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Abstract: A Generalized Space Time Autoregressive or GSTAR is a special model of Vector Autoregressive (VAR) model which
is a combination of time series and spatial models which has the assumption of autoregressive parameter and space time parameter
having different value for each location of observation. Inaddition, it assumes stationary time series data at the meanand variance
levels and applies to locations with heterogeneous characteristics. One disadvantage of the GSTAR model is that it can not be used
to predict at unobserved locations. In this paper we combinethe GSTAR model with the Ordinary Kriging (OK) technique, named
GSTAR-Kriging model so that the GSTAR model can be used to predict in unobserved locations. GSTAR parameters are estimated
using the Ordinary Least Squares (OLS) method and these are used as inputs for the Kriging technique. Furthermore, by using linear
semivariogram we can obtain simulations to predict the GSTAR parameters. For the case study we applied the model to annual rainfall
data in wet season (Desember, January and February) from several locations in West Java, Indonesia, such as Majalengka,Kuningan
and Ciamis Regencies. The GSTAR (1;1) model in observed location have Mean Average Percentage Error (MAPE) value overall less
than 15 percent and residual of model have identically independent distributed normal. The results of GSTAR-Kriging model show that
the GSTAR-Kriging parameter at unobserved locations are almost similar to GSTAR parameter at observed locations.
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1 Introduction

A combination time series model with spatial data is
called spatiotemporal model. Spatiotemporal model is
used mostly in various sector as geology, climatology,
economy and others. Generalized Space Time
Autoregressive (GSTAR) model is a general form of
Vector Autoregressive (VAR) model which used the
spatial weight on its model and estimation [1], [2].
GSTAR model requires the characteristic in every
location are heterogenous. The GSTAR model can
forecast the data for some periods ahead at observed
locations that is trained in the model. But it can not be

used to predict the data at unobserved locations. In
Geostatistics, we can predict the data at unobserved
locations based on the random variable at observed
locations around [3]. The dependency between locations
are usually assessed by semivariogram. Furthermore,
semivariogram value gives us information how the
neighbourhood show the similarity value of random
variable. To obtain the fitted semivariogram, it requires a
lot of pairs observed locations at different distances or
spatial lag. The related work [4] have used 164 observed
locations that divided by 15 pairs observed locations
based on their distance. But in this paper we have the
experimental semivariogram value at less observed
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locations. If we obtained the semivariogram value, we
could predict the value of random variable at unobserved
locations with interpolation technique. One of the
interpolation technique is the ordinary kriging [5]. The
spatial data mining using Spatial Autoregressive-Kriging
(SAR-Kriging) has been used to predict a quality of
education in Indonesia, especially for unobserved sample
with province as a unit sample in Indonesia [11].
Otherwise, one of disadvantage of kriging technique is
only used to predict the data at one period, so we can not
get the result of prediction in long period. The GSTAR
model and kriging technique have advantage where by
combining both of them we can predict the value of
random variable at unobserved location in some periods
in the future. Combination of GSTAR model and kriging
technique is called GSTAR-Kriging model. The GSTAR
model parameters in observed locations are used as input
data on kriging technique to predict the parameter of
GSTAR model at unobserved locations. Furthermore, the
application of Clustering GSTAR-Kriging is extended to
predict oil production at volcanic layer in
Jatibarang-Indonesia which is clustered by porosity [6].
In this paper, we implemented the GSTAR-Kriging model
to rainfall data in some regencies in West Java at wet
session DJF (December-January-February). We proposed
a combination of the observed and unobserved locations
from these regencies so we can compare the results of
GSTAR-Kriging model using MAPE criteria.

