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Abstract: In this article, based on progressively Type-II censored schemes under step-stress partially accelerated life test model,
the maximum likelihood, Bayes, and two parametric bootstrap methods are used for estimating the unknown parameters of the
Kumaraswamy inverse Weibull distribution and the acceleration factor. Asymptotic confidence interval estimates of the model
parameters and the acceleration factor are also evaluated by using Fisher information matrix. The classical Bayes estimators cannot be
obtained in explicit form, so Markov chain Monte Carlo method is used to tackle this problem, which allows us to constructthe credible
interval of the involved parameters. Finally, analysis of asimulated data set has been also presented for illustrativepurposes.
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Acronym:
PT-2CS Progressively Type-II Censored Schemes
ALT Accelerated Life Test
PALT Partially Accelerated Life Test
C-SPALT Constant-Stress Partially Accelerated Life Test
S-SPALT Step-Stress Partially Accelerated Life Test
MLEs Maximum Likelihood Estimates
PDF Probability Density Function
CDF Cumulative Distribution Function
KIWD Kumaraswamy Inverse Weibull Distribution
ACIs Asymptotic Confidence Intervals
MCMC Markov chain Monte Carlo
SEL Squared Error Loss
Perc-pCIs Percentile-p Bootstrap
Stud-tCIs Studentized-t Bootstrap
CRI Credible Interval
BPCIs Bootstrap-P Confidence Intervals
BTCIs Bootstrap-T Confidence Intervals

1 Introduction

Manufacturers work on producing reliable products
which resist the failure under normal enviromental
conditions by studying the failure causes, assessing new

designs, testing products before marketing. Strong
competition among manufacturers and the desire not to
lose, leading to test products under severe conditions
(stress), such as high temperatures and high voltages to
emphasize product quality and reduce test time, such tests
called accelerated life testing. ALT can be used to obtain
the failure information of a product under accelerated
stress conditions in a short time. However, in some
situations, the accelerated function is unknown and the
ALT is not available. In this case, the products can be
tested first under normal conditions until the pre-fixed
time and then the surviving products are changed to put in
accelerated stress conditions, this case is called PALT.

There are two common types of PALT, C-SPALT and
S-SPALT see Nelson [1]. In C-SPALT, the grouped test
units are separately put in normal conditions and
accelerated stress conditions. For S-SPALT, the surviving
units in the experiment are shifted from normal
conditions to higher stress conditions after a fixed time or
a fixed failure number. Generally, stress is applied until
the test unit fails or the test is terminated based on a
certain censoring scheme, where the censoring scheme
which is used in this article is PT-2CS. For more details
on progressive censoring, we refer the reader to
Balakrishnan and Aggarwala [2], Balakrishnan [3],
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Musleh and Helu [4], EL-Sagheer [5,6] and Mahmoud et
al. [7,8,9]. The C-SPALT and S-SPALT have been
addressed under different censoring schemes for example,
see Ismail [10,11], EL-Sagheer [12], Abushal and
Soliman [13], Abd-Elfattah et al. [14], Ismail [15],
EL-Sagheer and Mohamed [16]. In this paper, we aim to
study statistical inference based on PT-2CS in the
presence of step-stress partially accelerated life tests.

The remainder of this paper is organized as follows:
Section 2 provides a description of KIWD and the
tampered random variable model. In Section 3 the MLEs
of the parameters under consideration are estimated in
addition to the corresponding ACIs. Section 4 concerns
with two types of bootstrap confidence intervals. Section
5 is devoted to Bayesian approach that uses the famed
MCMC technique. An illustrative example is developed
to explain the theoretical results in Section 6. Eventually
conclusion is inserted in Section 8.

2 Model description

A brief specification is given in this section about KIWD.
Also, the transformed probability density function of
KIWD under the tampered random variable model is
presented.

