1kEL HG =mi(n—m)!

(4.69)

Taking (4.17) and simplifying, we get

o0 ) 1 i+k—1\ i 5 kp* .
G(ZV(U,V,G):J_;P* 0,j,2.0) + zl zlizO%u Vi (4.70)
Equating the coefficient afivl,i = 1,2,---;j =1,2,---
in (4.70), we get
12 (T HMAEP(0,j -k, 2,0

( k ) 17'2 (7J 9 & ). (4'71)

P*(i,j,2,9):k;

Taking inverse Laplace transform of (4.71), we get

(6 4+ AL+ Az + )ik

j— (|+k 1)/\|/\k ~(Ap A+t k-1
P, j, 2t)7kz =

©PO,j—k2,t),i,j=1,2,--. (472

Taking (4.21) and simplifying, we get

W (uv.6)= [A1w1P*(0,0,0,6)

_
(H—Aquug)

N AqHuug {8+A1 +22(1-v) +p}

Vo [04+A1(1—u)+Ap(1—-V)+ p][6+A1(1—ug)+Ap(1—V)+ ] 473

e 9)]
Expanding in power series, equation (4.73) gives

oa/\ll

cWruve=y L 1pr(00086)
=

(|+J+n r— k+1)/\|+n/\l k+1 r1+nuvj

+i:1j§oéllj<in:o ur 17(9+A1+Az+u)'+'+” E @
Equatingu\®,i =1,2,---, (4.74) yields
P*(i,0,1,8) = Aill—lijilp*(o.o.o.e)
AH»I’] r+n
(%n%W) P*(0,1,2,0),i=1.2,-- (4.75)

Equatingu'vi,i,j=1,2,---, (4.74) yields

i+l e (|+|+n r—| k+1) |+n/\1 k+1 SN

PLiLO-F S 3 ikl

== L(04+Aq +Ap+p)ititn-r—ki2

P*(0,k2,0),i,j=1,2. (476)

Taking inverse Laplace transform of (4.75), we get

14“\

P(i,0,1,t) = ©P(0,0,0,t)

L@ alNg L m@e A2 LI T op(0,1,2,1)

+r21nzo M 1(|+n ! A=tz @7
“Taking inverse Laplace transform of (4.76), we get, for
|:1727"' | :1727"'7

- 355 L e
S1é1nco ur= (l+|+n r— k+1)
e (ArtAztmtyi+j+n—r—k+1lgpg k 2.t). (4.78)

Equations (4.50), (4.68), (4.69), (4.72), (4.77) and (%.78
provide explicit expressions for the transient solutiohs o
the queueing system.

5 Steady-state distribution
We define the steady-state probabilities
m(0,0,0) = im P(0,0,0,t),
(i, j,1) :tImP(i,j,l,t),i =12---,j=012---;
(i, j,2) :tImP(i,j,Z,t),i =0,1,2,---,j=212,---.
By the final value theorem of Laplace transform, we have

m(0,0,0) = lim 8P(0,0,0,6),

n(lajal):gg]oep(laja:lwe)al :1727"' 1J 2071727"';
T[(|,J,2):gmoep(|,J,2,e),| :071727"' lJ :1727"' :
—

Using the conditionu > A1 + Ay, (4.34) leads to

{viteso=1 (5.1)
By using (5.1), (4.36) gives
{ui(v1)}e—0=1. (5.2)
Put a = d“é—(g’l) o and 3 = {—g} o By using
(4.37) and (4.38), we get
Ar—p)a+Af =1, (5.3)
Ma + (A2~ H)B = 1. (5.4)
Solving (5.3) and (5.4), we get
-1
a=pf=—7——. 55
B PR v (5.5)
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Puttingp; = 1 andpz_ “,we write (5.5) as
1
a=f=———"—". 5.6
B p(p1+p2—1) 58

By using (4.42) and IHospital rule, and (5.6), we get

C]
1(0,0,0) = loILn09+)\1+)\2_()‘l+)‘2)
SR S (57)
1-(A1+2A2)B s |

By using (4.66), we get

A1A2
H(Ag+2A2+H)

0,1,2) = 11(0,0,0) [%2 +

6 Steady-state Performance M easures

6.1 Steady-state probability Generating
Functions

We define -
YW =Y mo,j.2)v,

ni(i, j,1)uvi,

AP v =5 3 m,j,2uv.
B

Using (4.44), we get
A2vy (—2A1v +Y)

