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Abstract: In this paper we study a one dimensional inverse source problem. Distinguishability according to the source function in

time-space fractional equationDβ
t u(x, t) = D2α

x u(x, t)+ f (x), 1
2 < α ≤ 1, 0< x< 1, 0< β ≤ 1 with Dirichlet boundary conditions is

investigated. In addition to this, the measured output datah(t) determined analytically by a series representation.
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1 Introduction

Recent decades have witnessed a fast growing
applications of fractional partial differential equations to
diverse scientific and engineering fields regarding
anomalous diffusion, constitutive modeling in
viscoelasticity, signal processing and control, fluid
mechanics, image processing, aerodynamics,
electro-dynamics of complex medium and polymer
rheology.

Compared to integer-order calculus, fractional partial
differential equations have the capacity of providing a
more simple and accurate description of complex
mechanical and physical processes featuring history
dependency and space non locality and has thus induced
the occurrences of a series of fractional differential
equations [1,2,3,4,5,6,7].

In this paper, we consider time-space fractional inverse
problem with Dirichlet boundary conditions:

Dβ
t u(x, t) = D2α

x u(x, t)+ f (x)
1
2 < α ≤ 1,0< x< 1,0< β ≤ 1

u(x,0) = g(x) 0≤ x≤ 1

u(0, t) =Ψ0(t) u(1, t) =Ψ1(t),0≤ t ≤ T

(1)

The fractional ordersβ ∈ (0,1) andα ∈
(

1
2,1

)

are related
to the parameters specifying the large-time behavior of
the waiting-time distribution or long-range behaviour of
the particle jump distribution. In hydrological studies, the
parameterα is used to characterize the heterogeneity of
porous medium.

In theory, these parameters can be determined from the
underlying stochastic model, but often in practice, they
are determined from experimental data.

The notation Dβ
t is the Djrbashian-Caputo derivative

operator of orderβ ∈ (0,1) in the time variablet, and
D2α

t denotes the Djrbashian-Caputo derivative of order
α ∈

(1
2,1

)

in the space variablex.

Dβ
t u(x, t) = (I1−β u′)(t), 0< β ≤ 1, Iβ being the Riemann-

Liouville fractional integral,

(Iβ f )(t) =

{

1
Γ (α)

∫ t
0(t − τ)β−1 · f (τ)dτ 0< β ≤ 1

f (t) β = 0
(2)

Ψ0(t) and Ψ1(t) are the left and right boundary value
functions, respectively. They belong toC1[0,T].
g(x) ∈ C1[0,1] is the function that satisfies the following
conditions:
g(0) =Ψ0(0), g(1) =Ψ1(0).
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Under the conditions (C1) and (C2), the initial-boundary
value problem (1) has the unique solutionu(x, t).
Caputo’s fractional derivatives are more widely used in
initial value problems of differential equations and have
stronger physical interpretations. The Caputo fractional
derivative can better reconcile the well-established and
polished mathematical theory with practical
needs.

For a real numbern−1< γ < n, n∈ N and f ∈ Hn(0,1)
the left-sided Djrbashian-Caputo derivativeDγ

x f of orderγ
is defined by

Dγ
x f =

1
Γ (n− γ)

∫ x

0
(x− s)n−1−γ f (n)(s)ds, (3)

whereΓ (z) denotes Euler’s Gamma function defined by

Γ (z) =
∫ ∞

0
sz−1e−sds ℜ(z)> 0 (4)

The Djrbashian-Caputo derivative was first introduced by
mathematician Mkhitar M. Djrbashian for studies on
space of analytical functions and integral transforms in
1960’s (see [8]). Geophysicist Michele Caputo
independently proposed the use of the derivative for
modeling the dynamics of viscoelastic materials in 1967.
We note that there are different definitions of fractional
derivatives, notably the Riemann-Liouville fractional
derivative, which formally is obtained from (3) by inter
charging the order of integration and differentiation, that
is the left-sided Riemann-Liouville fractional derivative
Dγ

x f of orderγ ∈ (n−1,n), n∈ N is defined by

Dγ
x f =

dn

dxn

1
Γ (n− γ)

∫ x

0
(x− s)n−1−γ f (s)ds (5)

In this work, we will focus on the Djrbashian-Caputo
derivative since it allows a convenient treatment of the
boundary and initial conditions.

Consider the inverse problem of determining the
distinguishability of the unknown source functionf (x)
from the Neumann type of measured output data at the
inner pointx= 1

2. Measured output data is taken atx= 1
2

since it is the middle point but it can be taken at an inner
point at which output data is measured exactly. It depends
on the physical conditions of the systems.