2.1 Kumaraswamy inverse Weibull distribution

The KIWD was introduced by Shahbaz et al. [17]. This
distribution is an extension of the IWD. The PDF, CDF,
reliability function and hazard rate function of the four
parameters KIWD are given, fory > 0, (a,c,d,b) > 0,
respectively, by

f (y) =acdby−(b+1)exp
{
−dcy−b

}

×
(

1−exp
{
−dcy−b

})a−1
,

(1)

F (y) = 1−
(

1−exp
{
−dcy−b

})a
, (2)

S(y) =
(

1−exp
{
−dcy−b

})a
, (3)

and

h(y) =acdby−(b+1)exp
{
−dcy−b

}

×
(

1−exp
{
−dcy−b

})−1
.

(4)

Special case: Ifd = 1 and b = 2, the resulting
distribution is called Kumaraswamy-Inverse Rayleigh
distribution see Hussian and Amin [18].

2.2 Basic assumptions

The following assumptions are used throughout the paper:

(1)n identical and independent units are put on the life test
and the life time of individual unit has KIWD.

(2)At the beginning each of the units functions under
normal use condition. If it does not fail and exceeds a
pre-specified timeτ, it is put under accelerated
condition (stress).

(3)The test is terminated when themth failure occurs,
wherem is pre-fixed before(m≤ n) .

(4)At the ith failure a random number of the surviving
units Ri = 1,2, ...,m− 1, are randomly selected and
removed from the test. Finally, at themth failure, the
remaining surviving unitsRm = n−m−∑m−1

i=1 Ri are
removed from the test and the test is terminated.

(5)The tampered random variable model is applied. It was
designed by Degroot and Goel [19]. According to this
model the lifetime of a unit sayY, under S-SPALT can
be written as

Y =

{
T,
τ + 1

e (T − τ) ,
i f T ≤ τ,
i f T > τ, (5)

where T is the lifetime of the units under normal
condition, τ is the stress change time ande is the
acceleration factor, wheree> 1.

(6)Using the transformation variable technique, the PDF
of KIWD (a,b,d,c) under S-SPALT is given by

f (y) =





0, y> 0,
f1 (y) = f (y), 0< y≤ τ,
f2(y), y> τ,

(6)

whereψi (e) = τ +e(y− τ) and

f2 (y) = eacdb[ψi (e)]
−(b+1)exp

{
−dc[ψi (e)]

−b
}

×
(

1−exp[−dc[ψi (e)]
−b]
)a−1

.

(7)Let n1 be the number of failures before timeτ at the
normal condition andm−n1 be the number of failures
after timeτ at accelerated condition (stress), then the
observed progressive censored data are

yR
1;m,n < ... < yR

n1;m,n < τ < yR
n1+1;m,n < ... < yR

m;m,n, (7)

whereR= (R1,R2, ...,Rm) and∑m
i=1Ri = n−m.

3 Maximum likelihood inference

In this section, the MLEs of the model parameters are
obtained. Letyi = yR

i;m,n, i = 1,2, · · · ,m be the observed
values of the lifetimeY obtained from a PT-2CS under
S-SPALT, with censored schemeR = (R1,R2, · · · ,Rm).
The log-likelihood function ℓ(a,b,d,c,e|y) =

logL(a,b,d,c,e|y) of the observations
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y1 < · · ·< yn1 < τ < yn1+1 < · · ·< ym without normalized
constant is given by

ℓ(a,b,d,c,e|y)

= mlog(acdb)+ (m−n1) loge− (b+1)
n1

∑
i=1

logyi

−
n1

∑
i=1

dcy−b
i +

n1

∑
i=1

(a(Ri +1)−1) log
(

1−exp
{
−dcy−b

i

})

−(b+1)
m

∑
i=n1+1

logψi(e)−
m

∑
i=n1+1

dc[ψi(e)]
−b

+
m

∑
i=n1+1

(a(Ri +1)−1) log
(

1−exp
{
−dc[ψi(e)]

−b
})

.(8)

Thus, we have the likelihood equations fora,e,c,b and
d respectively, as

∂ l(a,c,d,b)
∂a

=
m
a
+

n1

∑
i=1

(Ri +1) log
(

1−exp
{
−dcy−b

i

})