i (v) = 11(0,0,0),
Koy (3 )52k-1 k-1 . 0 ( ) 2{“_()‘1+)‘2)V}X(_2)‘1+y) ( )
® (- (2)22 L © Rk anzvik 6.1.1
&1 Orag+w® "\ &y HOT R 69 ( o )
where
where X=A1+A2(1-V)+ U,
V=A1+A+U, y=X+ 12— 4A1l.
20(v,1) = él,imou‘)(y’r) =(v+ —Aap) " Settingv =1 in (6.1.1) and simplifying, we get
—
. 2 A2
By using (4.67), we get g2 (1) = pyprTE (6.1.2)
012 - o000 | 220 Al IE A Moy s apm Equation (6.1.2) gives the probability that the server is
u n=1 KO+ I serving a non-priority customer and that there is no
L priority customer waiting. Consequently, the probability
g Madg "0 that there is no priority customer in the system is given by
S
—A1(A1+A
i e (—1)itke m)\k/\J m+1(k)( Zk)zzk Ly 4+ Ag)M-1yk-m n( )(1)+ 7-[(0 0 0) w
+m;1kgl (A +Ag+p)lt2m u(/\1+ U)
it n e cpl LT g™ty ik - . .
B e PR PR 6.2 Probability that the server is busy with
i n e oL Priority Customer
+n§1n‘£1k:1 u"‘(J n)! (/\1+Azl+u>ﬁ T A2 69
Let n be the probability that the server is busy with a
where ‘ . priority customer in the long run. The favourable states
A v+ 2 g for the event are(i,j,1),i = 1,2,---;j = 0,1,2,---
22 Consequently, we obtain
Z(v,r) = Ilm uk(yr) {r — k- }zk,vzz(\:,;))\;‘izk73)vzk,1(v,r)7k:2>3>”“ 0 00
. = (i, j,1). 6.2.1
By using (4.71), we get f I;JZO (1,,1) ( )
i+k—1y,i niti
. .zl(+k;)i;2k:,‘(lo>l,+kkz>IHZ 510 By definition, we have o
@ — i iy
By using (4.75), we get M (uy) i;go (i, J, Huv.
,0,1) = /:} n(o.o.o)+(i > Wf:uﬂw) MO.L2 =12 (511 USing (4.73), we get
1n=0 1712
] A )~ fim 660* (wr6) — A1um(0,0,0) + )‘1\,“"' [Al(l—u)g\/\l;iggj;l)]ﬁ\i}(1—v)+u] nc()z)(v).
By using (4.76), we get 6-0 (=Aq0) 622
e (K Settingu=v=1in (6.2.2) and simplifying, we obtain
ni.j.1)= 2 2 =Ly + Ay 1 )it HN—T—KF2 0.k 2),0,j=1.2. (512) A
okt n=pPY11)="22 (6.2.3)
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6.3 Probability that the server is busy with From (6.3.2), we get
non-Priority Customer A
n@u,1) = pWCT—E (6.5.4)
Let ¢ be the probability that the server is busy with a M2 —u)+ ]
non-priority customer in the long run. The favourable From (6.5.3) and (6.5.4), we get
states for the event afe j,2),i =0,1,2,---;j=1,2,---. q AL+ A2
Consequently, we obtain {—l‘lu)(u,l)] _ MP A2 (6.5.5)
o ® du u=1 (u_)‘l)z
(= (i, j,2). (6.3.1) From (4.8), we get
i=0]=1
d A1A
- n® _ An2
By definition, we have {dun (u,l)]Ul uz - (65.6)
® ® o Substituting (6.5.5) and (6.5.6) in (6.5.2), we get
nu,v) = (i, j,2)u'v. Alha b 1)
=g E(P) = 7‘11(“2 )\“) . (6.5.7)
—A1
Using (4.17), we get
1O = g 062" (wv0) - [?;?1Az<1)f;>+umﬂ§2}(§>, 61 6.6 Mean number of non-priority customers
-0 1d=w+A2(1=-v)+H

Let E(N) denote the expected number of non-priority

Settingu=v=1in (6.3.2) and simplifying, we obtain customers in the lang run, Then we obtain

)\ © 0 © 0
{=n¥a1="=22 (6.3.3) E(N) = i 1) 4 i 2
(N) ;Zlm(u’ ) i;;lln(hb )
d
6.4 Probability that the server isidle =5 [/'l“)(l,V)+/'I<2>(1,v)}V= . (6.6.1)

Let & be the probability that the server is idle in the long From (6.1.1), we get

run. The favourable state for the event (§,0,0).
Consequently, we obtain

(6.6.2)

!
(2) A2 [ A2 ()\1”2) H }
ng” ) = - + .
0 ve1 AHR A VA ) T H=aRp

IV Using (6.2.2) and (6.3.2), and (6.6.2), we get
& =m(0,0,0)=1— Hl 22 (6.4.1) {dﬂu)(lv}} _ MAZ[2u? - p(3hg +4g) + 221 (A1 +A9)]
v=1

u dv H2(u=AD2(H A1~ Ap)

, (66.3)

(6.6.4)

dn@(.v) B /\2[/\12/\2+/\1/\22—2/\1uz+/\12u+u3]
L VY H2(H—=M1)(H—A1—2)

Substituting (6.6.3) and (6.6.4) in (6.6.1), we get

e = 3ag 3 + AP (220 +302) ~ ARu(@Ag + Ay) +A2Ao(A1 + Ap)]
H2(H=A1)2(1—A1 - 22)

6.5 Mean number of priority customers
E(N)

. (6.6.5)
Let E(P) denote the expected number of priority
customers in the long run. Then we obtain
E(P) = lejin(i,j,l)+ Z S in(i,j,2). (651) 7 ANumerical lllustration
L L &4
= = We fix A1 = 1.2 andA, = 0.6 and consider the expressions

Using the definition, we get (6.5.7) and (6.6.5). Subject to the stability conditjpn>
g A1+ A2, we varyu from 1.9 to 5.8 and obtain the figures

_|Yqo 2 1 (a) and 1 (b). Fig. 1 (a) exhibits the variation BfP)
E(P) {du{n (Uv)+11 (u,v)}} U—1v—1 as a function ofu and Fig. 1 (b) exhibits the variation of

E(N) as a function ofu. In both graphs, we find that the
_[d ao 2 mean values decrease gsincreases. In other words, if
= @{ (U, 1)+ M (u, 1)} : (6.5.2) the service rate increases, the expected number of priority
u=1 or non-priority customers in the long run is likely to go
From (6.2.2), we get down. This has to be true, since as service rate increases,
more and more customers (both priority and non-priority)

@ ~ Aw(0,0,0) + % are served, thus confirming that our model behaves as was
M- (u,1) = =AU : (6.5.3)  expected.
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