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Abstract: In this article we introduce a new distribution which is consted by taking, as a base, the absolute value of a random
variable with alpha skew-normal (ASN) distribution. Thendity of this distribution and some of its properties suctmasnents and

its skewness and kurtosis coefficients are discussed. Welatd the moment and the maximum likelihood estimatord,camry out

a Monte Carlo study. Finally, an example with real data tesiitate the usefulness and applicability of the propossttiliition is
presented. It is shown that the obtained result is a digtabwvith considerable flexibility.
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1 Introduction distribution and is denoted aX ~ SCASNa). The
S SCASN distribution and its representation are given in the
Azzalini [4] introduced thg[SN(A ) ,A € R} skew-normal  work of Elal-Olivero [L4].

distribution, with skewness paramefersuch thaSN(0) The support of the SN and ASN models occurs in all
is the standard normal Q|str|but|on. In other wopds- real numbers, and both models are related to the
SN(A) with density function: half-normal (HN) distribution. Recent statistical liteuge
has shown growth in the possible applications of
F(xA) = 2¢(x)@(Ax), (1) extensions of half-normal distribution; for example,
wherex,A € R, ¢ and @ are the densit\N (0,1) and its ~ Altman [3], Chou and Liu 3], Bland and Altman §],
cumulative distribution function respectively. Lawless [L6], Chen and Wang12], Bland [9], Coffey et
Elal-Olivero [14] introduced ASN distribution, with al. [10], Barranco-Chamorro et al5], Weisstein R1],
shape parametenr, such thatASNO) is the standard Cooray and Anandélfl] and Olmos et al.17,18] present
normal distribution. In other wordX ~ ASNa) with  theoretical and applied results related to half-normal

density function: distribution. Chapter 2 of the book by Ahsanullah et al.
) [1] contains some properties of HN distribution.
f(x ) = ((1—0”() +1> ) B An extension of the HN model was introduced by
' 2+a2 ’ Cooray and Ananda 1fi]. It is called generalized
wherex, a € R. half-normal (GHN) distribution, in other words a random

One distribution related to ASN distribution is the VariableX has GHN distribution if its density function is:
following density function
ey = 22 2o ((2)
o (e - 20( ()
fx(X,a) = <W) ¢(X), (3)

where x,a € R and the random variablX is called  with 3 > O scale parameter aiyd> 0 shape parameter. We
symmetric-component-alpha-skew-normal (SCASN) denote this bX ~ GHN(f3,y). Wheny = 1 we obtain the
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HN distribution as a particular case; the representation ofvhere B > 0 is the scale parametey,> 0 the shape
this model is given in the work of Olmos et al{]. parameter andYy is a random HASN variable with
Following the methodology used by Cooray and parameteir = 5. We call the distribution of the random
Ananda [L1] to construct the GHN model (see also variableZ: Modified generalized half-normal (MGHN).
Proposition 1 in the work of Olmos et alL§]), the main  The choice ofa = 5 is adopted to avoid increasing
purpose of this article is to introduce a new distribution unnecessarily the number of shape parameters, and to
with positive support and two parameters, similar to theinclude a unimodal distribution as the base, which is not
GHN model and with considerable flexibility, to model the case whemw = 0, as used to obtain the GHN model.
positive unimodal data in the areas of reliability and In applications, the new family of distributions can
survival. In particular, we will work with the real data set provide a better fit than other likelihood distributions dise
used in B],[7],[15], related to the lifetimes in 10-3 cycles previously for this purpose.
of aluminum 6061-T6 pieces cut in parallel angle with the
rotation direction, oscillating at the rate of 18 cycles per
second at maximum pressure 21000 psi. 2.2 Density function
The article is organized as follows: Section 2 contains

the stochastic representation of this family and we presenihe following proposition shows the pdf of the MGHN

the new density, its moments, and its skewness an@jistribution, which is generated using the representation
kurtosis coefficients. In Section 3 we make the inferencegjven in ).

using methods for moment and maximum likelihood
estimation, and present a simulation study. Section 4Proposition 2. Let Z~ MGHN(B,y). Then, the pdf of Z
contains an application with real data. Finally, Section 5is given by

