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Abstract: The two-stage stochastic second-order cone programming (SSOCP) has been recently introduced in [Appl. Math. Model.
63, 5122–5134 (2012)] to cover a lot of important applications that cannot be captured by the two-stage stochastic linear programming
(SLP). Wets [SIAM J. Applied Math. 14, 89–105 (1966)] described and characterized the equivalent convex program of the two-stage
SLP. There is no work discussing the equivalent convex program of the two-stage SSOCP. The purpose of this short paper is to describe
and characterize the equivalent convex program of the SSOCPproblem. We first discuss the properties of the solution set of the SSOCP,
and then develop the convex program equivalent to the SSOCP.We show that the objective function of the equivalent convexprogram
is convex and continuous.
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1 Introduction

A diverse set of real-world applications can be modeled
as stochastic second-order cone programming (SSOCP)
problems as Euclidean facility location problem, portfolio
optimization with loss risk constraints, optimal covering
random ellipsoid problem, and mobile ad hoc
networks [1–3]. Since a linear inequality is a special case
of a second-order cone inequality, a two-stage SSOCP
includes a two-stage stochastic linear program (SLP) as a
special case. Several interior-point algorithms have been
proposed for solving SSOCP (see for example [4–8]).
Wets [9] described and characterized the equivalent
convex program of a two-stage SLP. To our knowledge,
there is no work discussing the equivalent convex
program of an SSOCP. This paper is devoted to extend the
results of Wets [9] for SLP to the case of SSOCP. We also
mention that recently, Yang [10, Chapter 2] extended the
results of Wets [9] to the case of a two-stage stochastic
semidefinite programming.

This paper is organized as follows. In Section 2, we
present the standard form of the primal SSOCP. Section 3
discusses the properties of the solution set of an SSOCP.
In Section 4, we develop the convex program equivalent
to the SSOCP, we then discuss the properties of the
objective function of the equivalent convex program and

derive a supporting set for this objective function similar
to the concept of supporting hyperplane in linear
programming.

2 Formulation of primal SSOCP

As mentioned earlier, in this section we present the
standard form of the primal SSOCP. To do so, we first
introduce notations of the algebra of the second-order
cone. These notations follow that of Alizadeh and
Goldfarb [11].

2.1 Notations of the algebra of the second-order
cone

We use “,” for adjoining vectors and matrices in a row, and
use “;” for adjoining them in a column. So, for example, if
xxx,,,yyy, andzzz are vectors, we have:





xxx
yyy
zzz



= (xxxT,yyyT,zzzT)T = (xxx;yyy;zzz).

For each vectorxxx ∈R
n whose first entry is indexed with 0,

we writex̃xx for the subvector consisting of entries 1 through
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n−1; thereforexxx = (x0; x̃xx) ∈ R×R
n−1. We letE n denote

then dimensional real vector spaceR×R
n−1 whose first

component of elementxxx is indexed with 0.
The second-order cone of dimensionn is defined as

E n
+ := {xxx∈ E n : x0 ≥‖x̄xx‖},where‖···‖ denotes the standard

Euclidean norm.
Let xxx,yyy ∈ E n. We will use the following symbols from

the theory of Euclidean Jordan algebras associated with
the second-order cone:

xxxTyyy := trace(xxx◦ yyy) for theFrobenius inner product
of xxx andyyy;

‖xxx‖F :=
√

2‖xxx‖ for theFrobenius norm of xxx;
eee for theidentity element of E n;
xxx � 000 for xxx ∈ E n

+ (i.e.,λ1,λ2 ≥ 0);
xxx ≻ 000 for xxx ∈ int(E n

+) (i.e.,λ1,λ2 > 0);
xxx � yyy or yyy � xxx for xxx− yyy � 000.

The above notions are also used in the block sense as
follows. Let xxx = (xxx1;xxx2; . . . ;xxxr) and yyy = (yyy1;yyy2; . . . ;yyyr),
with xxxi,yyyi ∈ E ni for i = 1,2, . . . ,r. Then

E := E n1 ×E n2 ×·· ·×E nr ;
E+ := E

n1
+ ×E

n2
+ ×·· ·×E

nr
+ ;

xxxTyyy := xxx1
Tyyy1+ xxx2

Tyyy2+ · · ·+ xxxr
Tyyyr;

‖xxx‖2
F := ∑r

i=1‖xxxi‖2
F ;

eee := (eee1;eee2; . . . ;eeer) is the identity ofE .