+
m

∑
i=n1+1

(Ri +1) log(1−exp
{
−dc[ψi(e)]

−b
}
)

= 0, (9)

∂ l(a,c,d,b)
∂e

=
m−n1

e
− (b+1)

m

∑
i=n1+1

(
yi − τ
ψi(e)

)

+
m

∑
i=n1+1

dcb(yi − τ) [ψi(e)]
−(b+1)

−
m

∑
i=n1+1

dcb(a(Ri +1)−1)(yi − τ)
(1−exp(−dc[ψi(e)]−b))

×exp
{
−dc[ψi(e)]

−b
}
[ψi(e)]

−(b+1)

= 0, (10)

∂ l(a,c,d,b)
∂c

=
m
c
−

n1

∑
i=1

dy−b
i

+
n1

∑
i=1

dy−b
i (a(Ri +1)−1)exp

{
−dcy−b

i

}
(
1−exp

{
−dcy−b

i

})

−
m

∑
i=n1+1

d [ψi(e)]
−b

+
m

∑
i=n1+1

d (a(Ri +1)−1)[ψi(e)]
−bexp

{
−dc[ψi(e)]

−b
}

(
1−exp

{
−dc[ψi(e)]

−b
})

= 0, (11)

∂ l(a,c,d,b)
∂b

=
m
b
−

n1

∑
i=1

logyi +
n1

∑
i=1

dcy−b
i logyi

+
m

∑
i=n1+1

dc[ψi(e)]
−b logψi(e)

−
n1

∑
i=1

(a(Ri +1)−1)
(
dcy−b

i logyi
)

exp
{
−dcy−b

i

}
(
1−exp

{
−dcy−b

i

})

−
m

∑
i=n1+1

logψi(e)−
m

∑
i=n1+1

dc(a(Ri +1)−1)[ψi(e)]−b
(

1−exp
{
−dc[ψi(e)]

−b
})

× logψi(e)exp
{
−dc[ψi(e)]

−b
}

= 0, (12)

and

∂ l(a,c,d,b)
∂d

=
m
d
−

n1

∑
i=1

cy−b
i +

n1

∑
i=1

cy−b
i (a(Ri +1)−1)exp

{
−dcy−b

i

}
(
1−exp

{
−dcy−b

i

})

−
m

∑
i=n1+1

c[ψi(e)]
−b

+
m

∑
i=n1+1

c(a(Ri +1)−1)[ψi(e)]
−bexp

{
−dc(ψi(e))−b

}

(1−exp{−dc[ψi(e)]−b})
= 0. (13)

A system of nonlinear simultaneous equations in five
unknowns vaiablesa, e, c, b andd is resulted.

It is obvious that an exact solution is not easy to get.
To calculate the MLEs ˆa, ê, ĉ, b̂ andd̂ from the nonlinear
Equations (9)-(13), we use the Newton-Raphson iterative
method, see EL-Sagheer [5].

3.1 Asymptotic confidence intervals

We construct asymptotic confidence intervals of MLEs by
using the asymptotic normality theory. The observed
Fisher information matrix has second partial derivatives
of log-likelihood function given in Eq. (8), with respect to
a,b,d,c andeas the entries, which easily can be obtained.
Hence, the observed information matrix is given by

Î =




− ∂ 2ℓ
∂a2 − ∂ 2ℓ

∂a∂b − ∂ 2ℓ
∂a∂d − ∂ 2ℓ

∂a∂c − ∂ 2ℓ
∂a∂e

− ∂ 2ℓ
∂b∂a − ∂ 2ℓ

∂b2 − ∂ 2ℓ
∂b∂d − ∂ 2ℓ

∂b∂c − ∂ 2ℓ
∂b∂e

− ∂ 2ℓ
∂d∂a − ∂ 2ℓ

∂d∂b − ∂ 2ℓ
∂d2 − ∂ 2ℓ

∂d∂c − ∂ 2ℓ
∂d∂e

− ∂ 2ℓ
∂c∂a − ∂ 2ℓ

∂c∂b − ∂ 2ℓ
∂c∂d − ∂ 2ℓ

∂c2 − ∂ 2ℓ
∂c∂e

− ∂ 2ℓ
∂e∂a − ∂ 2ℓ

∂e∂b − ∂ 2ℓ
∂e∂d − ∂ 2ℓ

∂e∂c − ∂ 2ℓ
∂e2




A

. (14)