2 Generalized Space Time Autoregressive
(GSTAR) Model

GSTAR model was introduced by [1] and [2] as:

Z(t) =
p

∑
k=1

λk

∑
l=0

[ΦklW
(l)Z(t − k)+ e(t)] (1)

where:
λk : spatial order from autoregressive form of

orderk
Z(t) : vector random with size(n× l) in time t
Z(t−k) : vector random with size(n× l) in time (t −k)
Φkl : diag.((Φk)

(1)), ...,((Φkl)
(n)), is diagonal

matrix of autoregressive parameters in time
lag k and spatial lagl size(n×n)

W (l) : weight matrix size(n×n) in spatial lagl
(wherel = 0,1, ...) and the weight choosen

for wii = 0 and∑i6= j w(1)
i j = 1

e(t) : error vector with size(n× l) in time t, with
assumption thate(t)∼ iid N(0,σ2I)

The GSTAR model in (1) with spatial lagl = 1, time lag

k = 1 and the number of locationN = 2 can be rearranged
as matrix equation below:

[

Z1(t)
Z2(t)

]

=

[

φ10 0
0 φ20

][

Z1(t −1)
Z2(t −1)

]

+

[

φ11 0
0 φ21

][

0 w12
w21 0

][

Z1(t −1)
Z2(t −1)

]

+

[

e1(t)
e2(t)

] (2)

if Vi =
N
∑
j=1

wi jZ j, equation (2) can be written as:

[

Z1(t)
Z2(t)

]

=

[

Z1(t −1) 0 V1(t −1) 0
0 Z1(t −1) 0 V1(t −1) 0

]







φ10
φ20
φ11
φ21






+

[

e1(t)
e2(t)

]

(3)
Equation (3) can be arranged as linear form to estimate

GSTAR model. The linear form is showed below:

Y = XΦ + e (4)

wheree ∼ iid N(0,σ2). The parameter linear form in (4)
can be estimated by ordinary least square method used the
formula [1]:

Φ̂ = (X
′
X)−1(X

′
Y ) (5)

whereX is the first matrix in the right part in equation (3).
The GSTAR model can be extended with addition of

exogenous variable , it is called GSTAR-X model [12].
We also can choose a calendar variation for exogenous
variable [14]. If the error has a correlation between
location, so we can use Seemingly Unrelated Regression
(SUR) to estimate the GSTAR model, it is called
GSTAR-SUR [15].

3 Semivariogram

Semivariogram is a diagram of half variance of
observation value difference at two locations with
distanceh. The experimental semivariogram model can
be showed below [3], [5]:

γ̂ =
1

2N(h)

N(h)

∑
i=1

[Z(xi + h)−Z(xi)]
2 (6)

The assumptions of semivariogram are:
a. E[Z(xi + h)−Z(xi)] = 0, the mean value ofZ(xi) at all
pointsxi is the same.
b. Var[Z(xi + h)− Z(xi)] = 2γ(h), there are variance of
every [Z(xi + h)− Z(xi)] and depend on intervalh and
independent in locationxi.

Semivariogram has anisotropic and isotropic
properties. Anisotropic if affected by distance and
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direction while isotropic if affected only by distance. In
this paper, we only use isotropic. Semivariogram model
commonly used is the spherical model in which tends to
form a straight line for some values around the origin.
The equation of theoretical semivariogram for the
spherical model is [3], [5]:

γ(h) =

{

c
[

3
2

(

h
a

)

−
(

1
2

)(

h
a

)3
]

, h< a

c, h≥ a
(7)

where:
c : sill
a : range
h : distance

The spherical model is displayed in Figure 1 below.

Fig. 1: Spherical Model of Semivariogram

If we just have two locations as sample, then the
equation (7) can be written as [6], [7]:

γ(h) =

{

c
[

γ̂(r)
r h

]

, h< r

γ̂(r), h≥ r
(8)

and the graphic at Figure 1 can be displayed as the linear
model, it is showed in Figure 2.

Fig. 2: Linear Model of Semivariogram at Two Locations

4 Ordinary Kriging

Kriging is a technique for predicting data in unobserved
locations located around the observed location that used a
weighted average of its point value. Kriging is based on
spatial data. Ordinary Kriging (OK) is one of the simplest
form of Kriging that assumed stationary (mean and
variance do not vary significantly in space) [6] , [13] or
E[Z(x)] = m = E[Z(xi)]. OK is also assumed normally
distributed and its estimator is best linear unbiased
estimator (BLUE). OK is linear because its estimator
depends on linear combination of data; unbiased because
the error mean is assumed to be a constant and it is
expected to zero and the variance of error is expected has
a minimum value. The Ordinary Kriging equation is
formulated [3]:

