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Abstract: In this article we introduce a new distribution which is constructed by taking, as a base, the absolute value of a random
variable with alpha skew-normal (ASN) distribution. The density of this distribution and some of its properties such asmoments and
its skewness and kurtosis coefficients are discussed. We calculate the moment and the maximum likelihood estimators, and carry out
a Monte Carlo study. Finally, an example with real data to illustrate the usefulness and applicability of the proposed distribution is
presented. It is shown that the obtained result is a distribution with considerable flexibility.
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1 Introduction

Azzalini [4] introduced the{SN(λ ) ,λ ∈ R} skew-normal
distribution, with skewness parameterλ , such thatSN(0)
is the standard normal distribution. In other wordsX ∼
SN(λ ) with density function:

f (x;λ ) = 2φ(x)Φ(λx), (1)

wherex,λ ∈ R, φ andΦ are the densityN (0,1) and its
cumulative distribution function respectively.

Elal-Olivero [14] introduced ASN distribution, with
shape parameterα, such thatASN(0) is the standard
normal distribution. In other wordsX ∼ ASN(α) with
density function:

fX(x;α) =

(
(1−αx)2+1

2+α2

)
φ(x), (2)

wherex,α ∈R.
One distribution related to ASN distribution is the

following density function

fX(x;α) =

(
2+α2x2

2+α2

)
φ(x), (3)

where x,α ∈ R and the random variableX is called
symmetric-component-alpha-skew-normal (SCASN)

distribution and is denoted asX ∼ SCASN(α). The
SCASN distribution and its representation are given in the
work of Elal-Olivero [14].

The support of the SN and ASN models occurs in all
real numbers, and both models are related to the
half-normal (HN) distribution. Recent statistical literature
has shown growth in the possible applications of
extensions of half-normal distribution; for example,
Altman [3], Chou and Liu [13], Bland and Altman [8],
Lawless [16], Chen and Wang [12], Bland [9], Coffey et
al. [10], Barranco-Chamorro et al. [5], Weisstein [21],
Cooray and Ananda [11] and Olmos et al. [17,18] present
theoretical and applied results related to half-normal
distribution. Chapter 2 of the book by Ahsanullah et al.
[1] contains some properties of HN distribution.

An extension of the HN model was introduced by
Cooray and Ananda [11]. It is called generalized
half-normal (GHN) distribution, in other words a random
variableX has GHN distribution if its density function is:

fX(x;β ,γ) =
2γzγ−1

β γ φ
((

z
β

)γ)
,

with β > 0 scale parameter andγ > 0 shape parameter. We
denote this byX ∼ GHN(β ,γ). Whenγ = 1 we obtain the
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HN distribution as a particular case; the representation of
this model is given in the work of Olmos et al. [18].

Following the methodology used by Cooray and
Ananda [11] to construct the GHN model (see also
Proposition 1 in the work of Olmos et al. [18]), the main
purpose of this article is to introduce a new distribution
with positive support and two parameters, similar to the
GHN model and with considerable flexibility, to model
positive unimodal data in the areas of reliability and
survival. In particular, we will work with the real data set
used in [6],[7],[15], related to the lifetimes in 10-3 cycles
of aluminum 6061-T6 pieces cut in parallel angle with the
rotation direction, oscillating at the rate of 18 cycles per
second at maximum pressure 21000 psi.

The article is organized as follows: Section 2 contains
the stochastic representation of this family and we present
the new density, its moments, and its skewness and
kurtosis coefficients. In Section 3 we make the inference
using methods for moment and maximum likelihood
estimation, and present a simulation study. Section 4
contains an application with real data. Finally, Section 5
provides discussion of the new model.

2 Density function and properties

In this section we introduce the representation, basic
properties, cumulative distribution and hazard rate
functions of the new distribution. The following result is
important for the construction of the new distribution.

Proposition 1. Let X∼ ASN(α). Then, the pdf of Y= |X|
is given by

fY(y;α) = 2

(
2+α2y2

2+α2

)
φ(y), (4)

wherey> 0 andα ≥ 0.