whereA= ↓ (a,b,d,c,e) = (â, b̂, d̂, ĉ, ê)
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The asymptotic variance-covariance matrixÎ−1 for the
MLEs is obtained by inverting the observed information
matrix Î or equivalent

Î−1 =




var(â) Cov(âb̂) Cov(âd̂) Cov(âĉ) Cov(âê)
Cov(b̂â) var(b̂) Cov(b̂ê) Cov(b̂ĉ) Cov(b̂ê)
Cov(d̂â) Cov(d̂b̂) var(d̂) Cov(d̂ĉ) Cov(d̂ê)
Cov(ĉâ) Cov(ĉb̂) Cov(ĉd̂) var(ĉ) Cov(ĉê)
Cov(êâ) Cov(êb̂) Cov(êd̂) Cov(êĉ) var(ê)



.

(15)
Then, the 100(1− δ )% two sided CIs fora, b, d, c ande,
can be given by

(âL, âU) = â∓ zδ
2

√
var(â)

(b̂L, b̂U) = b̂∓ zδ
2

√
var(b̂)

(d̂L, d̂U) = d̂∓ zδ
2

√
var(d̂)

(ĉL, ĉU) = ĉ∓ zδ
2

√
var(ĉ)

(êL, êU) = ê∓ zδ
2

√
var(ê)





, (16)

where zδ
2

is the percentile of the standard normal

distribution with right-tail probabilityδ
2 .

4 Bootstrap confidence intervals

In this section, we present the parametric bootstrap
method to construct CIs for the unknown parametersa, b,
d,c and e. It is very important in estimate CIs and
hypothesis tests. So, two parametric bootstrap methods
are used:(i) Studentized-t (Stud-t) bootstrap CI suggested
by Hall [20] and (ii) Percentile (Perc-p) bootstrap CI
suggested by Efron [21]. Hall [20] showed that the Stud-t
CI is better than the Perc-p bootstrap CI from an
asymptotic point of view, although the finite sample
properties are not yet known. The Bootstrap samples
obtained by using the following steps:

(1)Based on the original PT-2C sample,y≡ yR
1;m,n < ... <

yR
n1;m,n < yR

n1+1;m,n < ... < yR
m;m,n compute ˆa, b̂, d̂, ĉ and

ê.
(2)Useâ, b̂, d̂, ĉ andê to generate a bootstrap sampley∗

with the same values ofRi , i = 1,2, ..,m.
(3)As in Step 1 based ony∗ compute the bootstrap sample

estimates of ˆa, b̂, d̂, ĉ andê sayâ∗, b̂∗, d̂∗, ĉ∗ andê∗.
(4)Repeat the above Steps 2 and 3N times and arrange

all â∗, b̂∗, d̂∗, ĉ∗ and ê∗ in ascending order to obtain

the bootstrap sample(ϑ̂ ∗[1]
k , ϑ̂ ∗[2]

k , ..., ϑ̂ ∗[N]
k ),

k = 1,2,3,4,5 where ϑ̂ ∗
1 = â∗, ϑ̂ ∗

2 = b̂∗,
ϑ̂ ∗

3 = d̂∗, ϑ̂ ∗
4 =, ĉ∗ andϑ̂ ∗

5 = ê∗.

