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Abstract: In this article, based on progressively Type-ll censordiestes under step-stress partially accelerated life teselno
the maximum likelihood, Bayes, and two parametric boopstreethods are used for estimating the unknown parameterkeof t
Kumaraswamy inverse Weibull distribution and the acceéienafactor. Asymptotic confidence interval estimates oé timodel
parameters and the acceleration factor are also evalugtesify Fisher information matrix. The classical Bayesneators cannot be
obtained in explicit form, so Markov chain Monte Carlo metti®used to tackle this problem, which allows us to constihetredible
interval of the involved parameters. Finally, analysis sfraulated data set has been also presented for illustiairgoses.

Keywords: Kumaraswamy inverse Weibull, Step-Stress partially asedtd life tests, Bootstrap confidence intervals, Markosirc
Monte Carlo approach.

Acronym: designs, testing products before marketing. Strong
PT-2CS Progressively Type-ll Censored Schemesmpetition among manufacturers and the desire not to
ALT Accelerated Life Test lose, leading to test products under severe conditions
PALT Partially Accelerated Life Test (stress), such as high temperatures and high voltages to

C-SPALT Constant-Stress Partially Accelerated Life Tesmphasize product quality and reduce test time, such tests
S-SPALT  Step-Stress Partially Accelerated Life Test called accelerated life testing. ALT can be used to obtain

MLEs Maximum Likelihood Estimates the failure information of a product under accelerated
PDF Probability Density Function stress conditions in a short time. However, in some
CDF Cumulative Distribution Function situations, the accelerated function is unknown and the
KIWD Kumaraswamy Inverse Weibull Distribution ALT is not available. In this case, the products can be
ACls Asymptotic Confidence Intervals tested first under normal conditions until the pre-fixed
MCMC Markov chain Monte Carlo time and then the surviving products are changed to putin
SEL Squared Error Loss accelerated stress conditions, this case is called PALT.
Perc-pCls  Percentile-p Bootstrap There are two common types of PALT, C-SPALT and
Stud-tCls  Studentized-t Bootstrap S-SPALT see Nelsoni]. In C-SPALT, the grouped test
CRI Credible Interval units are separately put in normal conditions and
BPCls Bootstrap-P Confidence Intervals accelerated stress conditions. For S-SPALT, the surviving
BTCls Bootstrap-T Confidence Intervals units in the experiment are shifted from normal

conditions to higher stress conditions after a fixed time or

a fixed failure number. Generally, stress is applied until
1 Introduction the test unit fails or the test is terminated based on a

certain censoring scheme, where the censoring scheme
Manufacturers work on producing reliable products which is used in this article is PT-2CS. For more details
which resist the failure under normal enviromental on progressive censoring, we refer the reader to
conditions by studying the failure causes, assessing ne\Balakrishnan and Aggarwala2]] Balakrishnan 8],
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Musleh and Helu4], EL-Sagheer$,6] and Mahmoud et 2.2 Basic assumptions

al. [7,8,9]. The C-SPALT and S-SPALT have been

addressed under different censoring schemes for exampldhe following assumptions are used throughout the paper:
see Ismail 10,11], EL-Sagheer 12], Abushal and . . . . .
Soliman [L3], Abd-Elfattah et al. 14, Ismail [15], (D)nidentical and independent units are put on the life test

EL-Sagheer and Mohamed§]. In this paper, we aim to and the life time of individual unit has KIWD.
study statistical inference based on PT-2CS in the (2)At the beginning each of the units functions under
presence of step-stress partially accelerated life tests. normal use condmon. .If I does not fail and exceeds a
The remainder of this paper is organized as follows: pre-jﬁ)_emfletd timer, it is put under accelerated
Section 2 provides a description of KIWD and the (3)'?’?12 Lécs)? S :grsri)ihated when theth failure occurs
tampered random variable model. In Section 3 the MLEs wheremis pre-fixed beforém < n) ’
of the parameters under consideration are estimated in(4)At the ith fgilure a random n_umber of the survivin
addition to the corresponding ACIs. Section 4 concerns . g
with two types of bootstrap confidence intervals. Section units Ry = 1,2,..,m—1, are randomly se!ected and
5 is devoted to Bayesian approach that uses the famed remoye_d from t.h_e test..FmaIIy, at tmath fﬁﬂ'fre' the
MCMC technique. An illustrative example is developed remaining surviving unit®m =n—m-—75;_; R are

to explain the theoretical results in Section 6. Eventually removed from the test and the test is terminated.
conclusion is inserted in Section 8. (5)The tampered random variable model is applied. It was

designed by Degroot and Godld). According to this
model the lifetime of a unit say, under S-SPALT can
be written as