Z\aP, 2 ;B?:y B ’

2 Density function and properties
where z~ 0, 3 > 0andy > 0.
In this section we introduce the representation, basic
properties, cumulative distribution and hazard ratepProof. Using the representation given ib)(and the
functions of the new distribution. The following result is Jacobian transformation, the density function related to

important for the construction of the new distribution. is given by
Proposition 1. Let X~ ASNa). Then, the pdf of ¥= |X| y—1 y
is given by fz(zB,y) = %(é) fy ((ﬁ) ;5).
24 aZ 2 . . . . . .
fy(y;a) =2 ( . a)zf ) ), (4) ésmg the density function given id)Y we obtain the result.

Figurel shows some of the forms taken by the MGHN
wherey >0 anda > 0. density for different values of the shape paramgtéixing
Proof. Using the Jacobian transformation, the densitythe scale paramet@r= 1.
function associated witl is given by
Proposition 3. Let V ~ ASNa) and W ~ SCASNa).
fr(y:a) = fx(y:a) + fx(-y. ). Then|V| < W| ~ HASNa).

Using the density function given i we obtain the result. ) . ) )

0 Proof. Using the Jacobian transformation, we obtain that
the density of the random variabM/| is the same as was

Remark. We call the density function given in4  obtainedin4). O

half-alpha-skew-normal (HASN), and we denote it by

Y ~ HASNa). We observe that whema = 0 it Remark. In the SN distribution we find that when

corresponds to the HN model as a particular case. WeX ~ SN(A), then|X| ~ HN(O, 1) which does not depend

restrict the parametric space to the non-negative values i@n shape parameter; while this does not occur when

order to avoid identifiability problems. X ~ ASNa) since the resulting distribution depends on
parametera as we observed in Propositioh. The
methodology used by Cooray and Anandal][ to

2.1 Stochastic Representation construct the GHN model, we now use to construct the
MGHN model taking the HASN distribution as the base.

The stochastic representation of this new distributionis  The result of Proposition3 is very important for
generating random numbers from the MGHN distribution,

7 — Byl/v, (5) as will be seen below in the simulation study.
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Fig. 1. Density function of Z forMGHN(1,2) (solid line),
MGHN(1,1.5) (dashed line), MGHN(1,1) (dotted line) and
MGHN(1,0.8) (dashed-dotted line)

Proposition 4. Let Z~ MGHN(f,y), where83 > 0 and
y > 0. Then, the distribution function of Z is given by

(5) ()

Proof. LetZ ~ MGHN(S,y), then

50

wnn((3))-5

27

2= [ fltpa= g [ y_"’<(%>y>d”
oo ((5) )

y
Using the change of variable = (%) we obtain the

result.c]

Corollary 1. The hazard rate function for the random
variable Z~ MGHN(S,y) is given by

fz (Z)
1-F(29)

Cereee((3))
por [a1pr 2529 ((3)') - 2180 ((3)') ]

h(z) =

Figure2 shows the form of the hazard function for some wherea, = a(y) =

values of the parametgr

Hazard
2
!

Fig. 22 Hazard function of Z forMGHN(1,0.1) (solid line),
MGHN(1,0.8) (dashed line),MGHN(1,1) (dotted line) and
MGHN(1,2) (dashed-dashed line)

2.3 Moments

Proposition 5. Let Z~ MGHN(f,y).Then forr=1,2, ...
we have that the r-th moments are

B (250 + 27y) 25T (r+V)
27ymy

Proof. Using the stochastic
distribution given in 8) andY ~ HASN5), we have

o =E(Z)=E(BY7)

_ 22_57' "2y + 257 ¥ 2)gly)dy

= ["ay ey ZE "oy ir2gyay

pr=E(Z") =

(7)

Using the moments of the HN distribution we obtain the

result.c]
Corollary 2. Let Z~ MGHN(B,y). Then, it follows that
E(Z)= (25+ 27y)ay (8)
Lo = (22) B2(50+ 27y)ap (9)
pz = E(Z%) = B3(75+27y)ag (10)
Us = E(Z*% = B*(100+27y)a4 (11)
22vr('+yy>

NG
Proof. It is a direct consequence of Propositiar ]
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Corollary3. Let Z ~ MGHN(B,y), then the

skewness(/f1) and kurtosisB,) coefficients are
respectively:

U3 — 30,01 + 203
B S 20
(v2—v7)

U — 401U3 + 6VZ U, — 3U7

(v2—0})°

B2=

3

whereuv; = vi(y) = (25 + 27y)a;, withi=1,2,3,4.

