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Abstract: The two-stage stochastic second-order cone programmiB@C®) has been recently introduced in [Appl. Math. Model.
63, 5122-5134 (2012)] to cover a lot of important applicasithat cannot be captured by the two-stage stochastia [imegramming
(SLP). Wets [SIAM J. Applied Math. 14, 89-105 (1966)] debed and characterized the equivalent convex program ofxthestage
SLP. There is no work discussing the equivalent convex pragsf the two-stage SSOCP. The purpose of this short papedestribe
and characterize the equivalent convex program of the SS@atfrem. We first discuss the properties of the solution siteoSSOCP,
and then develop the convex program equivalent to the SS®EBhow that the objective function of the equivalent corpmgram

is convex and continuous.
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1 Introduction derive a supporting set for this objective function similar
to the concept of supporting hyperplane in linear

A diverse set of real-world applications can be modelegP'0dramming.

as stochastic second-order cone programming (SSOCP)
problems as Euclidean facility location problem, portioli . .

optimization with loss risk constraints, optimal covering 2 Formulation of primal SSOCP
random ellipsoid problem, and mobile ad hoc

) . i Lo . As mentioned earlier, in this section we present the
networks [1-3]. Since a linear inequality is a special case

of a second-order cone inequality, a two-stage SSOC&tandard form Qf the primal SSOCP. To do so, we first

includes a two-stage stochastic linear program (SLP) as introduce notations .of the algebra of the _second-order
) e . : one. These notations follow that of Alizadeh and

special case. Several interior-point algorithms have beer@soldfarb 11

proposed for solving SSOCP (see for examgies]). '

Wets P] described and characterized the equivalent

convex program of a two-stage SLP. To our knowledge, .

there is no work discussing the equivalent convex2'1 Notations of the algebra of the second-order

program of an SSOCP. This paper is devoted to extend th€0Ne

results of Wets9g] for SLP to the case of SSOCP. We also - o o

mention that recently, YandLp, Chapter 2] extended the e use *," for adjoining vectors and matrices in a row, and

results of Wets 9] to the case of a two-stage stochastic Y€ ;" for adjoining them in a column. So, for example, if

semidefinite programming. X,Y, andz are vectors, we have:

This paper is organized as follows. In Section 2, we

present the standard form of the primal SSOCP. Section 3 X - (xT T ZT)T — (xy:2)
discusses the properties of the solution set of an SSOCP. lz( =Xy =Xy 2).

In Section 4, we develop the convex program equivalent
to the SSOCP, we then discuss the properties of thd-or each vectox € R" whose first entry is indexed with O,
objective function of the equivalent convex program andwe writeX for the subvector consisting of entries 1 through
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n— 1; thereforex = (xo;X) € R x R"1. We let&™ denote The standard form of the primal SSOCP (P-SSOCP)
the n dimensional real vector spaex R"! whose first  [1] is:
component of elementis indexed with 0.

r
The second-order cone of dimensionn is defined as min z(x) = zic X+ ]EE{ ZZ djTyj}
&N :={xe &":xg > ||X]|}, where]| - || denotes the standard =
Euclidean norm.

Letx,y € &". We will use the following symbols from st ZlAix‘ =b, (1)
the theory of Euclidean Jordan algebras associated with ra
the second-order cone: le.X. + Zwyj =&,
X"y := tracgxoy) for the Frobeniusinner product X Y1V =0,
of xandy; . whereA ¢ R™M*M T ¢ RMXM W ¢ R™* cc R d €
IX||F := v/2||x]| for the Frobenius norm of x; R™ andb € R™ are deterministic data. Hefee R™ is a
e for theidentity element of &™; random vector defined on the probability sp&&elF,F),
x> 0forxe &0 (i.e., A1, A2 > 0); WhereE_ js a simple spacé is aset of events, aﬂ%iis the
X~ 0 forx € int(&") (i.e., A1, Az > O); probability measure. The varialbtec R™ is the first-stage

decision variable and the variabyec R™ is the second-
stage decision variable.