We write the multiple-block second-order cone
inequality xxx � 000 (xxx ≻ 000) to mean that the vector
xxx ∈ E+ (xxx ∈ int(E n

+)). It is immediately seen that, for
every vectorxxx ∈ E , xxx � 000 if and only if xxx is partitioned
conformally as xxx = (xxx1;xxx2; . . . ;xxxr) with xxxi � 000 for
i = 1,2, . . . ,r. We also writexxx � yyy or yyy � xxx to mean that
xxx− yyy � 000.

2.2 Formulation of primal SSOCP

Let r1,r2 ≥ 1 be integers. For eachi = 1,2, . . . ,r1 and j =
1,2, . . . ,r2, let m1,m2,n1,n2,n1,i,n2, j be positive integers
such thatn1 = ∑r1

i=1 n1,i andn2 = ∑r2
j=1 n2, j. Let xxx,yyy,ccc and

ddd be vectors, andA,T andW be matrices such that they
are partitioned conformally as follows:

xxx := (xxx1;xxx2; . . . ;xxxr1), wherexxxi ∈ E n1,i ;
yyy := (yyy1;yyy2; . . . ;yyyr2

), whereyyy j ∈ E
n2, j ;

ccc := (ccc1;ccc2; . . . ;cccr1), whereccci ∈ E n1,i ;
ddd := (ddd1;ddd2; . . . ;dddr2), whereddd j ∈ E

n2, j ;
A := (A1,A2, . . . ,Ar1), whereAi ∈ R

m1×n1,i ;
T := (T1,T2, . . . ,Tr1), whereTi ∈ R

m2×n1, j ;
W := (W1,W2, . . . ,Wr2), whereWj ∈ R

m2×n2, j .

The standard form of the primal SSOCP (P-SSOCP)
[1] is:

min z(xxx) =
r1

∑
i=1

cccT
i xxxi + Eξξξ

{ r2

∑
j=1

dddT
j yyy j

}

s.t.
r1

∑
i=1

Aixxxi = bbb,

r1

∑
i=1

Tixxxi +
r2

∑
j=1

Wjyyy j = ξξξ ,

xxx1, . . . ,xxxr1 , yyy1, . . . ,yyyr2
� 000,

(1)

whereA ∈ R
m1×n1,T ∈ R

m2×n1,W ∈ R
m2×n2,ccc ∈ R

n1,ddd ∈
R

n2 andbbb ∈R
m1 are deterministic data. Hereξξξ ∈R

m2 is a
random vector defined on the probability space(Ξ ,F,F),
whereΞ is a simple space,F is a set of events, andF is the
probability measure. The variablexxx ∈R

n1 is the first-stage
decision variable and the variableyyy ∈ R

n2 is the second-
stage decision variable.

Problem (1) can be compactly rewritten in the
following form

min z(xxx) = cccTxxx + Eξξξ{dddTyyy}
s.t. Axxx = bbb,

Txxx + Wyyy = ξξξ ,
xxx , yyy � 000.

(2)

Problem (2) is a two-stage second-order cone program
under uncertainty. We assume that (2) is solvable. Its
objective function in fact can be written as

z(xxx) = cccTxxx + Eξξξ{min dddTyyy |xxx}, (3)

where “|xxx” means “givenxxx”.

3 The set of feasible solutions

The focus is on the current (here-and-now) decision. The
only decision variable for P-SSOCP isxxx, since oncexxx is
taken andξξξ is observed, the set of optimal second-stage
decisions yyy is determined uniquely by solving the
following second-order cone program

min z(xxx) = dddTyyy
s.t. W yyy = ξξξ −Txxx,

yyy � 000.
(4)

A feasible solution to P-SSOCP is a vectorxxx that
satisfies the first-stage constraints and such that it is
always possible to find a feasible solutionyyy to the
second-stage problem. We now define

K1 := {xxx : Axxx = bbb,xxx � 000}, and
K2 := {xxx : for everyξξξ ∈ Ξ , there existsyyy � 000

such thatWyyy = ξξξ −Txxx}

In linear programming, a positive spanned closed
convex cone from a given matrixW can be defined as
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pos(W ) := {Wyyy : yyy ≥ 000}. Similarly, in second-order cone

programming we can define
+

soc(W ) := {Wyyy : yyy � 000}. It

is easy to see that
+

soc(W ) is a pointed, closed, convex
cone generated positively by the points ofRm2

corresponding to the column ofW . Accordingly, we can
rewriteK2 as

K2 = {xxx : ξξξ −Txxx ∈ +
soc(W ) for all ξξξ ∈ Ξ}.

It is easy to see thatK1 andK2 are convex sets. We
therefore have the following proposition about the
convexity of the set of feasible solutions of (2).

Proposition 1.The set of feasible solutions of (2),
K := K1∩K2, is convex.