Φ[ f ] = D2α
x u(x, t; f ) |x= 1

2
(6)

We can formulate the measured output datah(t) as
follows:

Φ[ f ] = h h∈C1(0,T] (7)

The inverse problem of determining an unknown source
function f (x) is reduced to the problem of invertibility of
Φ[·]. This directs us to investigate the distinguishability

of the source function via input-output mappings. The
mapping Φ[·] : K −→ C1[0,T] has distinguishability
property wheneverΦ[ f1] 6= Φ[ f2] implies f1(x) 6= f2(x).
Hence, that means injectivity of the inverse mappings
Φ−1 andΨ−1. Here, measured output data of Neumann
type at the inner pointx = 1

2 is used in the determination
of the distinguishability of the unknown source function
f (x). As a result of these, in the distinguishability of the
unknown source functionf (x), analytical results are
obtained. Regardless of the validity of auxiliary function
what are the sufficient conditions under which the
distinguishability of the unknown source function is
determined. It is known that approximate initial and
boundary conditions there is a solution but by using
auxiliary solution we check the closeness of the solution
to the right solution.

2 Analysis of the Time-Space Fractional
Inverse Problem with Measured Data

Determine the measured measured output datag(t) at the
inner point x = 1

2. We used the Fourier method in the
formulation of problem (1). We need to define an
auxiliary functionv(x, t) as follows:

v(x, t) = u(x, t)− xΨ1(t)+ (x−1)Ψ0(t) (8)

v(x, t) helps to transform problem (1) into a problem with
homogeneous boundary conditions. Therefore (1) can be
rewritten in terms ofv(x, t) in the following form:

Dβ
t v(x, t)−D2α

t v(x, t) = f (x)− xDβ
t Ψ1(t)+ (x−1)Dβ

t Ψ0(t)

+Ψ1(t)D
2α
x x−Ψ0(t)D

2α
x (x−1)

v(x,0) = g(x)− xΨ1(0)+ (x−1)Ψ0(t)

v(0, t) = v(1, t) = 0
(9)

We can get the unique solution of the initial boundary
value problem by using Fourier method:

v(x, t) =
∞

∑
n=1

< ζ (θ ),Φn,α(θ )> Eβ ,1(−λn,α tβ )Φn,α (x)

+
∞

∑
n=1

{

∫ t

0
sβ−1Eβ ,β (−λn,α sβ )(< ξ (θ , t −s),Φn,α (θ )>

+< F(θ ),Φn,α(θ )>)ds

}

Φn,α(x)

ζ (x) = g(x)−xΨ1(0)+(x−1)Ψ0(t)

ξ (x, t) = f (x)−xDβ
t Ψ1(t)+(x−1)Dβ

t Ψ0(t)+Ψ1(t)D
2α
x x

−Ψ0(t)D
2α
x (x−1)

(10)

Moreover,

< ζ (θ ),Φn,α (θ )>=

∫ 1

0
Φn,α(θ )ζ (θ )dθ , (11)
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Eα ,β (z) is the two-parameter Mittag-Leffler function (with
β > 0 andα ∈ R) defined by

Eα ,β (z) =
∞

∑
k=0

zk

Γ (kβ +α)
, z∈C. (12)

This function withβ = 1 was first introduced by Mittag-
Leffler in 1903 [16].

It can be verified thatE1,1(z) = ez, E2,1(z) = cosh
√

z and

E2,2(z) =
sinh

√
z√

z . As a consequence, it represents a
generalization of the exponential function in that
E1,1(z) = ez. The functions Eβ ,1(−λn,α , tβ ) and
sβ−1Eβ ,β (−λn,αsβ ) appear in the kernel of the time
fractional diffusion problem with initial data and the
right-hand side, respectively. Eigenfunctions also appear
in the kernel of fractional Sturm-Liouville problem with a
zero potential [9,10,11,12,13,14,15].

Assume thatΦn,α(x) is the solution of the following
Sturm-Liouville problem:

D2αΦ(x) = λ Φ(x) 0< x< 1

Φ(0) = 0 , Φ(1) = 0
(13)

where the eigenvalues areλn,α = (nπ)2α , n= 1,2, . . . and
the associated eigenvalues areΦn,α = sin(nΠx).

The Neumann type of measured output data atx = 1
2 can

be written in terms ofv(x, t) in the following form

h(t) = D2α
x v

(1
2, t

)

+Ψ1(t)−Ψ0(t) , t ∈ (0,T]. (14)

In order to arrange (10), set the followings

zn(t) =< ζ (θ ),Φn,α (θ )> Eβ ,1(−λn,αtβ )

wn(t) =
∫ t

0
sβ−1Eβ ,β (−λn,αsβ )< ξ (θ , t − s),Φn,α(θ )>

yn(t) =
∫ t

0
sβ−1Eβ ,β (−λn,αsβ )< F(θ ),Φn,α (θ )>

(15)

The solution in terms ofzn(t),wn(t),yn(t) can be written
in the following form:

v(x, t) =
∞

∑
n=1

zn(t)Φn,α(x)+
∞

∑
n=1

wn(t)Φn,α(x)

+
∞

∑
n=1

yn(t)Φn,α (x).