2 Model description

T, ifT<r,
. e . Y= T+3(T-1) if T >, ®)
A brief specification is given in this section about KIWD. e ’

Also, the transformed probability density function of  \hereT is the lifetime of the units under normal
KIWD under the tampered random variable model is  condition, 7 is the stress change time aedis the

presented. acceleration factor, whee> 1.
(6)Using the transformation variable technique, the PDF
of KIWD (a,b,d,c) under S-SPALT is given by

2.1 Kumaraswamy inverse Weibull distribution

0, y>0,
flyy=¢f = f(y), O<y<rt, (6
The KIWD was introduced by Shahbaz et dZ7]. This V) { f;(%) v y> Tyi ©
distribution is an extension of the IWD. The PDF, CDF, ’ ’
reliability function and hazard rate function of the four wherey (6) = T+e(y— 1) and
parameters KIWD are given, for > 0, (a,c,d,b) > 0,
respectively, by fo (y) = eacdlys; (e)] PV exp{—dc[q.li (e)]_b}
a—1
f (y) =acdby ®+1) exp{—dcy*b X (1— exp—dc[y (e)]*b])
C (1) : :
_ ey b1 (7)Let ny be the number of failures before tinteat the
x (1 exp{ dey }) ’ normal condition andn— n; be the number of failures
after timet at accelerated condition (stress), then the
Fly)=1— (1_ exp{—dcy‘b})a, ?) observed progressive censored data are
Yimn < <Ymn < T <Y imn<-<Ymmn (7)
_ ~b1)®
Sy) = (1—exp{—dcy }) , ®3) whereR= (Ry,Ry,...,Ry) andy™, R =n—m.

and

h(y) —acdby ®+ exp{—dcy—b} 3 Maximum likelihood inference
51\ L (4) " In this section, the MLEs of the model parameters are
x (1—exp{—dcy }) obtained. Lety, = YR, i = 1,2,---,m be the observed
values of the lifetimeY obtained from a PT-2CS under
Special case: Ifd = 1 and b = 2, the resulting S-SPALT, with censored schenf® = (Ry,Rz,--,Rm).
distribution is called Kumaraswamy-Inverse Rayleigh The log-likelihood  function /(ab,d,c,ely) =
distribution see Hussian and Amih§). logL(a,b,d,c,€ly) of the observations
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) . dl(a,c,d,b)
Y1 < <Yn <T<Yn1<--- <YmWithout normalized b
constant is given by ny ny
m _
((a,b,d,cely) =5 iZilogyi +i;dcy. ®logy;
ny m - -
= mlog(acdb + (m—n;)loge— (b+1) i;Iogyi i Z defui(e)] Plogui(e)
- i:n1+1
- zidcy + Z (Ri+1)—1)log (1 exp{ dcyfb}) 2 @R+ - 1) (dey °logyi) exp{ —dcy °}
£ (1—exp{ dey ®})
(b1 Y logu(e) -~ Y delue)] 5 ogug- § deER+D-DwE)”
i= 1 1
o e i—fri1 i—frr1 (1— exp{ de[yi(e)]” b})
+ S (@R+1)-1)log(1—expi—dc[yi(e) ") (@®) .
2 ( OO g exp{ ~dclyi(e)]
Thus, we have the likelihood equations &e, c,b and =0, (12)
d respectively, as and
dl(ac,d,b) dl(a,c,d,b)
mdanl 70(1
= 5+_Z\(Ri+1)log (1—exp{—dcyﬁb}) oy P a(R +1) — 1)exp{—dcy ™}
. Z\ ! Z (1—exp{—dcy ®})
+ 3 (Re+Dlog(L-exp{-delyi(e) *}) - f cly(e)
B 'g"ﬁl © =T+l
| L& c@R+1)-1)[4a(e) "exp{—dc(yi(e) °}
dl(a,c,d,b) o (1—exp{—dclyi(e)]"})
de . =0. (13)
m-—ng Yi
T e (b+ 1)_ (W) A system of nonlinear simultaneous equations in five
I=ng+1 unknowns vaiables, e, ¢, b andd is resulted.
m . . . .
_ (b+1) It is obvious that an exact solution is not easy to get.
+i:nl+1d0b(y' RICICI To calculate the MLES, €, &, b andd from the nonlinear

