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Abstract: In this paper, we propose a fixed point iteration method similar to Mann iteration process for solving two and three point
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1 Introduction

Many problems in mathematics and engineering sciences
are formulated in boundary value problems for third order
differential equations as in physical oceanography and in
the frame work of variational theory, the deflection of
curved beam having a constant or varying cross-section,
three-layer beam, the motion of rocket, chemical
engineering, underground water flow, plasma physics,
electromagnetic waves, the study of stellar interiors. For
more detail see [1]. A number of physical of
technological problems lead to the question of
formulating mathematical models for describing a given
process or a given structure. From mathematical point of
view, these problems often lead to differential equations.
The problems of regulation and control of some actions
by a control lever or by a signal reduce to solving third
order equation [2]. Several studies have been conducted
on the solutions of third order boundary value problems.
For example, the study Akram et al.[3] developed an
approximate method for the solution of third order
differential equation with two and three point boundary
conditions using iterative reproducing kernel while the
study Hossain et al.[4] presented Galerkin weighted
residual method for constructing the numerical solution of
third order linear and non-linear boundary value problems
with two point boundary conditions. Abd El-Salam et

al.[5] developed a second and fourth order convergent
methods based on Quartic non-polynomial Spline
function for the numerical solution of a third order two
point boundary value problem.In the study [6], a multiple
finite difference method from a continuous k-step linear
multistep method is derived and applied to solve third
order boundary value problem. The convergence of the
method is established through consistency and
zero-stability by expressing them as a block method. In
Sahi et al.[7] a fourth order derivative method with
continuous coefficients is derived and used to obtain main
method and additional method. The additional method is
used to solve third order boundary value problem. Taha
and Khledha [8] proposed the numerical scheme for the
numerical solution of the third order two point boundary
value problems using non-polynomial Spline method with
finite difference method (FDM). In same vein, the study
[9], investigates the existence and uniqueness of the
solution of the general boundary value problem for the
third order nonlinear ordinary differential equation. While
our study [10], proposed a fixed point iterative method for
the solution of two point boundary value problem for a
second order differential equations. Recently
Abushammala et al.[1] have developed a new alternative
uniformly convergent iterative scheme for the solution of
an extended class of linear and nonlinear third order two
point boundary value problem. The method is based on
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embedding Green?s functions into well fixed point
iterations, including Picard?s and
Kranoselskii-Mann?scheme. In this paper, we propose a
fixed point iterative method without constructing Green?s
functions which approximates the solution of two and
three point boundary value problems for linear third order
differential equations. The rest of the paper is organized
as follows: Section 2 discusses the fixed point iteration
method while Section 3 addresses the implementation of
the method through numerical examples. Section 4
concludes the paper.

2 Fixed Point Iteration Method

Given the following three-point boundary value problem:

y′′′ = f (x,y,y′,y′′),(x,y,y′,y′′) ∈ (a1,a3)Xℜ3 (1)

α1y(a1)+α2y′(a1)+α3y′′(a1) = A1

β1y(a2)+β2y
′(a2)+β3y

′′(a2) = A2

γ1y(a3)+ γ2y
′(a3)+ γ3y′′(a3) = A3

(2)

where ai ,αi ,βi
γi ,Ai ∈ ℜ, i = 1,2,3,a1 ≺ a2 ≺ a3, ∑3

i=1 |αi | ≻ 0
∑3

i=1 |β i | ≻ 0,∑3
i=1 |γi | ≻ 0

We proposed the fixed point iteration method to
approximate the solution of (1) and (2)

From [2], it is shown that any solutiony(x) of the
boundary value problem (1) and (2) solves the
integro-differential equation:

y(x) =Ψ(x)+
2

∑
k=1

∫ ak+1

ak

Gk(x,s) f (x,y(s),y′(s),y′′(s))ds

(3)
and conversely, whereGK(x,s)is the particular Green’s
function for the boundary value problemy′′′ = 0 with the
homogeneous boundary conditions obtained from (2) by
putting A1 = A2 = A3 = 0. Ψ(x)is a solution of the
boundary value problemy′′′ = 0 with the boundary
conditions (2).