Proof. Using the Jacobian transformation, the density
function associated withY is given by

fY(y;α) = fX(y;α)+ fX(−y;α).

Using the density function given in (2) we obtain the result.
�

Remark. We call the density function given in (4)
half-alpha-skew-normal (HASN), and we denote it by
Y ∼ HASN(α). We observe that whenα = 0 it
corresponds to the HN model as a particular case. We
restrict the parametric space to the non-negative values in
order to avoid identifiability problems.

2.1 Stochastic Representation

The stochastic representation of this new distribution is

Z = βY1/γ , (5)

where β > 0 is the scale parameter,γ > 0 the shape
parameter andY is a random HASN variable with
parameterα = 5. We call the distribution of the random
variableZ: Modified generalized half-normal (MGHN).
The choice ofα = 5 is adopted to avoid increasing
unnecessarily the number of shape parameters, and to
include a unimodal distribution as the base, which is not
the case whenα = 0, as used to obtain the GHN model.
In applications, the new family of distributions can
provide a better fit than other likelihood distributions used
previously for this purpose.

2.2 Density function

The following proposition shows the pdf of the MGHN
distribution, which is generated using the representation
given in (5).

Proposition 2. Let Z∼ MGHN(β ,γ). Then, the pdf of Z
is given by

fZ(z;β ,γ) =
2γzγ−1

27β 3γ
(
2β 2γ +25z2γ)φ

((
z
β

)γ)
, (6)

where z> 0, β > 0 andγ > 0.

Proof. Using the representation given in (5) and the
Jacobian transformation, the density function related toZ
is given by

fZ(z;β ,γ) = γ
β

(
z
β

)γ−1
fY
((

z
β

)γ
;5
)
.

Using the density function given in (4) we obtain the result.
�

Figure1 shows some of the forms taken by the MGHN
density for different values of the shape parameterγ, fixing
the scale parameterβ = 1.

Proposition 3. Let V ∼ ASN(α) and W∼ SCASN(α).

Then|V| d
= |W|∼ HASN(α).

Proof. Using the Jacobian transformation, we obtain that
the density of the random variable|W| is the same as was
obtained in (4). �

Remark. In the SN distribution we find that when
X ∼ SN(λ ), then|X| ∼ HN(0,1) which does not depend
on shape parameterλ ; while this does not occur when
X ∼ ASN(α) since the resulting distribution depends on
parameterα as we observed in Proposition1. The
methodology used by Cooray and Ananda [11] to
construct the GHN model, we now use to construct the
MGHN model taking the HASN distribution as the base.
The result of Proposition3 is very important for
generating random numbers from the MGHN distribution,
as will be seen below in the simulation study.
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Fig. 1: Density function of Z forMGHN(1,2) (solid line),
MGHN(1,1.5) (dashed line),MGHN(1,1) (dotted line) and
MGHN(1,0.8) (dashed-dotted line)

Proposition 4. Let Z∼ MGHN(β ,γ), whereβ > 0 and
γ > 0. Then, the distribution function of Z is given by

FZ(z) = 2Φ
((

z
β

)γ)
− 50

27

(
z
β

)γ
φ
((

z
β

)γ)
−1

Proof. Let Z ∼ MGHN(β ,γ), then

FZ(z) =
∫ z

0
fZ(t;β ,γ)dt =

4γ
27β γ

∫ z

0
tγ−1φ

((
t
β

)γ)
dt+

50γ
27β 3γ

∫ z

0
t3γ−1φ

((
t
β

)γ)
dt.

Using the change of variableu =
(

t
β

)γ
we obtain the

result.�

Corollary 1. The hazard rate function for the random
variable Z∼ MGHN(β ,γ) is given by

h(z) =
fZ(z)

1−FZ(z)

=
γzγ−1(2β 2γ +25z2γ)φ

((
z
β

)γ)

β 2γ
[
27β γ +25zγφ

((
z
β

)γ)
−27β γΦ

((
z
β

)γ)] .