. Equations (9)-(13), we use the Newton-Raphson iterative
¢ deb@R+1)-1)(yi—1) method, see EL-Saghedi[
&1 (1—exp(—dc[yi(e)] ™))

x exp{ —~delyi(@)] "} [wi(e)] Y

3.1 Asymptotic confidence intervals

=0, (10)

dl(a,c.d,b) We construct asymptotic confidence intervals of MLEs by
it using the asymptotic normality theory. The observed
dc Fisher information matrix has second partial derivatives

. m e gyb of log-likelihood function given in Eqg. (8), with respect to

=c 2% a,b,d,candeas the entries, which easily can be obtained.

b Hence, the observed information matrix is given by
m dy P (a(R +1) — 1)exp{ —dcy °}

i; (1- exp{ dey 1) _9k 0% 0% _ 9% _ 9%

< _dabﬁ . _—dabzﬁed _—aabszc _—aabza
_ (e)]™ a
i=n+1 - 9dga ~9dgb ~ 9¢? ~ 9dgc ~ Jdge
daR+1)—1)[y (e)]‘bexp{ de[y (e)]‘b} __aa;ea __aa;eb _dacﬁed _g2e _aa_c?e
m . _ . _ ,
- ! ' 9% ok a4 34 a%
o (1—8Xp{—dC[L[Ji (e)]‘b}) 9eda ~9edb dedd ~dedc a2 / A
=0, (11) whereA=] (a,b,d,c,e) = (éiB d,c, G)]
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The asymptotic variance-covariance matrit forthe ~ CI of 5; is given by
MLEs is obtained by inverting the observed information
matrix [ or equivalent a 0, & o

[SI:Percfp(E)v 19;Percfp(1_§)]' (17)
var(a) Cov(ab) Cov(ad) Cov(ac) Cov(aé

\/\/

A Cov(ba) var(b) Cov(be) Cov(bc) Cov(b
1= [ covuda) cOv(db) var(d ) Cov(d¢) Cov(dé) 4.2 Studentized-t bootstrap confidence intervals
CoVv¢d) Cov(cb) Cov(cd) var(€) Cov¢é)
Cov(éa) Cov(éb) Cov(éd) Couéd) var(é) Letx;™ <x:@ < ... < %™ be the order statistics where
(15)
Then, the 100L — §)% two sided Cls for, b, d, c ande, i a+li] _ 4
can be given by )A(l’:m = w, i=12..N; k=1,22345.
A . Var(d,;")
(&,8y) =aFzg./var(a) ) o ) (18)
(bL,by) = b7 z54/var(b) Whered; =&, 9, = b, 93 =,d, 94 = €and s = ewhile
2 alily . . .
P - = Var(d, ") is obtained from inverse of the Fisher
_ 16 k
(di,dy) =dFzgy/var(d) - (18)  fformation matrix. LeD(q) = P(x; <q),k=1,2,3,4,5
(€,6u)=CF 23 V/var(€) be the cdf ofx;;. For a givery, define
(&,&) =6F Zg \/var(é)

A* A _l_ A* _
. . Histuat = S+ N2y /Var(d)D ). (19)
where zg is the percentile of the standard normal

distribution with right-tail probability3. Thus, the approximate bootstrap-t 100- 5)% ClI of 3
is given by