To construct the proposed fixed point iteration method,
we first transform (1) and (2) into (4) or (5) as follows:

y′′′n+1 = (1−αn)y
′′′
n +αny′′′n = (1−αn)y

′′′
n +αn f (x,yn,y

′
n,y

′′
n)

α1yn+1(a1)+α2y′n+1(a1)+α3y′′n+1(a1) = A1

β1yn+1(a2)+β2y
′
n+1(a2)+β3y

′′
n+1(a2) = A2

γ1yn+1(a3)+ γ2y′n+1(a3)+ γ3y
′′
n+1(a3) = A3

(4)

or

y′′′n+1 = αny′′′n +(1−αn)y
′′′
n = αny′′′n +(1−αn) f (x,yn,y

′
n,y

′′
n)

α1yn+1(a1)+α2y′n+1(a1)+α3y′′n+1(a1) = A1

β1yn+1(a2)+β2y
′
n+1(a2)+β3y

′′
n+1(a2) = A2

γ1yn+1(a3)+ γ2y′n+1(a3)+ γ3y
′′
n+1(a3) = A3

(5)
provided 0≤ αn ≤ 1and∑∞

n=0 αn = ∞ (Chidume [11])
Then, we letT : C(??)[a1,a3]→C(2)[a1,a3] be defined by

T[y(x)] =Ψ(x)+∑2
k=1

∫ ak+1
ak

Gk (6)

(x,s) f (x,y(s),y′(s),y′′(s))ds (7)

where T is an operator such that anyy(x) solution of (1)
and (2) is a fixed point.

2.1 Convergence

This section describes the convergence of the proposed
method but first we state the existing method as follows:

Theorem 1((Mann Iteration Method)). (Chidume [11])
Let D be a non-empty convex subset of a real Banach
Space X and T: D → D be a mapping. The sequence
{yn} ⊂ D is called Mann iteration method and is defined
by

y0 ∈ D,yn+1 = (1−αn)yn+αnTyn,n≥ 0 (8)

where {αn}is a real sequence in[0,1] that satisfies
some additive condition(∑∞

n=o αn = ∞).
Then, the proposed method (4) is compared with

existing method (8) to find their equivalence. The
equivalence is obtained as follows:

Firstly, we differentiate (6) twice to obtain

(T[yn(x)])
′′ =Ψ ′′(x)+

2

∑
k=1

∫ ak+1

ak

∂ 2

∂x2

GK(x,s) f (s,yn(s),y
′
n(s),y

′′
n(s))ds

(9)

Secondly, (8) is differentiated three times to obtain

y′′′n+1 = (1−αn)y
′′′
n +αn(Tyn)

′′′ (10)

Thirdly, (9) is differentiated only once to obtain

(T[yn(x)])
′′′ =Ψ ′′′(x)+

2

∑
k=1

∫ ak+1

ak

∂ 3

∂x3 GK(x,s) f (s,yn(s),y
′
n(s),y

′′
n(s))ds

(11)

Fourthly, we substitute (11) into (10) to obtain

y′′′n+1 = (1−αn)y
′′′
n +αn (Ψ ′′′(x)+

2

∑
k=1

∫ ak+1

ak

∂ 3

∂x3 Gk(x,s) f (s,yn(s),y
′
n(s),y

′′
n(s))ds)

(12)
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Notice that the quantity inside the brackets of (12) is
obtained by differentiating (3) three times. If we denoted
it by y′′′n , then (12) can be written in the form,

y′′′n+1=(1−αn)y
′′′
n +αny′′′n =(1−αn)y

′′′
n +αn f (x,yn,y

′
n,y

′′
n)

which is the same thing as the proposed fixed point
iteration method (4) for the solution of (1) and (2).

Finally, we prove the convergence of the proposed
method and to do that, we first state the result as follows:

Theorem 2.Let {αn}n≥0be the sequence of real numbers
satisfying the following conditions: (i)0≤ αn ≤ 1 and (ii)
∑∞

n=o αn = ∞. Also let the operator T defined in (6) be
contractive with constant of contractionL∈ (0,1). Then
the sequence{yn}n≥0 in C(2)[a1,a3]generated by

y0 ∈ C(2)[a1,a3] , where y0 is obtained from y′′′ = 0 and
the boundary condition (2) and
yn+1 = (1− αn)yn + αn(Tyn) converges to the unique
solution y∗ in C(??)[a1,a3] of (1) and (2).