4.1 Percentile bootstrap confidence intervals

Let Φ(q) =P(ϑ̂ ∗
k ≤ q) be the cdf ofϑ̂ ∗

k . Defineϑ̂ ∗
k Perc−p =

Φ−1(q) for givenq. The approximate Perc-p 100(1−δ )%

CI of ϑ̂ ∗
k is given by

[ϑ̂ ∗
k Perc−p(

δ
2
), ϑ̂ ∗

k Perc−p(1−
δ
2
)]. (17)

4.2 Studentized-t bootstrap confidence intervals

Let χ̂∗[1]
k ≤ χ̂∗[2]

k ≤ ...≤ χ̂∗[N]
k be the order statistics where

χ̂∗[ j ]
k =

(ϑ̂ ∗[ j ]
k − ϑ̂k)

√
N√

Var(ϑ̂ ∗[ j ]
k )

, j = 1,2, ...,N; k= 1,2,3,4,5.

(18)
Whereϑ̂1 = â, ϑ̂2 = b̂, ϑ̂3 =, d̂, ϑ̂4 = ĉ andϑ̂5 = ê while
Var(ϑ̂ ∗[ j ]

k ) is obtained from inverse of the Fisher
information matrix. LetD(q) = P(χ∗

k ≤ q), k= 1,2,3,4,5
be the cdf of̂χ∗

k . For a givenq, define

ϑ̂ ∗
kStud−t = ϑ̂k+N− 1

2

√
Var(ϑ̂ ∗

k )D
−1(q). (19)

Thus, the approximate bootstrap-t 100(1− δ )% CI of ϑ̂ ∗
k

is given by

[ϑ̂ ∗
kStud−t (

δ
2
), ϑ̂ ∗

kStud−t(1−
δ
2
)]. (20)

5 Bayesian estimation

Bayesian estimation deals with a wide variety of
problems in many scientific and engineering areas.
Bayesian statistic interests in fitting a probability modelto
a set of data and summarizing the result by a probability
distribution on the parameters of the model. The given
data comes from the likelihood function and the prior
distribution function and the resulting distributions called
the posterior distributions. Let us consider independent
vague priors parametersa, b, d, c ande, as follows

π(a) ∝ a−1, a> 0,
π(b) ∝ b−1, b> 0,
π(d) ∝ d−1, d > 0,
π(c) ∝ c−1, c> 0,
π(e) ∝ e−1,e> 1,




. (21)

Therefore, the joint prior of the parametersa, b, d, c ande
can be written as

π(a,b,d,c,e) ∝ (abdce)−1
,a,b,d,c> 0,e> 1. (22)

The joint posterior density function ofa, b, d, c ande
denoted byπ∗(a,b,d,c,e|y) can be written as

π∗(a,b,d,c,e|y) =
L(a,b,d,c,e)×π (a,b,d,c,e)∫ ∞

1

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0 L(a,b,d,c,e)×π (a,b,d,c,e)dadbdddcde

.
(23)
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Therefore, the Bayes estimate of any function of the
parameters, sayh(a,b,d,c,e), using squared error loss
function (SEL) is

ĥ(a,b,d,c,e) = Ea,b,d,c,e|y [h(a,b,d,c,e)]

=

∫ ∞
1

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0 h(a,b,d,c,e)×L(a,b,d,c,e)π (a,b,d,c,e)dadbdddcde∫ ∞

1

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0 L(a,b,d,c,e)π (a,b,d,c,e)dadbdddcde

.

(24)

Generally, the ratio of two integrals given by (24)
cannot be obtained in a closed form. In this case, the
MCMC technique will be used to generate samples from
the posterior distributions and then the Bayes estimates of
the parametersa, b, d, c and e will be computed. The
main theme of the MCMC technique is to compute an
approximate value of integrals given in Eq. (24). An
important sub-class of MCMC methods are Gibbs
sampling and more general Metropolis within Gibbs
samplers. The Metropolis algorithm is a random walk that
uses an acceptance/rejection rule to converge to the target
distribution. The Metropolis algorithm was first proposed
in Metropolis et al. [22] and it was then generalized in
Hastings [23]. Made into mainstream statistics and
engineering via the articles Gelfand and Smith [24] and
Gelfand et al. [25] which presented the Gibbs sampler as
used in Geman and Geman [26]. From (8), (22) and (23),
the joint posterior density function ofa, b, d, c and e
denoted byπ∗(a,b,d,c,e|y) can be written as