Z∗ = ∑λiZi (9)

where:
Z∗ : unobserved variable in unobserved location

λi : Kriging weighti ; and
n
∑

i=1
λi = 1

Zi : observation value in sampled locationi
The mean of estimation error is:

E[
n

∑
i=1

λi[Z(xi)− Ẑ(xi)]] = m =
n

∑
i=1

[λi −1] (10)

From (10), the Ordinary Kriging in two locations can
be arranged in an equation below [3]:





0 γ12 1
γ21 0 1
1 1 0









λ1
λ2
λm



=





γ10
γ20
1



 (11)

From (11) can be derived the equations below [6], [7]:

λ1 =
1
2
+

γ2V + γ1V

2γ12
; λ2 =

1
2
+

γ1V − γ2V

2γ12
(12)

where:
γ12 : semivariogram of two observed locations
γ1V ;γ2V : semivariogram between observed and unobserved

location that obtained on sperical model in (8)

5 GSTAR-Kriging Model

In this paper, we proposed the order of GSTAR model at
observed locations as GSTAR (1;1) model. In GSTAR
(1;1) at two observed locations, we can predict the value
of parameterφ̂1 j at unobserved locations by using the
GSTAR-Kriging model below:

φ̂1 j(s0) = ∑
i=1

2λiφ1 j(si) ; where∑
i=1

2λi = 1 and j = 0,1

(13)
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6 Data Set and Procedure

The GSTAR-Kriging model is applied to monthly rainfall
data at Majalengka, Kuningan and Ciamis Regencies.
These locations also are called East Priangan Region. The
data is obtained from Climate Hazard Infra Red
Precipitation with Station (CHRIPS) website
(http://chg.geog.ucsb.edu/) in [10],[16]. The rainfall data
is annual data in wet session or DJF season (December,
January and February) from year 1981 to 2016. The
spatial data consists of latitude and longitude data in these
regencies. The rainfall data is divided into two part of
data, training data and testing data. Training are 30 years
to estimate the parameter of GSTAR(1;1) model and
testing data are 3 years to validate the GSTAR(1;1)
model. The locations of research is showed at Figure 3.

Fig. 3: Map of Research Locations

Procedures of GSTAR-Kriging model can be
summarized as [6], [7]:
1). Compute the correlation rainfall data in three locations
and check the stationary of time series data
2). Specify the observed and unobserved locations at
some combinations
3). Estimate the parameter GSTAR model with Ordinary
Least Square (OLS) method at observed locations
4). Check the residual of GSTAR (1;1) assumption as [8],
[9]:
a. Homoscesdasticity test, to check that the variance of
residual is constant or not. The null hypothesis is the
constant variance of error model (homoscedasticity).
b. Multivariate Normal Test. The null hypothesis is the
error of model distributed multivariate normal. We can
use the Royston test.
c. White Noise Test, to check the independency of error
model. The null hypothesis is the error model have
multivariate white noise, we can use the Pormanteau test.
5). Validation model GSTAR (1;1) can be showed by
MAPE value. If the MAPE values is less than 10 percent,

it means that the model has the high forecasting
accurately [9].
6). Find the experimental and theoretical semivariogram
7). Find the estimate of Kriging weight
8). Furthermore we predict the parameters of
GSTAR-Kriging model at unobserved locations

7 Result and Discussion

7.1 Descriptive Statistics

Data processing on this paper used the R-software and
Microsoft Excel. In Figure 4, we plot the rainfall data in
wet season DJF fluctuate from 1981 to 2016 at each
location, for example at Majalengka Regency. Despite
fluctuating, the rainfall in the wet season does not have
the high variance. We use the three stages of time series
analysis from Box-Jenkins: identification, estimation
parameter and checking diagnostic before we forecast the
rainfall for the future time [17].

Fig. 4: Plot of Rainfall Data DJF at Majalengka
Regency in West Java

Table 1 shows the summary rainfall data in three
regencies. Majalengka Regency has the high mean value
of rainfall data and Ciamis Regency has the highest
variation of rainfall data. The highest maximum value of
rainfall data is in Ciamis Regency and the smallest
minimum values in in Kuningan Regency.