Problem () can be compactly rewritten in the
The above notions are also used in the block sense ag|iowing form

follows. Let X = (Xg;Xo; ... xr) andy = (Yi:¥o;-- 3 ¥ )s

X>=yory=<xforx—y>=0.

with x,y; € ™ fori=1,2,...,r. Then min z(x) = c"x + Eg{d"y}
E=EMXEY X x EM, ™ + Wy =¢,
E = EMXER X x EN; X, y =0
XY =Xy +X Yo 4+ XYy Problem @) is a two-stage second-order cone program
IX||2 := ST_q|1%i[|2; under uncertainty. We assume th&) (s solvable. Its
e:=(e;;e;...;&) is the identity of&. objective function in fact can be written as
z(x) = ¢'x + Eg{mind"y|x}, (3)

We write the multiple-block second-order cone
inequality x = 0 (X > 0) to mean that the vector
Xe & (xeint(&])). It is immediately seen that, for
every vectorx € &, x = 0 if and only if x is partitioned
conformally asx = (Xg;Xo;...;X) with X > 0 for
i=12...,r. We also writex > y or y < x to mean that

where X’ means “givenx’.

3 The set of feasible solutions

~y=0. The focus is on the current (here-and-now) decision. The
only decision variable for P-SSOCP xs since oncex is
taken and¢ is observed, the set of optimal second-stage
. . decisions y is determined uniquely by solving the
2.2 Formulation of primal SSOCP following second-order cone program
minz(x) =d'y
Letry,r, > 1 be integers. Foreadh=1,2,...,r; andj = s.t. Wy = & —Tx, 4)
1,2,...,rp let ml,rrlz,nl,nz,n1|,n2J be posmve integers y = 0.

such thahl = Z. 1Ngj andny = ZJ 1Mo j. Letx,y,cand

d be vectors, and\, T andW be matrices such that they A feasible solution to P-SSOCP is a vectorthat
are partitioned conformally as follows: satisfies the first-stage constraints and such that it is

always possible to find a feasible solutignto the
second-stage problem. We now define

X = (X1;Xo;...; X, ), Wherex; € &M,

y = (YuYa2--¥r,), wherey; € £M2i; Ki := {x: Ax=b,x > 0}, and

C = (Cy;Cp...;Cr,), Whereg € &™1; Ky := {x: for every& c = there existy = 0

d = (di;d;...;dy,), whered; € £™; such thaiy = & — Tx}

A = (A1, A2,...,A,), WhereA € RM=Mi;

T = (T1,T,...,T,), whereT, € R™xMj; In linear programming, a positive spanned closed

W= (Wi, Wb, ... ,\ W, ), wherew; € R™*"2j, convex cone from a given matr/ can be defined as
(@© 2018 NSP
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pos(W) := {Wy:y > 0}. Similarly, in second-order cone However, we note thdt (X, a) is not necessarily an
programming we can definﬁ)c(W) — [Wy:y >0l It upper bound as the argument in Wedsp.96] shows. Let

) 4 . i 0 be an optimal solution to

is easy to see thatoc (W) is a pointed, closed, convex

cone generated positively by the points wm min (§ = Tx)Tu
Corrgspondlng to the column ®¥. Accordingly, we can s.t. WTu 0.
rewriteK, as

N Suppose that we havexyg such thatx, € K; and

Ko={x:&—-Txe soc(W)forall & € =}. U(Xo,a) < 0 (equivalently a™@ < (Txo)'d). By
Proposition4, xo ¢ K. Therefore, everyx € K must
It is easy to see thaf; andK; are convex sets. We  satisfy the inequalitf Tx)"@ < a'Q. This constraint can
therefore have the following proposition about the pe added to the fixed constraintstof, Ax = b, x = 0, and

convexity of the set of feasible solutions @) ( it cuts off part of the sei;.

Now, we are ready to discuss an equivalent convex
program problem for a SSOCP by extending the result
of [9, Section 3].