π∗(a,b,d,c,e|y)
∝ am−1bm−1dm−1cm−1em−n1−1

×exp

{
−(b+1)

(
n1

∑
i=1

log[yi ]+
m

∑
i=n1+1

log[ψi(e)]

)}

×exp

{
−dc

(
n1

∑
i=1

y−b
i +

m

∑
i=n1+1

[ψi(e)]
−b

)}
(25)

×exp

{
n1

∑
i=1

[a(Ri +1)−1] log[1−exp(−dcy−b
i )]

}

×exp

{
m

∑
i=n1+1

[a(Ri +1)−1] log[1−exp(−dc[ψi(e)]
−b)]

}
.

The conditional posterior densities function ofa, b, d, c
andecan be given as

π∗
1(a|b,d,c,e,y)

∝ am−1
n1

∏
i=1

[
[1−exp{−dcy−b

i }]a(Ri+1)
]

×
m

∏
i=n1+1

[1−exp{−dc[ψi(e)]
−b}]a(Ri+1), (26)

π∗
2(b|a,d,c,e,y)

∝ bm−1
n1

∏
i=1

y−b−1
i exp{−dcy−b

i }[1−exp{−dcy−b
i }]a(Ri+1)−1

×
m

∏
i=n1+1

[ψi(e)]
−b−1[exp{−dc[ψi(e)]

−b}]a(Ri+1)−1

×[1−exp{−dc[ψi(e)]
−b}]a(Ri+1)−1, (27)

π∗
3(d|a,b,c,e,y)

∝ dm−1
n1

∏
i=1

[exp(−dcy−b
i )][1−exp(−dcy−b

i )]a(Ri+1)−1

×
m

∏
i=n1+1

[exp(−dc[ψi(e)]
−b)]

×[1−exp(−dc[ψi(e)]
−b)]a(Ri+1)−1, (28)

π∗
4(c|a,b,c,e,y)

∝ cm−1
n1

∏
i=1

[exp{−dcy−b
i }][1−exp{−dcy−b

i }]a(Ri+1)−1

×
m

∏
i=n1+1

[exp{−dc[ψi(e)]
−b}]

×[1−exp{−dc[ψi(e)]
−b}]a(Ri+1)−1, (29)

and

π∗
5(e|a,b,d,c,y)

∝ em−n1−1
m

∏
i=n1+1

[ψi(e)]
−b−1[exp{−dc[ψi(e)]

−b}]

×[1−exp{−dc[ψi(e)]
−b}]a(Ri+1)−1. (30)

Figure 1 shows that all the conditional posterior
distributions are almost symmetric and seem to quite
skewed. Now, the following steps illustrate the method of
the Metropolis-Hastings algorithm within Gibbs sampling
to generate the posterior samples as suggested by Tierney
[27], and turn in to obtain the Bayes estimates and the
corresponding credible intervals:

Step 1.Start with ana(0) = â, b(0) = b̂, d(0) = d̂, c(0) = ĉ and
e(0) = ê.

Step 2.Putj = 1.
Step 3.Using the following M-H algorithm, generate

a( j),b( j),d( j), c( j)and e( j) from (26), (27), (28), (29)
and (30) with the normal suggested distribution

N
(

a( j−1),var(a)
)
, N

(
b( j−1),var(b)

)
,
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Fig. 1: The conditional posterior density functions.

N
(

d( j−1),var(d)
)

, N
(

c( j−1),var(c)
)

and

N
(

e( j−1),var(e)
)

respectively, wherevar(a), var(b),

var(d), var(c) andvar(e) can be obtained from the
main diagonal in the inverse fisher information matrix
(15) computea( j),b( j),d( j),c( j) andc( j).