Table 1: Summary of Rainfall Data (mm)
Regency Sample Mean Std Max Min

Majalengka 36 1303.2 188.002 1782.6 951.7
Kuningan 36 1251.5 179.84 1712.6 925.7
Ciamis 36 1290.4 214.87 1840.5 947.1

The correlation of rainfall data at wet season in three
regencies are high that showed at Table 2.

c© 2018 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.12, No. 3, 607-615 (2018) /www.naturalspublishing.com/Journals.asp 611

Table 2: Correlation of Rainfall Data at Several Regencies in
West Java

Regency Majalengka Kuningan Ciamis
Majalengka 1.00 0.94 0.93
Kuningan 0.94 1.00 0.91
Ciamis 0.93 0.91 1.00

Furthermore, we can use the rainfall DJF data at three
regencies for implementing the GSTAR-Kriging model.
Following the procedure of the GSTAR-Kriging in sub
section 6 above, so we have the result of stationary test,
estimation parameters GSTAR, diagnostic checking,
model validation, experimental semivariogram,
estimation of Kriging weight and GSTAR-Kriging model
for rainfall data.

7.2 Stationary Test

GSTAR is the spatiotemporal model that requires the
stationary data in mean and variance. Table 3 shows that
the result of Phillips Perron test and Box-Cox Lambda.
The p-value in Phillips Perron test is less than 0.05. It
means the data have stationary in mean. Overall, the
Box-cox Lambda values are higher than 1 that can be
concluded the rainfall data are stationary in variance [8].

Table 3: Stationary Test for Rainfall Data at Several Regencies
in West Java

Regency Phillips Perron Test (p-value) Box-Cox Lambda
Majalengka 0.01 1.2015
Kuningan 0.01 1.4929
Ciamis 0.01 -0.9999

7.3 Estimation of GSTAR (1;1) Model

GSTAR (1;1) combine three sets of GSTAR model based
on observed and unobserved locations. The combinations
have been showed in Table 4.

Table 4: Combination Location of Research
Combination Observed Location Unobserved Location

Model I Majalengka and Ciamis Regency
Kuningan Regencies

Model II Majalengka and Kuningan Regency
Ciamis Regencies

Model III Kuningan and Majalengka Regency
Ciamis Regencies

In this paper we use the binary weight matrix where
the contiguous locations have the value 1 and non

contiguous locations have the value 0 [1]. The locations
in GSTAR (1;1) model in this paper are restricted by two
regencies so that we can write the binary weight matrix
as:

W=

[

0 1
1 0

]

We use the OLS method to estimate the GSTAR(1;1)
model and get the result as displayed in Table 5.

Table 5: GSTAR (1;1) Estimation Parameter Model using OLS

Combination Observed Location φ̂0 φ̂1
I Majalengka -0.7388 0.7468

Kuningan 0.4473 -0.5361
II Majalengka -0.3537 0.2603

Ciamis 0.2678 -0.3927
III Kuningan -0.1091 0.0206

Ciamis -0.059 -0.0047

By using R software, we can estimate the parameter
of GSTAR (1;1) model with OLS method. The OLS
estimator of GSTAR parameters model have properties of
consistency and asymptotic normality [18]. The result of
estimation is displayed in Table 5. The estimation of
parameters can be written into estimation model as
written in equation (2):

GSTAR (1;1) model at combination I

[

Ẑ1(t)
Ẑ2(t)

]

=

[

−0.7388 0
0 0.4473

][

Z1(t −1)
Z2(t −1)

]

+

[

0.7468 0
0 −0.5361

][

0 1
1 0

][

Z1(t −1)
Z2(t −1)

]

[

Ẑ1(t)
Ẑ2(t)

]

=

[

−0.7388 0.7468
−0.5361 0.4473

][

Z1(t −1)
Z2(t −1)

]

GSTAR (1;1) model at combination II

[

Ẑ1(t)
Ẑ3(t)

]

=

[

−0.3537 0
0 0.2678

][

Z1(t −1)
Z3(t −1)

]