Figure2 shows the form of the hazard function for some
values of the parameterγ.
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Fig. 2: Hazard function of Z forMGHN(1,0.1) (solid line),
MGHN(1,0.8) (dashed line),MGHN(1,1) (dotted line) and
MGHN(1,2) (dashed-dashed line)

2.3 Moments

Proposition 5. Let Z∼ MGHN(β ,γ).Then for r= 1,2, ...
we have that the r-th moments are

µr = E(Zr) =
β r(25r +27γ)2

r
2γ Γ

(
r+γ
2γ

)

27
√

πγ
. (7)

Proof. Using the stochastic representation of this
distribution given in (3) andY ∼ HASN(5), we have

µr = E (Zr) = E
(

β rYr/γ
)

=
2β r

27

∫ ∞

0
(2yr/γ +25yr/γ+2)φ(y)dy

=
2β r

27

∫ ∞

0
2yr/γφ(y)dy+

25β r

27

∫ ∞

0
2yr/γ+2φ(y)dy.

Using the moments of the HN distribution we obtain the
result.�

Corollary 2. Let Z∼ MGHN(β ,γ). Then, it follows that

µ1 = E(Z) = β (25+27γ)a1 (8)

µ2 = E(Z2) = β 2(50+27γ)a2 (9)

µ3 = E(Z3) = β 3(75+27γ)a3 (10)

µ4 = E(Z4) = β 4(100+27γ)a4 (11)

wherear = ar(γ) =
2

r
2γ Γ

(
r+γ
2γ

)

27
√

πγ .

Proof. It is a direct consequence of Proposition5. �
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Corollary 3. Let Z ∼ MGHN(β ,γ), then the
skewness(

√
β1) and kurtosis(β2) coefficients are

respectively:

√
β1 =

υ3−3υ2υ1+2υ3
1(

υ2−υ2
1

)3/2
,

β2 =
υ4−4υ1υ3+6υ2

1υ2−3υ4
1(

υ2−υ2
1

)2 ,

whereυi = υi(γ) = (25i +27γ)ai, with i = 1,2,3,4.

Proof. The result is obtained by using the following
definition for skewness and kurtosis coefficients.

√
β1 =

E (Z−E(Z))3

(Var(Z))3/2
=

µ3−3µ2µ1+2µ3
1

(µ2− µ2
1)

3/2
,

β2 =
E(Z−E(Z))4

(Var(Z))2 =
µ4−4µ1µ3+6µ2

1µ2−3µ4
1

(µ2− µ2
1)

2
.�

3 Inference

In this Section, we discuss the moment and maximum
likelihood estimators for the MGHN distribution. We also
present a simulation study for the maximum likelihood
estimators.

3.1 Moment estimators

Proposition 6. Let Z1, . . . ,Zn be a random sample of size
n from the Z∼ MGHN(β ,γ) distribution. The moment
estimator forβ is given by

β̂M =
Z

υ1(γ̂M)
. (12)

On the other hand, the moment estimator forγ, denoted by
γ̂M, is obtained as a solution of the numerical equation.

Z2υ2
1(γ̂M)−Z

2υ2(γ̂M) = 0 (13)

Proof. From Proposition5 and considering the first two
equations in the method of moments, we have

Z = β υ1(γ) and Z2 = β 2υ2(γ)

Solving the first equation above forβ yieldsβ̂M. Replacing
β̂M in the second equation above, the result given in (13)
is obtained.�

3.2 Maximum likelihood estimators

Given an observed sampleZ1, . . . ,Zn from the
MGHN(β ,γ) distribution, the log-likelihood function for
the parametersβ and γ, given Z = (Z1, ...,Zn)

⊤, can be
written as

l(β ,γ) = nlog

(
2γ

27
√

2πβ 3γ

)
+(γ −1)

n

∑
i=1

log(zi) (14)

+
n

∑
i=1

log(2β 2γ +25z2γ
i )− 1

2β 2γ

n

∑
i=1

z2γ
i .