. . . 6 . 5

4 Bootstrap confidence intervals Bisuat(3): Hisuar(L- ) (20)

In this section, we present the parametric bootstrap

method to construct Cls for the unknown parametets

d,c and e. It is very important in estimate Cls and 5 Bayesian estimation

hypothesis tests. So, two parametric bootstrap methods

are used(i) Studentized-t (Stud-t) bootstrap Cl suggestedBayesian estimation deals with a wide variety of
by Hall [20] and (i) Percentile (Perc-p) bootstrap Cl problems in many scientific and engineering areas.
suggested by Efrorefl]. Hall [20] showed that the Stud-t Bayesian statistic interests in fitting a probability motel

Cl is better than the Perc-p bootstrap ClI from ana set of data and summarizing the result by a probability
asymptotic point of view, although the finite sample distribution on the parameters of the model. The given
properties are not yet known. The Bootstrap samplesiata comes from the likelihood function and the prior
obtained by using the following steps: distribution function and the resulting distributionsledl

- the posterior distributions. Let us consider independent
1)Based on the original PT-2C sam .
@ g e Vi < - < vague priors parameteasb, d, c ande, as follows
ynlmn<y§1+1mn< - < YRmn COMputea’ b, d, cand

m(a) Jat a>0,
(2)Usea b, d, ¢ andeto generate a bootstrap sampte b) Ob~L, b>0
with the same values &, i =1,2,..,m. (d) O d‘1: d> 0’7 . 21)

(3)As in Step 1 based grf compute the bootstrap sample
estimates o0&, b, d, ¢ and€'saya®, b*, d*, & ande".
(4)Repeat the above Steps 2 antll3imes and arrange
all &, b*, d*, ¢ and€" in ascending order to obtain Therefore, the joint prior of the parameters, d, c ande
the bootstrap sample($;, §;@ . §;M)  canbewritenas
1k§3*:: (;k”%;’:i* a\;lvgggke: Z*l* =& 9= m(a,b,d,c,e) 0 (abdce ! a,b,d,c>0,e>1 (22
The joint posterior density function @t b, d, c ande

; - . denoted byt*(a, b, d, c,ely) can be written as
4.1 Percentile bootstrap confidence intervals y( v

Let @(q) = P(J; < q) be the cdf oS, Defined; pe, , = T (ab.d.c.ely) =

L(ab,d,c,e) x m(a,b,d,c,e) (23)

®~1(q) for giveng. The approximate Perc-p 10D 5)% = "= I /" L(a.b,d,c.6) x 11(a b.d,c,6) dadbdddcdé
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Therefore, the Bayes estimate of any function of the
parameters, sal(a,b,d,c,e), using squared error loss

function (SEL) is

15 (bla,d,c,ey)

Ny
Dbm*lrly Lexp{—dcy P} [1— exp{—dcy P}jAR+D-1

h(a,b,d.c.e) = Eabdcey [h(a,b,d.c.e)] —b— l byia(R+1)—-1
RS e S Jeh(ab,d,c.e) x L(a,b,d,c.e) i(a,b,d,c,¢) dadbdddcde XI In_l 1 [Ya(e [exp{—ddyi(e)] "}
N TS I Js Jo L(ab,d,c,e) rt(a,b,d,c,e)dadbdddcde 1t

4 x [1— exp{—dc[ys(e)] PRI, (27)

Generally, the ratio of two integrals given by (24)
cannot be obtained in a closed form. In this case, the 1(d|a,b,c,ey)
MCMC technique will be used to generate samples from '
the posterior distributions and then the Bayes estimates of

m— _ (R+1)—-1
the parameters, b, d, ¢ and e will be computed. The Od u[exp( dey )][1 exp(—dcy )]
main theme of the MCMC technique is to compute an '_m
approximate value of integrals given in Eq. (24). An —dduwi(e)]
important sub-class of MCMC methods are Gibbs xi:nl+1[exp( (@)l
sampling and more general Metropolis within Gibbs byaR 1)1
samplers. The Metropolis algorithm is a random walk that x[1—exp(—dc[yi(e)] )] ; (28)

uses an acceptance/rejection rule to converge to the target

distribution. The Metropolis algorithm was first proposed

in Metropolis et al. 22] and it was then generalized in

Hastings P3]. Made into mainstream statistics and

engineering via the articles Gelfand and Smi2d][and ma(cla,b,c.ey)