+

[

0.2603 0
0 −0.3927

][

0 1
1 0

][

Z1(t −1)
Z3(t −1)

]

[

Ẑ1(t)
Ẑ3(t)

]

=

[

−0.3537 0.2603
−0.3927 0.2678

][

Z1(t −1)
Z3(t −1)

]
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GSTAR (1;1) model at combination III

[

Ẑ2(t)
Ẑ3(t)

]

=

[

−0.1091 0
0 0.059

][

Z2(t −1)
Z3(t −1)

]

+

[

0.0206 0
0 −0.0047

][

0 1
1 0

][

Z2(t −1)
Z3(t −1)

]

[

Ẑ2(t)
Ẑ3(t)

]

=

[

−0.1091 0.0206
−0.0047 0.059

][

Z2(t −1)
Z3(t −1)

]

7.4 Diagnostic Checking

The GSTAR model assumes that the residual have
independent identically distributed normal so that we
have to check the distribution of the residual.

Table 6: The Result of Homoscedasticity Residual Test
Combination p-value Conclusions

Model I 0.999 The Variance of Residual Constant
Model II 0.998 The Variance of Residual Constant
Model III 0.999 The Variance of Residual Constant

By using the R software, we have thep-value of test is
bigger than 0.05 that showed in Table 6. It means the
model have constant variance or there is no the
Autroregressive Conditional Heteroscedasticity (ARCH)
error effect.

Table 7: The Result of Multivariate White Noise Residual Test
Lag Model I Model II Model III

Q-Stat p-val Q-Stat p-val Q-Stat p-val
1 0.146 0.998 0.079 0.999 0.031 0.999
2 1.853 0.985 4.704 0.789 2.941 0.938

. . . . . . . . . . . . . . . . . . . . .
29 53.381 0.999 56.592 0.999 54.485 0.999
30 53.460 1.000 56.674 0.999 54.5424 1.000

Table 8: The Result of Multivariate Normal Residual Test
Combination p-value Conclusion

Model I 0.2096 Residual Multivariate Normal
Model II 0.2665 Residual Multivariate Normal
Model III 0.6305 Residual Multivariate Normal

Table 8 shows the result of Royston test to check the
multivariate normal residual. Thep-value at all
combination model are bigger than 0.05. It means that the
residual of model is distributed multivariate normal.

7.5 Model Validation

MAPE is used to measure the accuracy of model that
obtained by dividing the percentage of error absolute to
actual data [8]. In Table 9 we show that the MAPE value
at combination model I and III are less than 10 %. It
means the accuracy of model to forecast is high [9].

Table 9: Mean Average Percentage Error (MAPE)
Combination Location MAPE by Overall

Location MAPE
Model I Majalengka 4.67% 8.97%

Kuningan 13.28%
Model II Majalengka 10.95% 12.51%

Ciamis 14.08%
Model III Kuningan 9.05% 7.72%

Ciamis 6.39%

7.6 Experimental Semivariogram

Fig. 5: Position of Unobserved Location of Rainfall
Data using GSTAR-Kriging

Figure 5 shows the plot of location points. The
coordinate points for every regency are Majalengka (-6.86
; 108.22), Kuningan (-6.98 ; 108.50) and Ciamis (-7.22 ;
108.39). From the coordinate points we can find the
distance of locations by Euclidean distance formula.

Table 10: Experimental and Theoretical Semivariogram
Combination Experimental (γ0) Theoretical

φ0 φ1 φ0 φ1
I 0.0205 0.0448 γ1V 0.0205 0.045

γ2V 0.0184 0.040
II 0.0008 0.00005 γ1V 0.0006 0.0006

γ2V 0.0005 0.0005
III 0.0054 0.0032 γ1V 0.0054 0.0032

γ2V 0.0054 0.0032

c© 2018 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.12, No. 3, 607-615 (2018) /www.naturalspublishing.com/Journals.asp 613

Table 10 shows the experimental and theoretical
semivariogram. The experimental semivariogram can be
found by using (6). It shows the semivariogram between
observed locations. The theoretical semivariogram can be
found by using (8) and it shows the semivariogram
between observed locations and unobserved location. If
the semivariogram value is small, it means that the value
of random variable between locations is similar. For
combination II, we have that the values of experimental
and theoretical semivariogram are less than others.