Proposition 1.The set of feasible solutions of (2),
K :=Ki1NKjy, is convex.

For simplicity, we assume th#t has full dimension. Due
to the complexity ofK, when = is a continuum, we
examine our problem under the following assumption:4 The equivalent convex programming
Assumption 1. We assume that the s& has a finite problem

number of points (card=| < ), denoted by£<J> for
i=212,....k

. In this section, we show that a P-SSOCP can be
Under Assumption 1, we have

expressed, in terms of the first-stage decision variaple
_ , , () as a convex program that it would be called the equivalent
Kz ={x:foreachj =1,2,... k there exists '/’ = 0 convex programming problem. As mentioned earlier, we
such thafl'x+Wy<j> _ E(i)}. also derive the properties of the objective function of the
equivalent convex program and derive a supporting set for

We can also conclude three propositions on thethis objective function similar to the concept of
feasibility of the second-stage problem).(First, forx  supporting hyperplane in linear programming. We then
and& € =, we define provide a generalized gradient formula for the objective

function.

. H Ty - T

U (%&) :=min{(¢ ~Tx)'u:Wiu = O}, Definition 1.A programming problem, minf(x);x € K, is
Next, we need Farkas' lemma for second-order cone2n equivalent convex programming problemto P-SSOCP,
programming (seell, Chapter 14]). if K is the set of feasible solutions to P-SSOCP, if f(X) is
given explicitly for each X, and if an optimal solution to the
Lemma llet Ac R™" be a matrix and b € R™. Then  equivalent programming problemis an optimal solution to

either: P-SSOCP.

l.thereisan x € R" such that Ax =b and x = O; or

2thereisay € RM such that ATy = 0 and b'y < O. We are now in a position to state and prove the main

theorem in this paper.
Proposition 2x € K; if and only if for every & € = we

haveU (x,£) > 0. Theorem 1The programming problem:
Proof. For a givenxy and for every€ ¢ =, the inequality min z(x) = ¢'x+Eg{mind"y|x} 5)
U(X,§) > 0 implies that the inequalities st. x € K.

(§ —Txo)"™u < 0 andW'u = 0 have no solutions. By .
Farkas’ lemma, the systeWy = & — Txg has a solution is an equivalent convex programto P-SSOCP.

- =. i
y = 0forall € =. Hencexo € Kz, vice versall Proof. Note thatK is the set of feasible solutions to P-

SSOCP. We need to prove that ProgreéBpié a convex
program. Since the s#&tis convex (see Propositiof)], it
suffices to show that the objective functip(x) is convex
Proposition 3x € K ifand only if x e Ky andU (x,&) >0 in X.

Combining Lemmal and Propositior2, we get the
following two propositions.

forevery & € =. First, we show that Prograns)can be written as

Proposition 4x € K ifand only if x € K; andU (x,a) > 0, min z(X) = ¢'x+ 2(x)

where a is any lower bound of &. st. X e K. (6)
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where
200 =Eg(Qu.&)) = [_Qux EAF(E)

and, for fixedé ¢ =
Q(x, &) :=max{(§ —Tx)"u:WTu=d}.
(Here, for simplicity, we assume th@(x, )| < ).
Let us consider the second-stagefor a fixed€ € =,
as a function ok, and define

P(x,&) :=min{d"y:Wy=& —Tx, y> 0}

Without loss of generality, we assume here that the primaEl

Corollary 2. The function P(x, &) is convex in x on the set
7 ,and in particular on Ks.

Corollary 3. The function 2(x) is convex on Ks.

We have shown that the objective function of the
equivalent convex program is convex. Propositién
shows the continuity of the objective function of the
equivalent convex program. We have the following
proposition which will be used to prove Propositién

Proposition 5.The function Q(x, &) is continuousin x on
theset 7, and in particular on Ks.