Proof.Given yn+1 = (1− αn)yn + αn(Tyn), we have to
proveyn → y∗asn→ ∞ Let

ρn = ‖yn− y∗‖ρn+1 = ‖yn+1− y∗‖

= ‖(1−αn)(yn− y∗)+αn(Tyn− y∗)‖

≤ ‖(1−αn)(yn− y∗)‖+ ‖αn(Tyn− y∗)‖

Recall that ify∗ is a solution to (1) and (2), this implies
thatTy∗ = y∗. Therefore (13) becomes

ρn+1 = ‖yn+1−y∗‖ ≤ ‖(1−αn)(yn−y∗)‖+‖αn(Tyn−y∗)‖

≤ ( |1−αn|+ |αnL| )‖(yn−y∗)‖

= (1−αn(1−L))‖yn−y∗‖

Therefore,ρn+1 ≤ e−αn(1−L)ρn

ρ1 ≤ e−α0(1−L)ρ0

ρ2 ≤ e−α1(1−L)ρ1 ≤ e−α1(1−L)e−(1−L)(α0+α1)ρ0 = e−(1−L)(α0+α1+α2)ρ0

ρn+1 = e−(1−L)(α0+α1+α2+...+αn)ρ0 = e
−(1−L)

n
∑

i=0
αi

ρ0

From (ii) in Theorem 2 we haveyn → y∗ asn→ ∞

3 Numerical Results

In this section, three examples are solved to test the
accuracy of the proposed method. The results obtained
are compared with the exact solutions and Akram et
al.[3]. All computations are carried out with Maple 13.

Example 1.Source [4]. Consider the following two point
boundary value problem:

y′′′+ y′′+ y′+ y= x (13)

y(0) = 1,y(1) = 0,y′(0) = 1 (14)

The exact solution of the problem is:

yE(x) = x+
1
ex −

(1
e −1)sinx

sin1−1
(15)

Applying the proposed method (4), the problem is
transformed and the following algorithm is obtained:

y′′′n+1 = (1−αn)y
′′′
n +αn(x− y′′n− y′n− yn) (16)

yn+1(0) = 1,yn+1(1) = 0,y′n+1(0) = 1 (17)

y0(x) =−2x2+ x+1 (18)

Here y0(x)is the solution ofy′′′ = 0 with the boundary
conditionsy(0) = 1,y(??) = 0,y′(0) = 1. Integrating (16)
three times and imposing the boundary conditions (17),
the required approximate solutionyn+1is obtained.

The results obtained for different values of the
parameterαn at 12th iteration of the algorithm are
presented in Table 3.1 and Table 3.2 along with the result
of the exact solution. Table 3.1 shows the value of the
approximate solutionsy12, namely twelfth iteration at
different points. From the tables, it observed that the
results are comparable with exact solution and the choice
of αn = 1gives the best accuracy.

Example 2.Source[3]. Consider the following third order
three- point boundary value problem:

y′′′+ xy′′ =−6x2+3x−6 (19)

y(0) = 0,y′(0) = 0,y′(1) = y′(
1
2
)−

3
4

(20)

The exact solution of this problem is:

yE(x) =
3
2

x2− x3

Applying the proposed method (4), the problem is
transformed in the following algorithm:

y′′′n+1 = (1−αn)y
′′′
n +αn(−6x2+3x−6− xy′′n) (21)

yn+1(0) = 1,y′n+1(0) = 0,y′n+1(1) = y′n+1(
1
2
)−

3
4

y0(x) =−
3
4

x2

Here y0(x)is the solution ofy′′′ = 0 with the boundary
conditions (20). Integrating (21) three times and imposing
the boundary conditions (22), the required approximate
solutionyn+1is obtained.