Proof. The result is obtained by using the following
definition for skewness and kurtosis coefficients.

E(2))°  ps—S3pops + 24
\/B—_( ()2_3 2H1 + 217

(Var(z))¥ (M2 —pg)%2 7
By — E(Z-E(2)* _H4—4H1H3+6H1H2—3H1 O
(Var(2))? (M2 — p2)?
3 Inference

3.2 Maximum likelihood estimators
Given an observed sampleZs,...,Z, from the
MGHN(f,y) distribution, the log-likelihood function for

the parameter§ andy, givenZ = (Z,...,Z,) ", can be
written as

[(B,y) = nIog<27\/_n33y) (y—1) Zlog (14)
+i;Iog(2B2V+ 257) — BZV ny
The maximum likelihood equations are given by
n B4y n v )
Z1252v+ 257/ gfz = e 5)

N 482 log( 50z log(z
Zlog + B2 log(B) + 507" log(z)
2B2V+252|-2V

505 () e

+ (16)

Solutions for equationslf) - (16) can be obtained by
using numerical procedures such as the Newton-Raphson
algorithm. Likewise, to obtain the maximum likelihood
estimator (MLE) which will directly maximize the
log-likelihood function given in 14), we can use existing

In this Section, we discuss the moment and maximumsoftware. For example, in RL] this can be performed

likelihood estimators for the MGHN distribution. We also Using the optim function. Initial values for the algorithm
present a simulation study for the maximum likelihood can be obtained based on the moment estimators given in

estimators.

3.1 Moment estimators

Proposition 6. Let Zy,...,Z, be a random sample of size
n from the Z~ MGHN(,y) distribution. The moment
estimator for@ is given by

_z
~ u1()’

On the other hand, the moment estimatorypdenoted by
W, is obtained as a solution of the numerical equation.

Bu = (12)

Z202(W) — Z°Ua(Wa) =0 (13)

Proof. From Propositiorb and considering the first two
equations in the method of moments, we have

Z=Bui(y) and 22 = B?us(y)
§o|ving the first equation above fﬁryieldsﬁM. Replacing

Bwm in the second equation above, the result giveriip) (
is obtained

Propositiorb.

3.3 Simulation study

In this subsection a simulation study was conducted with
the main object of assessing the maximum likelihood
estimation performance for parametgrandy under the
MGHN model. Below we present Algorithm 1, used to
generate samples froth~ MGHN(S, y).

Algorithm 1

1. Generatd ~ x2,V ~N(0,1) andW such thaP(W =
1)=PW=-1)=1
2. ComputeR = /TW

3. Comput@(_ﬁm—w =V
4. Computey = |X]

5. ComputeZ = BYVY

Using Algorithm 1, 10,000 random samples of sizes
n = 50, 100 and 200 were generated under the MGHN
model with different parameter values. A summary of the
results from the study is depicted in Talle For each
sample generated, MLEs were computed numerically
using the Newton-Raphson procedure. We report the
mean of the estimators, the mean of the estimated
standard errors and the root mean squared errors
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(RMSEs). We observe that as the sample size increasepresented the largest value of the estimated log-liketihoo
the estimates are closer to the true values; moreoveiunction.

standard deviations and RMSEs draw closer ras . .
increases. Table 3: ML estimates for fitting models on the data set.