The maximum likelihood equations are given by

n

∑
i=1

4β 4γ

2β 2γ +25z2γ
i

+
n

∑
i=1

z2γ
i = 3nβ 2γ (15)

n

∑
i=1

log(zi)+
n

∑
i=1

4β 2γ log(β )+50z2γ
i log(zi)

2β 2γ +25z2γ
i

+ (16)

n
γ
−

n

∑
i=1

(
zi

β

)2γ
log

(
zi

β

)
= 3nlog(β ).

Solutions for equations (15) - (16) can be obtained by
using numerical procedures such as the Newton-Raphson
algorithm. Likewise, to obtain the maximum likelihood
estimator (MLE) which will directly maximize the
log-likelihood function given in (14), we can use existing
software. For example, in R [19] this can be performed
using the optim function. Initial values for the algorithm
can be obtained based on the moment estimators given in
Proposition6.

3.3 Simulation study

In this subsection a simulation study was conducted with
the main object of assessing the maximum likelihood
estimation performance for parametersβ andγ under the
MGHN model. Below we present Algorithm 1, used to
generate samples fromZ ∼ MGHN(β ,γ).
Algorithm 1

1. GenerateT ∼ χ2
3,V ∼N(0,1) andW such thatP(W=

1) = P(W =−1) = 1
2.

2. ComputeR=
√

TW

3. ComputeX = 5√
27

R+
√

2
27V

4. ComputeY = |X|
5. ComputeZ = βY1/γ

Using Algorithm 1, 10,000 random samples of sizes
n = 50, 100 and 200 were generated under the MGHN
model with different parameter values. A summary of the
results from the study is depicted in Table1. For each
sample generated, MLEs were computed numerically
using the Newton-Raphson procedure. We report the
mean of the estimators, the mean of the estimated
standard errors and the root mean squared errors
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(RMSEs). We observe that as the sample size increases,
the estimates are closer to the true values; moreover
standard deviations and RMSEs draw closer asn
increases.

Table 1: Simulation study for MGHN model in finite samples.
n= 50 n= 100 n= 200

True Esti- Mean RMSE Esti- Mean RMSE Esti- Mean RMSE
mate of s.e. mate of s.e. mate of s.e.

β 1 1.015 0.129 0.129 1.007 0.091 0.093 1.002 0.065 0.065
γ 0.8 0.824 0.097 0.101 0.811 0.067 0.069 0.804 0.047 0.047
β 1 1.011 0.103 0.105 1.005 0.073 0.074 1.002 0.052 0.052
γ 1 1.031 0.121 0.13 1.014 0.084 0.086 1.007 0.059 0.06
β 1 1.003 0.051 0.052 1.002 0.036 0.036 1.001 0.026 0.026
γ 2 2.057 0.242 0.254 2.03 0.168 0.173 2.013 0.118 0.12
β 1 1.002 0.034 0.035 1.001 0.024 0.025 1.001 0.017 0.017
γ 3 3.088 0.363 0.389 3.044 0.252 0.259 3.024 0.177 0.178
β 1 1.001 0.021 0.021 1.001 0.015 0.015 1 0.01 0.01
γ 5 5.15 0.606 0.637 5.081 0.421 0.435 5.038 0.294 0.296
β 5 5.068 0.643 0.672 5.03 0.456 0.46 5.018 0.324 0.324
γ 0.8 0.822 0.097 0.103 0.811 0.067 0.069 0.806 0.047 0.048
β 5 5.063 0.514 0.528 5.031 0.366 0.365 5.01 0.259 0.259
γ 1 1.032 0.121 0.13 1.014 0.084 0.085 1.007 0.059 0.06
β 5 5.021 0.256 0.263 5.011 0.182 0.185 5.005 0.129 0.129
γ 2 2.062 0.242 0.258 2.031 0.168 0.176 2.014 0.118 0.119
β 5 5.013 0.171 0.175 5.006 0.122 0.125 5.002 0.086 0.087
γ 3 3.093 0.363 0.389 3.045 0.252 0.264 3.02 0.176 0.181
β 5 5.005 0.103 0.104 5.003 0.073 0.074 5.002 0.052 0.052
γ 5 5.139 0.604 0.634 5.07 0.42 0.433 5.04 0.295 0.299