7.7 Estimation of Kriging Weight

Ordinary Kriging in equation (9) shows that Kriging
weight can be used for predicting the observation at
unobserved location. We can find the Kriging weight
value using (12). Table 11 shows the Kriging weight
values in every location of simulation.

Table 11: Estimation of Kriging Weight
Model Observed Unobserved Kriging Weight(λ )

Location Location Φ0 Φ1
I Majalengka Ciamis λ1 0,4473 0,4473

Kuningan λ2 0,5527 0,5527
II Majalengka Kuningan λ1 0,4608 0,4608

Ciamis λ2 0,5392 0,5392
III Kuningan Majalengka λ1 0,5000 0,5000

Ciamis λ2 0,5000 0,5000

If theoretical semivariogram value is small, it shows
the similarity of random variable between locations so
that these locations will have the bigger Kriging weight
value. At combination I, we have the result that the
theoretical semivariogram between Kuningan-Ciamis is
less than Majalengka-Ciamis so the Kriging weight value
Kuningan-Ciamis is bigger. It means to predict the
GSTAR parameter in Ciamis Regency is most influenced
by Kuningan Regency.

7.8 GSTAR-Kriging Model

By using the Kriging weight values and parameters
estimator of GSTAR(1;1) model in observed location, we
can predict the GSTAR(1;1) model parameter at
unobserved locations. We have the result in Table 12.

If we compare Table 5 and Table 12 at combination I,
we have the result of prediction parameter model in
unobserved location (Ciamis Regency) similar to the
value of parameter in Majalengka Regency. At
combination II, we have the result of prediction parameter
model in unobserved location (Kuningan Regency)
similar to the value of parameter in Majalengka Regency.
At combination III, we have the result of prediction

Table 12: The Result of GSTAR-Kriging Model Prediction
Combination Unobserved Prediction of GSTAR-Kriging

Location φ∗
0 φ∗

1
I Ciamis -0.63 0.58
II Kuningan -0.37 0.26
III Majalengka -0.06 -0.02

parameter model in unobserved location (Majalengka
Regency) similar to the value of parameter in Ciamis
Regency. It happened because the result of Kriging
prediction depends on distance of locations. If the
unobserved locations and observed locations is
neighbouring, their GSTAR parameter value is almost
similar. So that if we predict the rainfall data in
unobserved locations, it will be obtained the rainfall data
with a pattern similar to observed locations as its
neighbour. For example, if we use combination I to
predict the rainfall data in Ciamis Regency by generating
its GSTAR model based on parameter that obtained from
GSTAR-Kriging model with the estimator of GSTAR as
an input. φ̂∗

0 = −0.63 and φ̂∗
1 = 0.58, we obtained the

results is similar to rainfall data in Majalengka. We can
compare these results with the original rainfall data in
Ciamis to validate the GSTAR-Kriging Model.
Furthermore, we can apply the GSTAR-Kriging model to
other locations that it has not the rainfall data. So, using
the GSTAR-Kriging model we can predict the observation
of rainfall data at unobserved locations in the future time
based on the rainfall data at surrounding locations.

8 Perspective

The annual rainfall data at wet season have high
correlation in Majalengka, Kuningan and Ciamis
Regencies, and the data have stationary in mean and
variance so that GSTAR (1;1) model can be applied.
MAPE of GSTAR model in all combination locations
show the high enough and good accuracy. The result of
GSTAR-Kriging model shows that the prediction
parameter at unobserved location similar to observed
location as its neighbour at surrounding location. In this
paper, we developed idea to generate the GSTAR model
in unobserved location by using the prediction of
parameters previously in GSTAR model, so that we can
forecast the rainfall data in unobserved location in the
future time and influenced by another locations as a
neighbours in a certain region. Furthermore, the
development of GSTAR-Kriging model can be extended
to be the GSTAR-X-Kriging or GSTARI-X-Kriging using
SUR method to fulfil the assumption of correlated error
and exogenous variable in real phenomena.
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