Proof. If there is only one pointin se¥’, theniitis trivial to
rove. Without loss of generality, we assume that there are
tleast two points in7. We want to show that for all > 0

problem is strictly feasible. So by the strong duality {here exist &5 > 0 such that for alk € .7, and an arbitrary

theorem for second-order cone programmidd],|[ we
have P(x,&) = Q(x,&). Therefore, Program5j can be
written as Programg).

Define also

T ={x: Tx= & —Wy, for somey > 0}
={x:§{—-Txe s+oc(W)}.
Next, we show that the functid®(x, &) is convex inx on
the set7, and in particular of». It is easy to see tha¥’
is convex. Consequently, assume th&,x ¢ .7, and

A €[0,1]. Thenx®) := Ax© 4+ (1—2)xY € 7. Now, let
y©.y® andy?) be such that

P(x1) &) :=dTyl)
=min{d"y:Wy=& —Tx, y> 0},
forj=0,1,A.

Theny = Ay + (1— A )y is a feasible solution, but in
general, not an optimal solution to the second-stage

optimization problem4). Thus,P(x, &) satisfies

P(xM), &) = dTy®
<d'y
=Ad"y9 + (1-2)d"y?
Thus,P(x, &) is a convex function irx on 7. Similar to
LP cases in Dantzigl3] and Wets 9], we argue that
sinceP(x,&) is convex orky, then2(x) = Eg{P(x,§)}

is convex orKy. Thus,z(X) is a convex function ix. The
result is established.]

Observe that we can extract the following corollaries

from the proof of our main theorem.

Corollary 1.The Program (6) is an equivalent convex
programto P-SSOCP.

X0 e 7 |x-xO0r <5 = |Q(x.§) - Qx?,&)| <.
Let {W;} be a subcollection of the square
nonsingular submatrices diV of rank m,, such that

{W;} are distinct and such thabc (Wj)) constitute a

covering ofsoc (W). Let d(j, be the subvector oid
corresponding to the columns &¥ determiningW;.
Then, for everyx ¢ 7 and & € =, we have

§E-Txe SJBC(V\/(J-)) for some indeXj). Consequently, it
follows that
Qx &) =P(x. &) = d"y = d[; W (§ — Tx).

Assume thalidj) || > 0,|W;'F >0, T[>0, and that
[x— x| < &. Then we have

Q% &) — Q(X?, &)| = dj W(;'T (x —x)|
< Iy IE IWGHIE I Tl l1x—XO e
< & [dgj)lIF W HIFIT e
=5 M,
.o
where M := [d;[|F W lF[|T[lF. Let & := . This

implies that |Q(x, &) — Q(x(9,&)| < &. The proof is
complete[]

Proposition 6.The function 2(x) is continuous on Kj.

Proof. For all x € K, and an arbitrarx(®) € K,, assume
that|x— x| < 8. Using (7), we have
200~ 2(x®)] < [ _|Q0c€) - QX &)[dF (&)
< ||x—x<°>|\p/z _MdF(&)
(S
< oM,

where the last equality follows by noting that
M := [|d;)|[£[IW; Il Tl is independent ofé, and
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from the fact thatf;_-dF (§) = 1. Having & = £ it 5 Conclusion

M
follows that |2(x) — 2(x9)| < e. The proof is  The two-stage stochastic second-order cone programming
complete[] is an important class of optimization problems that
includes the two-stage stochastic linear programming as a
The dual of Problemd) can be written as special case. There is no work discussing the equivalent
convex program of the stochastic second-order cone
min (§ —Tx)Tu (8) programming analogue to that of Wet$)] [for the

s.it. Wu=d. stochastic linear programming. In this short paper, we

have discussed the properties of the solution set of the
Let u(x,&) be an optimal solution to8f for fixedx ~ two-stage stochastic second-order cone programming,
and &. Strict feasibility guarantees that the optimal and have described and characterized its equivalent

solutionu(x, &) and the optimal valu®(x, &) are defined ~ convex program. We have also shown that the objective
forall x € K and all € =. Let the vector function of the equivalent convex program is convex and

continuous.

) =Eg(u(x £)) = [ ux EAFE). (@)
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