Example 3.: Source [2]. Consider the Sandwich problem:
The shear deformationy(x) of Sandwich beams is
governed by a linear third order differential equation with
the boundary conditions at three different points is given
as:

y′′′− k2y′+ r = 0 (22)

y′(0) = y′(1) = 0,y(
1
2
) = 0 (23)

c© 2018 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


628 N. Bello et al.: Numerical solution of a linear third order ...

Table 1: Comparison of numerical results for (1) at 12th iteration
x Exact sol. αn = 1 αn = 0.99 αn = 0.979
0.0 1.000000000 1.000000000 1.000000000 1.000000000
0.1 1.0743953317 1.074395331 1.074457194 1.074525117
0,2 1.0998344155 1.099834415 1.100051801 1.100290604
0.3 1,0798437219 1.079843721 1.080266301 1.080730761
0.4 1.0181389480 1.018138949 1.018774117 1.019472599
0.5 0.9186130796 0.918613079 0.9194279821 0.9203245901
0.6 0.7853202863 0.785320286 0.7862442096 0.7872613
0.7 0.6224560361 0.622456036 0.6233831638 0.6244043
0.8 0.434333836 0.4343338360 0.4351263802 0.43599980
0.9 0.225359018 0.225359018 0.2253590187 0.2263929
1.0 0.000000000 0.000000000 0.0000000000 0.0000000

Table 2: Comparison of absolute errors in numerical results for Example 1 at 12th iteration
x αn = 1 αn = 0.99 αn = 0.979
0.1 7E-10 6.18623E-05 1.297853E-04
0,2 5E-10 2.173855E-04 4.561885E-04
0.3 9E-10 4.225791E-04 8.870391E-04
0.4 1E-9 6.35169E-04 1.333651E-03
0.5 1E-10 8.149025E-04 1.7115105E-03
0.6 1E-10 9.239233E-04 1.941026E-04
0.7 3E-10 9.271277E-04 1.9483077E-03
0.8 0.0 7.929966E-04 1.6659641E-03
0.9 5E-10 4.917053E-04 1.0338843E-03
1.0 0.0 0.0 0.0

Table 3: Comparison of numerical results for Example2 at 12th Iteration
x Exact sol. αn = 1 αn = 0.99 αn = 0.979
0.1 0.01400000000 0.01400000000 0.01376547980 0.01350799010
0.2 0.05200000000 0.05200000002 0.05110405386 0.05012038885
0.3 0.10800000000 0.1080000000 0.1060814149 0.1039750063
0.4 0.1760000000 0.1760000001 0.1727654973 0.1692143032
0.5 0.2500000000 0.2500000002 0.2452251015 0.2399825401
0.6 0.3240000000 0.32400000002 0.3175285328 0.3104229549
0.7 0.3920000000 0.3920000003 0.3837423086 0.3746750786
0.8 0.4480000000 0.4480000004 0.4379299771 0.4268722846
0.9 0.4860000000 0.4860000000 0.4741510908 0.4611396513
1.0 0.500000000 0.500000004 0.48664603622 0.4715921951

Table 4: Comparison of absolute errors in numerical results for Example 2 at 12th iteration
X αn = 1 αn = 0.99 αn = 0.979 Akram et al. [2]

(n = 100)
0.1 0.0 2.345202E-05 4.920099E-05 5.17E-09
0.2 2E-11 8.9594614E-05 1.87961115E-04 4.13E-08
0.3 0.0 1.918585E-04 4.0249937E-04 1.39E-07
0.4 1E-10 3.2345027E-04 6.7856968E-04 3.32E-07
0.5 2E-10 4.7778985E-04 1.0017459E-02 6.53E-07
0.6 2E-10 6.4714672E-04 1.3577045E-02 1.13E-06
0.7 3E-10 8.2576914E-04 1.7324921E-02 1.81E-06
0.8 4E-10 1.0070022E-02 2.1127715E-02 2.73E-06
0.9 0.0 1.1848909E-02 2.24860348E-02 3.94E-06
1.0 4E-09 1.3539637E-02 2.8407804E-02 5.48E-06
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Table 5: Comparison of numerical results for Example3 when r = k= 1 at 12th Iteration
x Exact sol. αn = 1 αn = 0.98 αn = 0.77
0.0 -0.0378828427 -0.03788284274 -0.03788284274 -0.03788284274
0.1 -0.0357370808 -0.03573708084 -0.03573708084 -0.03573708084
0.2 -0.02994565300 -0.02994565322 -0.02994565322 -0.02994565322
0.3 -0.0214514309 -0.02145143092 -0.02145143092 -0.02145143092
0.4 -0.0111702344 -0.01117023454 -0.01117023454 -0.01117023454
0.5 0.0000000000 2.1299277E-12 3.155678734E-19 2.162127113E-13
0.6 0.0111702345 0.01117023454 0.01117023453 0.01117023453
0.7 0.0214514312 0.02145143090 0.02145143090 0.02145143089
0.8 0.02994456531 0.02994565318 0.02994565318 0.02994565317
0.9 0.0357370804 0.03573708086 0.03573708084 0.03573708082
1.0 0.03788284310 0.03788284274 0.03788284274 0.03788284274