Models Parameters Standard  Log-likelihood
estimated error

MGHN [ =1106.407 47.060 -746.558

Table 1: Simulation study for MGHN model in finite samples.

n=50 n=100 n=200 y= 1.668 0.131
True Esti- Mean RMSE Esti- Mean RMSE Esti- Mean RMSE —
mate ofs.e. mate of s.e. mate of s.e. GHN B - 1629517 42265 _748598
1.015 0.129 0.129 1.007 0.091 0.093 1.002 0.065 0.065 V=
0.824 0.097 0.101 0.811 0.067 0.069 0.804 0.047 0.047 AV 2.994 0.235
1.011 0103 0.105 1005  0.073 0.074 1.002 0.052 0.052 - _
1031 0121 013 1014 0084 0.086 1.007 0.059 0.06 BS B N 1336.369 40.765 751.391
1.003 0.051 0.052 1002 0.036 0036  1.001  0.026 0.026 y=0.310 0.022
2,057 0242 0.254 2.03 0.168 0.173 2013 0.118 0.12
1.002 0.034 0.035 1001 0.024 0.025 1.001 0.017 0.017
3.088 0.363 0.389 3044  0.252 0.259 3.024 0177 0178
1.001 0021 0.021 1001 0015 0.015 1 0.01 0.01

515 0.606 0.637 5.081 0.421 0.435 5.038 0.294 0.296
5.068 0.643 0.672 5.03 0.456 0.46 5.018 0.324 0.324

s o pm oo oe 0w o th tot The AIC and BIC oriteria were used to compare the
1.032 0121 0.13 1.014 0.084 0.085 1.007 0.059 0.06 dlStrIbUtlonS (Akalke,g], SChWE\rZ, 20]) It IS knOWﬂ that

5021 0256 0263 5011 0182 085 5005 0120 0129 - - ]
S o1 oh  sos i oue  som ame osm  AIC=2k—2loglik and BIC= klogn - Zloglik wherek is
3093 0363 0389 3045 0252 0264 302 0176  0.81 the number of parameters in the modelis the Samp|e
5005 0103 0104 5003 0073 0074 5002 0052 0052

<D< PDECRECDRDECDRECDRDEB®E ™’ ®» B
o o
GOAWANORAZTAORWENE R D

5139 0604 0634 507 042 0433 504 0295 0299 size and logik is the maximized value of the likelihood
function. Table4 shows the corresponding AIC and BIC
for each model. For these data, the values in the table
indicate that the MGHN distribution leads to a better fit

4 Application than the GHN and BS distributions. Figueresents the

histogram for the data with the fitted densities; Figdre

resents the empirical cdf with estimated cdf for MGHN,
HN and BS models, which also shows the good fit
)between the MGHN model and the lifetimes data.

In this Section, a real data set is used to show that th
MGHN distribution can provide a better fit with the data
set than the GHN and Birnbaum and Saunders (BS
distributions. Table 4: Akaike and Bayesian information criteria for fitted
Below we present the results of a real data set analysigodels.

using a data set previously analyzed in Birnbaum and
Saunders#, 7], related to the lifetimes in 1@ cycles of
aluminum 6061 T6 pieces cut in parallel angle with the
rotation direction, oscillating at the rate of 18 cycles per
second at maximum pressure 21Q#) with a total
sample size of 101 units. The same data were used by
Gomez et al. 15], and other studies. TabRshows some
descriptive statistics from the data set, whbjeand b,

are sample skewness and kurtosis coefficients
respectively.

Criterion MGHN GHN BS
AIC 1497.116 1501.196 1506.782
BIC 1502.346 1506.426 1512.012

1e-03

Table2: Descriptive statistics for the data set.

n X & by b,
101 1400.911 1531345 0.140 2.766

8e-04

6e-04

Density

4e-04

2e-04

Computing the moment estimators initially under the

MGHN model, we have the following estimatefiu
=1130.775 andj =1.765. Using the moment estimators
as initial values, the maximum likelihood estimates are soo 1000 1500 2000 2s00
computed using a numerical method. TaBlshows the :

MLEs for the parameters of the MGHN, GHN and BS

estimate value. For these data, the MGHN modelGHN (dashed line) and BS (dotted line);

0e+00
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