(i)Generate a proposala∗ from N
(

a( j−1),var(a)
)
, b∗

from N
(

b( j−1),var(b)
)
, d∗ from

N
(

d( j−1),var(d)
)

, c∗ from N(c( j−1),var(c)) and

e∗ from N
(

e( j−1),var(e)
)
.

(ii)Evaluate the acceptance probabilities

ρa = min

[
1,

π∗
1(a

∗|b( j),d( j−1),c( j−1),e( j−1) ,y)

π∗
1(a

( j−1)|b( j),d( j−1),c( j−1),e( j−1) ,y)

]
,

ρb = min

[
1,

π∗
2(b

∗|a( j),d( j),c( j−1),e( j−1) ,y)

π∗
2(b

( j−1)|a( j),d( j),c( j−1),e( j−1) ,y)

]
,

ρd = min

[
1,

π∗
3(d

∗|a( j),b( j),c( j),e( j−1) ,y)

π∗
3(d

( j−1)|a( j),b( j),c( j),e( j−1),y)

]
,

ρc = min

[
1,

π∗
4(c

∗|a( j),b( j),d( j),e( j),y)

π∗
4(c

( j−1)|a( j),b( j),d( j),e( j),y)

]
,

ρe = min

[
1,

π∗
5(e

∗|a( j),b( j),d( j),c( j),y)

π∗
5(e

( j−1)|a( j),b( j),d( j),c( j),y)

]
.





.

Step 4.Putj = j +1.
Step 5.Repeat Steps 3-6N times.

To guarantee the convergence to remove the influence
of the selection of initial values, the firstM simulated
varieties are ignored. Then the selected samples are
a( j),b( j),d( j) andc( j), j = M + 1, ....,N, for sufficiently
large N, forms an approximate posterior samples which
can be used to obtain the Bayes MCMC point estimates
of a, b, d, c andeas

âMCMC = 1
N−M

N
∑

j=M+1
a( j),

b̂MCMC = 1
N−M

N
∑

j=M+1
b( j),

d̂MCMC = 1
N−M

N
∑

j=M+1
d( j),

ĉMCMC = 1
N−M

N
∑

j=M+1
c( j),

êMCMC = 1
N−M

N
∑

j=M+1
e( j),





.

To calculate the credible interval (CRIs) ofΩk where
Ω1 = a,Ω2 = b,Ω3 = d,Ω4 = c andΩ5 = e, we take the
quantiles of the sample as the endpoints of the interval.

Sort
{

ΩM+1
k ,ΩM+2

k , ...,ΩN
k

}
as
{

Ω [1]
k ,Ω [2]

k , ...,Ω [N−M]
k

}
.

The 100(1− δ )% symmetric credible interval ofΩk is
[

Ωk(
δ
2
(N−M), Ωk((1−

δ
2
)(N−M))

]
. (31)

6 Numerical computations

In this section, a simulation example is presented to
assess the estimation procedures. In this example, a
PT-2C sample from KIWD under S-SPALT model is
generated. The algorithm of generation is performed
according to the algorithm described in Balakrishnan and
Sandhu [28] as the following:
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Table 1. SSPALT simulation data with true values fora, b, d, c ande.
Under normal condition Under accelerated condition

0.5305 0.6849 0.7143 1.0835 1.3049 1.5726 1.6547 1.7311
0.7641 0.8370 1.0271 2.2417 2.3382 3.2457 5.9023

Table 2. Different point estimates for the parametersa, b, d, c ande.
Parameters (.)ML (.)Perc−p (.)Stud−t (.)MCMC

a 0.3487 0.4155 0.4731 0.4839
b 2.5725 2.5496 2.6685 2.4985
d 1.3872 1.6545 1.4352 1.6210
c 0.4624 0.5393 0.5135 0.5280
e 2.4155 2.6663 2.0112 1.9981

(1)Specify the values ofn, mandRi , i = 1,2, ...,m.
(2)Specify the values of the parametersa, b, d, c ande.
(3)Specify the values of the stress change timeτ.
(4)Generate a random sample with sizen and censoring

sizem from the random variableY given by Eq. (5),
the set of data can be considered as

yR
1;m,n < ... < yR

n1;m,n < yR
n1+1;m,n < ... < yR

m;m,n,

whereR= (R1,R2, ...,Rm) and∑m
i=1Ri = n−m.