Gelfand et al. 25 which presented the Gibbs sampler as M1 b byja(R+1)—
used in Geman and Gema2§]. From (8), (22) and (23), € |_|[exp{ dey " }[1—exp{—dcy }*

the joint posterior density function of, b, d, c ande 1=

denoted byrt*(a, b, d, c,€ly) can be written as

m(a,b,d,c,ely)

0am1pm-1gm-1gm-1gm-nm—1

xexp{—(b+1) (_nilog [vi] + Z lIog Wi )])}
= i=Mm+

xexp{—dc<iiy. ~ %1 >}

X exp{
i

Ny

m

xexp{_ S [a(R +1) - 1Jlog[1— exp(~dciy (e)] )]
i=n;+1

Z[a(Ri +1) - 1] log[1 — exp(—dcy )] }

m

x [ lexp{—dcwi(e)] ™}
i=np+1
x[1—exp{—dd[gi(g)] PHRARIL, (29)
and
15 (ela,b,d,c.y)
m
@ o™ ™t T [wi(e)] " exp{—ddyi(e)] "}
i=np+1
x [1— exp{—dc[y(e)] P} AR+D-L, (30)
) Figure 1 shows that all the conditional posterior
distributions are almost symmetric and seem to quite

skewed. Now, the following steps illustrate the method of

The conditional posterior densities functionafb, d, ¢  the Metropolis-Hastings algorithm within Gibbs sampling
ande can be given as

1 (alb,d,c,ey)

D am—l

X

m

[ (1 exp{—dcyi(e)) °}R+Y,

i=n+1

[ 12~ exel-dey*) )

to generate the posterior samples as suggested by Tierney
[27], and turn in to obtain the Bayes estimates and the
corresponding credible intervals:

Step 1.Start with aa© =& b® = b, d@ =d, ¢® = ¢ and

el =g
Step 2.Puf = 1.
Step 3.Using the followmg M-H algorithm, generate
(26) all) b d), candeld) from (26), (27), (28), (29)
and (30) Wlth the normal suggested distribution
N (a(J"l),var(a)) , N (b“‘”,var(b)) ,

(@© 2018 NSP
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Fig. 1: The conditional posterior density functions.

N (d“*”,var(d)), N (C(J’l),var(c)) and

N (e“*”,var(e)) respectively, wherear (a), var(b),

(ii)Evaluate the acceptance probabilities

i ly ;q(aﬂbUXd“’1%C“’1%éj’lxﬁ
Pa=Mmin T “’”\b' 0D c0-D i-1) y)
_ min |1 7B ad0 Y gD y)
Pp=min [1,@(19(J ‘a d0 -1 ,-1) y)

- 7% (d*alh), (J) D) eli-1) y)

P4 = Mmin l:l, Tg(d] 1) ‘a b(l c(J) eli-1) Y)
n:{(ma b0),d0 e y)

pc=min |1, (@@l b 0dV el y) |

rge\a bm>&ncu>)
Pe=min |1, "7 (€0-D]a0,bM,dD ) y)

Step 4.Puf = j+ 1.
Step 5.Repeat Steps M6 times.

To guarantee the convergence to remove the influence
of the selection of initial values, the firsl simulated
varieties are ignored. Then the selected samples are
al) bl) d) andc), j =M +1,....,N, for sufficiently
large N, forms an approximate posterior samples which
can be used to obtain the Bayes MCMC point estimates
ofa, b, d, c andeas

13 L0
aveme = o o av,
j=M+1
B 13 0
bmeme = N=M > bl )
j=M+1
a ¥ g
MCMC = >
NM e
M)
Cmemvc=— 2 C
NMy
1 ¥
éveme = =m0 €Y,
j=M+1

To calculate the credible interval (CRIS) @ where
Q1=a,0Q,=0b,Q3=d,Q,=c andQs = e, we take the
guantiles of the sample as the endpoints of the interval.