For simplicity, we assume thatK has full dimension. Due
to the complexity ofK2 when Ξ is a continuum, we
examine our problem under the following assumption:
Assumption 1. We assume that the setΞ has a finite
number of points (card|Ξ | < ∞), denoted byξξξ ( j) for
j = 1,2, . . . ,k.

Under Assumption 1, we have

K2 ={xxx : for eachj = 1,2, . . . ,k, there exists ayyy( j) � 000

such thatT xxx+Wyyy( j) = ξξξ ( j)}.

We can also conclude three propositions on the
feasibility of the second-stage problem (4). First, for xxx
andξξξ ∈ Ξ , we define

U(xxx,ξξξ ) := min{(ξξξ −Txxx)Tuuu : W Tuuu � 000}.

Next, we need Farkas’ lemma for second-order cone
programming (see [12, Chapter 14]).

Lemma 1.Let A ∈ R
m×n be a matrix and bbb ∈ R

m. Then
either:

1.there is an xxx ∈ R
n such that Axxx = bbb and xxx � 000; or

2.there is a yyy ∈ R
m such that ATyyy � 000 and bbbTyyy < 0.

Proposition 2.xxx ∈ K2 if and only if for every ξξξ ∈ Ξ we
have U(xxx,ξξξ )≥ 0.

Proof. For a givenxxx0 and for everyξξξ ∈ Ξ , the inequality
U(xxx0,ξξξ ) ≥ 0 implies that the inequalities
(ξξξ − Txxx0)

Tuuu < 0 andW Tuuu � 000 have no solutions. By
Farkas’ lemma, the systemWyyy = ξξξ − Txxx0 has a solution
yyy � 000 for all ξξξ ∈ Ξ . Hencexxx0 ∈ K2, vice versa.�

Combining Lemma1 and Proposition2, we get the
following two propositions.

Proposition 3.xxx ∈ K if and only if xxx ∈ K1 and U(xxx,ξξξ )≥ 0
for every ξξξ ∈ Ξ .

Proposition 4.xxx ∈ K if and only if xxx ∈ K1 and U(xxx,ααα)≥ 0,
where ααα is any lower bound of ξξξ .

However, we note thatU(xxx,ααα) is not necessarily an
upper bound as the argument in Wets [9, p.96] shows. Let
ûuu be an optimal solution to

min (ξξξ −Txxx)Tuuu
s.t. W Tuuu � 000.

Suppose that we havexxx0 such that xxx0 ∈ K1 and
U(xxx0,ααα) < 0 (equivalently αααTûuu < (T xxx0)

Tûuu). By
Proposition 4, xxx0 /∈ K. Therefore, everyxxx ∈ K must
satisfy the inequality(T xxx)Tûuu < αααTûuu. This constraint can
be added to the fixed constraints ofK1, Axxx = bbb,xxx � 000, and
it cuts off part of the setK1.

Now, we are ready to discuss an equivalent convex
program problem for a SSOCP by extending the result
of [9, Section 3].

4 The equivalent convex programming
problem

In this section, we show that a P-SSOCP can be
expressed, in terms of the first-stage decision variablexxx,
as a convex program that it would be called the equivalent
convex programming problem. As mentioned earlier, we
also derive the properties of the objective function of the
equivalent convex program and derive a supporting set for
this objective function similar to the concept of
supporting hyperplane in linear programming. We then
provide a generalized gradient formula for the objective
function.

Definition 1.A programming problem, min f (xxx);xxx ∈ K, is
an equivalent convex programming problem to P-SSOCP,
if K is the set of feasible solutions to P-SSOCP, if f (xxx) is
given explicitly for each xxx, and if an optimal solution to the
equivalent programming problem is an optimal solution to
P-SSOCP.

We are now in a position to state and prove the main
theorem in this paper.

Theorem 1.The programming problem:

min z(xxx) = cccTxxx+Eξξξ{min dddTyyy |xxx}
s.t. xxx ∈ K.

(5)

is an equivalent convex program to P-SSOCP.

Proof. Note thatK is the set of feasible solutions to P-
SSOCP. We need to prove that Program (5) is a convex
program. Since the setK is convex (see Proposition (1)), it
suffices to show that the objective functionz(xxx) is convex
in xxx.

First, we show that Program (5) can be written as

min z(xxx) = cccTxxx+Q(xxx)
s.t. xxx ∈ K.

(6)
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where

Q(xxx) := Eξξξ{Q(xxx,ξξξ )}=
∫

ξξξ∈Ξ
Q(xxx,ξξξ )dF(ξξξ )

and, for fixedξξξ ∈ Ξ

Q(xxx,ξξξ ) := max{(ξξξ −Txxx)Tuuu : W Tuuu � ddd}.