4 Application

In this Section, a real data set is used to show that the
MGHN distribution can provide a better fit with the data
set than the GHN and Birnbaum and Saunders (BS)
distributions.
Below we present the results of a real data set analysis
using a data set previously analyzed in Birnbaum and
Saunders [6,7], related to the lifetimes in 10−3 cycles of
aluminum 6061−T6 pieces cut in parallel angle with the
rotation direction, oscillating at the rate of 18 cycles per
second at maximum pressure 21000psi, with a total
sample size of 101 units. The same data were used by
Gómez et al. [15], and other studies. Table2 shows some
descriptive statistics from the data set, whereb1 and b2
are sample skewness and kurtosis coefficients
respectively.

Table 2: Descriptive statistics for the data set.

n x s2 b1 b2
101 1400.911 153134.5 0.140 2.766

Computing the moment estimators initially under the
MGHN model, we have the following estimates:̂βM
=1130.775 and̂γM =1.765. Using the moment estimators
as initial values, the maximum likelihood estimates are
computed using a numerical method. Table3 shows the
MLEs for the parameters of the MGHN, GHN and BS
models. For each model we report the log-likelihood
estimate value. For these data, the MGHN model

presented the largest value of the estimated log-likelihood
function.

Table 3: ML estimates for fitting models on the data set.

Models Parameters Standard Log-likelihood
estimated error

MGHN β̂ = 1106.407 47.060 -746.558
γ̂ = 1.668 0.131

GHN β̂ = 1629.517 42.265 -748.598
γ̂ = 2.994 0.235

BS β̂ = 1336.369 40.765 -751.391
γ̂ = 0.310 0.022

The AIC and BIC criteria were used to compare the
distributions (Akaike, [2]; Schwarz, [20]). It is known that
AIC= 2k−2loglik and BIC= k logn−2loglik wherek is
the number of parameters in the model,n is the sample
size and loglik is the maximized value of the likelihood
function. Table4 shows the corresponding AIC and BIC
for each model. For these data, the values in the table
indicate that the MGHN distribution leads to a better fit
than the GHN and BS distributions. Figure3 presents the
histogram for the data with the fitted densities; Figure4
presents the empirical cdf with estimated cdf for MGHN,
GHN and BS models, which also shows the good fit
between the MGHN model and the lifetimes data.

Table 4: Akaike and Bayesian information criteria for fitted
models.

Criterion MGHN GHN BS
AIC 1497.116 1501.196 1506.782
BIC 1502.346 1506.426 1512.012
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Fig. 3: Data histogram and fitted pdf for MGHN (solid line),
GHN (dashed line) and BS (dotted line);
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Fig. 4: Empirical cdf with estimated cdf for MGHN (solid line),
estimated GHN (dashed line) and estimated BS (dotted line)
models.

5 Discussion

In this paper we present a new model with two
parameters, called Modified generalized half-normal
(MGHN). It was defined following the same principle
used to produce the GHN model, but instead of using the
HN model as a base, we used a particular case of the
HASN model. The new distribution appears to be a viable
alternative for fitting reliability and survival data as
shown in the application. Properties of MGHN
distribution include its moments, skewness, kurtosis and
stochastic representation. Parameters are estimated using
the moments method and maximum likelihood. We
present the results of a simulation study, which shows
good parameter recovery for small samples. Some other
characteristics of the new model are:

• The proposed model has a closed expression and one
of its parts is a function of the GHN model.
• Stochastic representation of the MGHN model is very
useful for calculating the most important properties of
the model.
• The MGHN model offers a very flexible distribution,
for example for modelling lifetime data such as the
data set used in the application. The MGHN
distribution can accommodate both decreasing and
increasing failure rates as shown in Figure 2.
• The moments and the skewness and kurtosis
coefficients are closed expressions and are expressed
in terms of the gamma function.
• In the application, we used the material fatigue data
used in Birnbaum and Saunders (1969b) and two
model comparison criteria (AIC and BIC). The two
criteria indicate that the model with the best fit for this
dataset is the MGHN model.
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