(5)Use the PT-2C sample to compute the MLEs of the
model parameters. The Newton–Raphson method is
applied for solving the nonlinear system to obtain the
MLEs of the parameters.

(6)Compute the 95% bootstrap confidence intervals for the
model parameters, using the steps described in Section
4.

(7)Compute the Baye estimates of the model parameters
based on MCMC algorithm described in Section 5.

A simulation data for PT-2C sample under S-SPALT
model from KIWD with true valuesa = 0.4, b = 2.5,
d = 1.5, c = 0.5 and the acceleration factore = 2, and
τ = 1.5, using progressive censoring schemes
n= 30, m= 15 andR= (3, 2, 1, 2, 1, 0, 2, 0, 2, 0, 1, 0, 1,
0, 0) the S-SPALT simulation data has been approximated
to four decimal places and it has been presented in Table
1.

In MCMC approach, we run the chain for 25 000
times and discard the first 5000 values as ‘burn-in’. The
MLEs (.)ML , bootstrap(.)Perc−p,(.)Stud−t and Bayes
MCMC (.)MCMC point estimates of the parameters are
obtained and presented in Table 2. The approximate
confidence intervals (ACIs), bootstrap confidence
intervals (Perc-pCIs, Stud-tCIs) and credible intervals
(CRIs) for the parametersa, b, d, c ande are computed.
The results of 95% (ACIs, Perc-pCIs, Stud-tCIs, CRIs)
are presented in Table 3.

7 Conclusion

Using PT-2C samples strategy the analysis of the
S-SPALT of KIW failure model is performed based on
Bayes and non-Bayes methods. The classical Bayes
estimates cannot be obtained in explicit form. One can
clearly see the scope of MCMC based Bayesian solutions

Table 3. 95% confidence intervals fora, b, d, c ande.
Method a Length b Length

ACI [-0.1449, 0.8423] 0.9873 [-0.2616, 5.4065] 5.6681
Perc-pCIs [0.1471, 1.3049] 1.1578 [0.3361, 6.2845] 5.9484
Stud-tCIs [0.2056, 1.1482] 0.9426 [0.2189, 4.7583] 4.5394

CRI [0.0027, 0.9678] 0.9651 [0.1834, 4.5529] 4.3695
Method d Length c Length

ACI [0.1001, 2.6743] 2.5742 [0.0161, 0.9087] 0.8926
Perc-pCIs [0.2154, 3.5681] 3.3527 [0.1287, 1.5969] 1.4682
Stud-tCIs [0.1249, 2.3992] 2.2743 [0.0996, 1.2874] 1.1878

CRI [0.0987, 2.2514] 2.1527 [0.0547, 0.9988] 0.9441
Method e Length

ACI [2.3809,4.4500] 2.0691
Perc-pCIs [1.2348, 3.4571] 2.2223
Stud-tCIs [1.8347, 5.0043] 3.1696

CRI [2.0875, 4.3872] 2.2997

which make every inferential development routinely
available. In this paper, we have considered the ML and
Bayes estimates for the parameters of the KIWD using
PT-2C schemes. Two types of bootstrap confidence
intervals are used to obtain 95% CIs for the unknown
parametersa, b, d, c ande. It is well known that when all
parameters are unknown, the Bayes estimates cannot be
obtained in explicit form. We used the MCMC techniques
to compute the approximate Bayes estimates and
corresponding CRIs. A numerical example using the
simulated data set is presented to illustrate how the
MCMC and parametric bootstrap methods are worked
based on PT-2C data.
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