(16)

Now, let us differentiate both sides of (16) with respect to
x

D2α
x v(x, t) =

∞

∑
n=1

zn(t)D
2α
x Φn,α(x)+

∞

∑
n=1

wn(t)D
2α
x Φn,α(x)

+
∞

∑
n=1

yn(t)D
2α
x Φn,α(x)

(17)

By substitutingx= 1
2 we obtain:

D2α
x v

(1
2, t

)

=
∞

∑
n=1

zn(t)D
2α
x Φn,α

(1
2

)

+
∞

∑
n=1

wn(t)D
2α
x Φn,α

(1
2

)

+
∞

∑
n=1

yn(t)D
2α
x Φn,α(

1
2) .

(18)

By considering the over-measured data

D2α
x v

(1
2, t

)

+Ψ1(t)−Ψ0(t) = h(t) (19)

we get:

h(t) =Ψ1(t)−Ψ0(t)+
∞

∑
n=1

zn(t)D
2α
x Φn,α

(

1
2

)

+
∞

∑
n=1

wn(t)D
2α
x Φn,α

(1
2

)

+
∞

∑
n=1

yn(t)D
2α
x Φn,α

(1
2

)

(20)
. (20) implies that h(t) can be determined
analytically.

The right-hand side of the above identity (20) defines the
following input-output mapping:

Φ[ f ](t) :=Ψ1(t)−Ψ0(t)+
∞

∑
n=1

zn(t)D
2α
x Φn,α(

1
2)

+
∞

∑
n=1

wn(t)D
2α
x Φn,α(

1
2)+

∞

∑
n=1

yn(t)D
2α
x Φn,α(

1
2)

(21)

So we obtain the relation between the source functions
and the corresponding outputsf j(t) := D2α

x u
(

1
2, t; f j

)

by
providing the following lemma.

Lemma 1.Let v1(x, t) = v(x, t; f1) and v2(x, t) = v(x, t; f2)
be the solutions of the direct problem (9) corresponding
to the admissible source functions f1(x), f2(x) ∈ K. If
h j(t) = D2α

x (1
2, t; f j) +Ψ1(t) −Ψ0(t) j = 1,2 are the

corresponding outputs, the outputs hj(t), j = 1,2, satisfy
the following series identity

∆h(t)=
∞

∑
n=1

∆wn(t)D
2α
x Φn,α

(

1
2

)

+
∞

∑
n=1

∆yn(t)D
2α
x Φn,α

(

1
2

)

(22)
for each t∈ (0,T] where∆h(t) = h1(t)−h2(t), ∆wn(t) =
w1

n(t)−w2
n(t), ∆ f (t) = f1(t)− f2(t) and∆yn(t) = y1

n−y2
n.

Proof.By using identity (20) we can write the measured
output data as follows, respectively [16,17,18,19,20].

h j(t) = D2α
x v

(

1
2, t

)

+Ψ1(t)−Ψ0(t) j = 1,2 (23)
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h1(t) =Ψ1(t)−Ψ0(t)+
∞

∑
n=1

z1
n(t)D

2α
x Φn,α

(1
2

)

+
∞

∑
n=1

w1
n(t)D

2α
x Φn,α

(

1
2

)

+
∞

∑
n=1

y1
n(t)D

2α
x Φn,α

(

1
2

)

(24)

h2(t) =Ψ1(t)−Ψ0(t)+
∞

∑
n=1

z2
n(t)D

2α
x Φn,α

(

1
2

)

+
∞

∑
n=1

w2
n(t)D

2α
x Φn,α

(1
2

)

+
∞

∑
n=1

y2
n(t)D

2α
x Φn,α

(1
2

)

(25)
Therefore, the desired result is the difference of these two
formulas.

Corollary 1.Let the conditions of Lemma hold. In addition

< f1(x)− f2(x),Φn,α (x)>= 0 (26)

∀ t ∈ (0,T], ∀n= 0,1,2, . . . holds, then h1(t) = h2(t) ∀ t ∈
(0,T]

SinceΦn,α(x), ∀ n= 0,1,2, . . . form a basis for the space
and D2α

x Φn,α(x) 6= 0 ∀ n = 0,1,2, . . . then f1(x) 6= f2(x)
implies that< f1(x)− f2(x),Φn,α (x) > 6= 0 at least for
some n∈ N. Hence by Lemma1 we conclude that
h1(t) 6= h2(t) which leads us to the following
consequence:Φ[ f1] 6= Φ[ f2] =⇒ f1(x) 6= f2(x)

Theorem 1.Assume thatΦ[·] : K −→ C1[0,T] is the
input-output mapping defined by (21) and corresponding
to the measured output h(t) = D2α

x u
(

1
2, t

)

. Then we get
that the mappingΦ[ f ] has the distinguishability in the
class of admissible parameters K, that is

Φ[ f1] 6= Φ[ f2] ∀ f1, f2 ∈ K =⇒ f1(x) 6= f2(x) (27)

3 Conclusion

MappingΦ[·] : K → C1[0,1] which is determined by the
measured output data at the inner pointx = 1

2 in the
time-space fractional diffusion equation.We came to
conclude that the distinguishability of the input-output
mapping holds, which implies the injectivity of the
inverse mappingΦ−1. The measured output datah(t) is
obtained analytically by a series representation which
leads to the explicit form of the input-output mapping
Φ[·].
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