(Here, for simplicity, we assume that|Q(xxx,ξξξ )|< ∞).
Let us consider the second-stage (4) for a fixedξξξ ∈ Ξ ,

as a function ofxxx, and define

P(xxx,ξξξ ) := min{dddTyyy : Wyyy = ξξξ −Txxx, yyy � 000}

Without loss of generality, we assume here that the primal
problem is strictly feasible. So by the strong duality
theorem for second-order cone programming [11], we
have P(xxx,ξξξ ) = Q(xxx,ξξξ ). Therefore, Program (5) can be
written as Program (6).

Define also

T := {xxx : T xxx = ξξξ −Wyyy, for someyyy � 000}

= {xxx : ξξξ −Txxx ∈ +
soc(W )}.

Next, we show that the functionP(xxx,ξξξ ) is convex inxxx on
the setT , and in particular onK2. It is easy to see thatT
is convex. Consequently, assume thatxxx(0),xxx(1) ∈ T , and
λ ∈ [0,1]. Thenxxx(λ ) := λ xxx(0)+(1−λ )xxx(1) ∈ T . Now, let
yyy(0),yyy(1) andyyy(λ ) be such that

P(xxx( j),ξξξ ) := dddTyyy( j)

= min{dddTyyy : Wyyy = ξξξ −Txxx, yyy � 000},
for j = 0,1,λ .

Thenỹyy = λ yyy(0)+(1−λ )yyy(1) is a feasible solution, but in
general, not an optimal solution to the second-stage
optimization problem (4). Thus,P(xxx,ξξξ ) satisfies

P(xxx(λ ),ξξξ ) = dddTyyy(λ )

≤ dddTỹyy

= λ dddTyyy(0)+(1−λ )dddTyyy(1)

= λ P(xxx(0),ξξξ )+ (1−λ )P(xxx(1),ξξξ ).

Thus,P(xxx,ξξξ ) is a convex function inxxx on T . Similar to
LP cases in Dantzig [13] and Wets [9], we argue that
sinceP(xxx,ξξξ ) is convex onK2, thenQ(xxx) = Eξξξ{P(xxx,ξξξ )}
is convex onK2. Thus,z(xxx) is a convex function inxxx. The
result is established.�

Observe that we can extract the following corollaries
from the proof of our main theorem.

Corollary 1.The Program (6) is an equivalent convex
program to P-SSOCP.

Corollary 2.The function P(xxx,ξξξ ) is convex in xxx on the set
T , and in particular on K2.

Corollary 3.The function Q(xxx) is convex on K2.

We have shown that the objective function of the
equivalent convex program is convex. Proposition6
shows the continuity of the objective function of the
equivalent convex program. We have the following
proposition which will be used to prove Proposition6.

Proposition 5.The function Q(xxx,ξξξ ) is continuous in xxx on
the set T , and in particular on K2.

Proof. If there is only one point in setT , then it is trivial to
prove. Without loss of generality, we assume that there are
at least two points inT . We want to show that for allε > 0
there exist aδ > 0 such that for allxxx ∈T , and an arbitrary
xxx(0) ∈T ,‖xxx−xxx(0)‖F < δ =⇒ |Q(xxx,ξξξ )−Q(xxx(0),ξξξ )|< ε.

Let {W(i)} be a subcollection of the square
nonsingular submatrices ofW of rank m2, such that

{W(i)} are distinct and such that
+
soc(W(i)) constitute a

covering of
+
soc (W ). Let ddd(i) be the subvector ofddd

corresponding to the columns ofW determiningW(i).
Then, for every xxx ∈ T and ξξξ ∈ Ξ , we have

ξξξ −T xxx ∈ +
soc(W( j)) for some index( j). Consequently, it

follows that

Q(xxx,ξξξ ) = P(xxx,ξξξ ) = dddTyyy = dddT
( j)W

−1
( j) (ξξξ −Txxx).

Assume that‖ddd( j)‖F > 0,‖W−1
( j) ‖F > 0,‖T‖F > 0, and that

‖xxx− xxx(0)‖F < δ . Then we have

|Q(xxx,ξξξ )−Q(xxx(0),ξξξ )| =
∣

∣dddT
( j)W

−1
( j) T (xxx(0)− xxx)

∣

∣

≤ ‖ddd( j)‖F‖W−1
( j) ‖F‖T‖F‖xxx− xxx(0)‖F

< δ ‖ddd( j)‖F‖W−1
( j) ‖F‖T‖F

= δ M,
(7)

where M := ‖ddd( j)‖F‖W−1
( j) ‖F‖T‖F . Let δ :=

ε
M

. This

implies that |Q(xxx,ξξξ ) − Q(xxx(0),ξξξ )| < ε. The proof is
complete.�

Proposition 6.The function Q(xxx) is continuous on K2.