Table 6: Comparison of absolute errors in numerical results for Example 3 at 12th iteration
x αn = 1 αn = 0.98 αn = 0.77
0.0 4E-11 4E-11 4E-11
0.1 4E-11 4E-11 4E-11
0.2 2.2E-10 2.2E-10 2.2E-10
0.3 2E-11 2E-11 2E-11
0.4 1.4E-10 1.4E-10 1.4E-10
0.5 2.12E-12 3.15E-19 2.16E-13
0.6 4E-11 3E-11 3E-11
0.7 3E-10 3E-10 3.1E-10
0.8 8E-11 8E-11 7E-11
0.9 4.6E-10 4.4E-10 4.2E-10
1.0 3.6E-10 3.6E-10 3.6E-10

Table 7: Comparison of the results for the Exact solution and the proposed method for Example4 at 4th iteration.
x Exact sol. αn = 1 Abso.err
0.1 -0.08985007515 -0.0898500749 1.7E-10
0.2 -0.1589354694 -0.1589354646 4.8E-09
0.3 -0.2068641772 -0.2068641447 3.25E-08
0.4 -0.2336510423 -0.2336510054 3.69E-08
0.5 -0.239712823 -0.2397127693 5.37E-08
0.6 -0.225857066 -0.2258569894 7.66E-08
0.7 -0.193265402 -0.1932653062 9.58E-08
0.8 -0.143471331 -0.1434712182 1.12E-07
0.9 -0.078332817 -0.0783326909 1.26E-07
1.0 0.0 1.27E-07 1.27E-07

wherek2and r are physical parameters depending on the
elasticity of the layers. The exact solution of this problem
is:

y(x) =
r(k(2x−1)−2sinh(kx)+2cosh(kx) tan( k

2))

2k3

Applying the proposed method (4) to (22) and (23) with
r=k=1, the problem is transformed into the following
algorithm:

y′′′n+1 = (1−αn)y
′′′
n +αn(y

′
n−1) (24)

y′n+1(0) = y′n+1(1) = 0,y′n+1(
1
2
) = 0 (25)

y0(x) = 0

Here y0(x)is the solution ofy′′′ = 0 with the boundary
conditions (23).
Integrating (24) three times and imposing the boundary
conditions (25), the approximate solutionyn+1is obtained.
The results obtained for different values of the parameter
αn at 12th iteration of the algorithm are reported in Table
3.5 and Table 3.6. From the tables, it is clear that the results
are comparable with the exact solution and the values of
αngive almost same accuracy.

Example 4.Source[5]. Consider the following boundary
value problem:

y′′′+ y= (x+4)sinx+(1− x)cosx (26)
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y(0) = 0,y′(0) =−1,y′(1) = sin1 (27)

The exact solution of this problem is

yE(x) = (x−1)sinx

Applying the proposed method (4), the problem is
converted in the following algorithm:

y′′′n+1 = (1−αn)y
′′′
n +αn((x−4)sinx+(1− x)cosx− yn)

(28)

yn+1(0) = 0,y′n+1(1) =−1,y′n+1(1) = sin1 (29)

y0(x) =−x+
1+ sin1

2
x2

Herey0(x) is the solution ofy′′′ = 0 subject to boundary
condition (27). Integrating Eq. (28) three times and
imposing the boundary condition (29), the approximate
yn+1 is obtained.

The results obtained for the value ofαn = 1 at 4th

iteration of the algorithm are reported in Table 7 shows
the comparison with the exact solution. It is observed
from the table that with few iterations, the order of the
error is encouraging, which indicates the assurance of the
convergence.

4 Perspective

In this paper, a fixed point iteration method is proposed
for solving linear third order multi-point boundary value
problems. The results obtained are in excellent agreement
with exact solution and some existing methods in the
literature.
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