Sort{ QM+ QM+2 N1 aS{QE]vQE]v---,Q&NfM]}.
The 1041 — 5)% symmetric credible interval d® is

QGN-M). a-FN-M)|. @D

var(d), var(c) andvar(e) can be obtained from the
main diagonal in the inverse fisher information matrix

(15) computaal) b)) d) cli) andch).

(i)Generate a proposaf from N (a“*l),var(a)) , b*
from N (b“*”,var(b)) , d* from
N (d“*”,var(d)), ¢* from N(cli— var(c)) and
e* fromN (e“‘”,var(e)) :

6 Numerical computations

In this section, a simulation example is presented to
assess the estimation procedures. In this example, a
PT-2C sample from KIWD under S-SPALT model is
generated. The algorithm of generation is performed
according to the algorithm described in Balakrishnan and
Sandhu 28] as the following:

(@© 2018 NSP
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Table 1. SSPALT simulation data with true valuesdob, d, c ande. Table 3. 95% confidence intervals farb, d, c ande.

Under normal condition Under accelerated condition Method a Length b Length
0.5305 0.6849 0.71431.0835 1.3049 15726 1.6547 1.7311 ACI [-0.1449,0.8423] 0.9873 [-0.2616,5.4065] 5.6681
0.7641 0.8370 1.02712.2417 2.3382 3.2457 5.9023 Perc-pCls [0.1471,1.3049] 1.1578 [0.3361,6.2845] 5.9484

Stud-tCls [0.2056,1.1482] 0.9426 [0.2189,4.7583] 4.5394
. . . CRI [0.0027,0.9678] 0.9651 [0.1834,4.5529] 4.3695
Table 2. Different point estimates for the parametels, d, c ande. Nethod d Cength c Length
Parameters  (.)y, (Jperc-p (-)stud-t ()mcmc ACI [0.1001, 2.6743] 25742 [0.0161,0.9087] 0.8926
a 0.3487 0.4155 0.4731 0.4839 Perc-pCls [0.2154,3.5681] 3.3527 [0.1287,1.5969] 1.4682
b 25725 2.5496 2.6685 2.4985 Stud-tCls [0.1249,2.3992] 2.2743 [0.0996,1.2874] 1.1878
d 1.3872 1.6545 1.4352 1.6210 CRI [0.0987,2.2514]  2.1527 [0.0547,0.9988]  0.9441
Method e Length
- B
: : : : Perc-pCls [1.2348,3.4571] 2.2223
Stud-tCls [1.8347,5.0043] 3.1696
CRI [2.0875,4.3872] 2.2997

(1)Specify the values aof, mandR;,i = 1,2,...,m.

(2)Specify the values of the parametard, d, c ande. . ) ) .

(3)Specify the values of the stress change time which make every inferential development routinely

(4)Generate a random sample with sizand censoring ~available. !n this paper, we have considered the ML a}nd
sizem from the random variabl¥ given by Eq. (5), Bayes estimates for the parameters of the KIWD using

the set of data can be considered as PT-2C schemes. Two types of bootstrap confidence
intervals are used to obtain 95% Cls for the unknown
Yimn < - < Ynomn < Yig,zmn < - < Yimns parameters, b, d, c ande. It is well known that when all
' ' ' ' parameters are unknown, the Bayes estimates cannot be
whereR= (Ry,Rz,...,Rn) andS™ R =n—m. obtained in explicit form. We used the MCMC techniques

(5)Use the PT-2C sample to compute the MLEs of theto compute the approximate Bayes estimates and
model parameters. The Newton—Raphson method igorresponding CRIs. A numerical example using the
applied for solving the nonlinear system to obtain the simulated data set is presented to illustrate how the
MLEs of the parameters. MCMC and parametric bootstrap methods are worked

(6)Compute the 95% bootstrap confidence intervals for thebased on PT-2C data.
model parameters, using the steps described in Section
4,

(7)Compute the Baye estimates of the model parameters
based on MCMC algorithm described in Section 5. Acknowledgment
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