Proof. For all xxx ∈ K2, and an arbitraryxxx(0) ∈ K2, assume
that‖xxx− xxx(0)‖F < δ . Using (7), we have

|Q(xxx)−Q(xxx(0))| ≤
∫

ξξξ∈Ξ

∣

∣

∣Q(xxx,ξξξ )−Q(xxx(0),ξξξ )
∣

∣

∣dF(ξξξ )

≤ ‖xxx− xxx(0)‖F

∫

ξξξ∈Ξ
M dF(ξξξ )

< δ M,

where the last equality follows by noting that
M := ‖ddd( j)‖F‖W−1

( j) ‖F‖T‖F is independent ofξξξ , and
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from the fact that
∫

ξξξ∈Ξ dF(ξξξ ) = 1. Having δ =
ε
M

, it

follows that |Q(xxx) − Q(xxx(0))| < ε. The proof is
complete.�

The dual of Problem (4) can be written as

min (ξξξ −Txxx)Tuuu
s.t. W Tuuu � ddd.

(8)

Let uuu(xxx,ξξξ ) be an optimal solution to (8) for fixed xxx
and ξξξ . Strict feasibility guarantees that the optimal
solutionuuu(xxx,ξξξ ) and the optimal valueQ(xxx,ξξξ ) are defined
for all xxx ∈ K and allξξξ ∈ Ξ . Let the vector

uuu(xxx) := Eξξξ{uuu(xxx,ξξξ )} =
∫

ξξξ∈Ξ
uuu(xxx,ξξξ )dF(ξξξ ). (9)

Note thatuuu(xxx) is defined as an expected optimal solution
to Problem (8) for a givenxxx. Let also the scalar

φ(xxx) := Eξξξ{uuuT(xxx,ξξξ )ξξξ}=
∫

ξξξ∈Ξ
uuuT(xxx,ξξξ )ξξξ dF(ξξξ ).

Proposition 7.The set
{

xxx : (ccc−TTuuu(xxx0))
Txxx =−φ(xxx0)

}

is
a supporting set of z(xxx) at xxx = xxx0, where xxx0 ∈ K.

Proof. (Similar to the proof of [9, Proposition 27]). We
need to show that for everyxxx ∈ K

0=(ccc−T Tuuu(xxx0))
Txxx+φ(xxx0)≤ (ccc−T Tuuu(xxx))Txxx+φ(xxx)= z(xxx).

For everyxxx ∈ K andξξξ ∈ Ξ , we have

(ξξξ −Txxx)Tuuu(xxx,ξξξ )≥ (ξξξ −Txxx)Tuuu(xxx0,ξξξ ).

(Sinceuuu(xxx0,ξξξ ) is not a solution to (8), butuuu(xxx,ξξξ ) is).
By integrating both sides with respect todF(ξξξ ) and

addingcccTxxx on both sides, we get

z(xxx) = cccTxxx+
∫

ξξξ∈Ξ
(ξξξ −Txxx)Tuuu(xxx,ξξξ )dF(ξξξ )

≥ cccTxxx+
∫

ξξξ∈Ξ
(ξξξ −Txxx)Tuuu(xxx0,ξξξ )dF(ξξξ ). �

From the definition ofz(xxx) and Proposition7, we
conclude the following corollary.

Corollary 4.(ccc−T Tuuu(xxx0)) is a gradient of z(xxx) at xxx = xxx0.

In fact, the functionz(xxx) is not necessarily differentiable.
Hence we also conclude the following corollary.

Corollary 5.Let xxx0 ∈ K. Then xxx0 is optimal if and only if
there exists uuu(xxx0) such that for every
xxx ∈ K,(ccc−T Tuuu(xxx0))

Txxx0 ≤ (ccc−T Tuuu(xxx0))
Txxx.

5 Conclusion

The two-stage stochastic second-order cone programming
is an important class of optimization problems that
includes the two-stage stochastic linear programming as a
special case. There is no work discussing the equivalent
convex program of the stochastic second-order cone
programming analogue to that of Wets [9] for the
stochastic linear programming. In this short paper, we
have discussed the properties of the solution set of the
two-stage stochastic second-order cone programming,
and have described and characterized its equivalent
convex program. We have also shown that the objective
function of the equivalent convex program is convex and
continuous.
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