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Abstract: This paper is concerned with the class of uncertain discretetime Bi-directional associative memory (BAM) cellular neural
networks with variable delays. Here the result is enhanced to ensure the global stability in the sense of exponential forthe addressed time
delayed neural networks by employing a discrete analogue ofHalanay-type inequality. This type of inequalities can be used as basic
tool in the study of exponential stability of the equilibrium for certain generalized difference equations. An important feature presents
in our paper is that, with the help of time-invariant perturbation matrix which is often called parameter uncertainties, the proposed
stability conditions can be proved. [(i.e) It is allowed to be norm-bounded]. At last, three illustrative examples withsimulations are
provided for the addressed neural networks to demonstrate the usefulness and flexibility of the proposed design approach.
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1 Introduction

In recent years, a lot of consideration from many
researchers is on stability of nonlinear difference
equations with time varying delays (see [5,16,26]). In
order to obtain the stability conditions, the most
commonly used theory in the field concerned is
Lyapunov. On the other hand, by using discrete type
inequalities, there are few stability conditions for
nonlinear difference equalities. In [29], new stability
conditions for nonlinear difference equations with time
delays are obtained by using a generalized discrete
Gronwall inequality. Generally, cellular neural networks
(or) cellular non-linear networks are a parallel computing
paradigm similar to neural networks that plays a key role
in the study of computer science and machine learning.
Chua and Yang [10] have found utilizations in vast areas

such as image processing; signal processing, optimization
technique and particularly solving partial differential
equations. Hence, the problem with stability analysis has
received much attention in cellular neural networks (see
[14,39,6],[41]-[45],). Basically, the neurons or cells are
often referred as non-linear processing units.
Mathematically, each cell can be modeled as a dissipative,
non-linear dynamical system where information is
encoded through initial state, inputs and variables used to
define its behavior. Furthermore, the dynamics of a
network are usually continuous as in case of continuous
time CNN processors but it can be discrete as in case of
Discrete time CNN Processors.

Time delay is one of the major sources of causing
instability to the neural system. Over the past few years,
the study of time delay systems has received considerable
attention, see for instance [17,19,20,18,34,47]. A great
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number of research results on time delays systems exist in
the literature, which is often so called systems with
after-effect or dead time, hereditary systems, equations
with deviating argument or differential difference
equations, one can refer([21]-[23], [30,47]). Kosko [15],
first coined Bidirectional Associative Memory(BAM). It
is just an extension of the unidirectional auto associator of
hopfield type networks. Here, the neurons are arranged in
two layers: one layer in first neuron always
interconnected with other layer in next neuron. Mainly,
artificial intelligence is one of the potential applications
of BAM neural networks. Authors Maharajan et al and
Huang et al proposed the concept of BAM neural
networks in [13] and [28]. Halanay introduced an
inequality in the year 1966 to establish the exponential
stability of solutions of delay differential equations. Then,
in ([2,4,7,8,9,11,46]), the scholars proved an asymptotic
formula for the solutions of differential inequality
involving the maximum functional and applied it in the
stability theory of linear systems with delay. Such type of
inequality was so called Halanay inequality. Intuitively,
the authors in [3], [12], [24,27,32,40] considered a
discrete Halanay type inequalities to study some discrete
version of differential equations.

Moreover, parameter uncertainties and stochastic
disturbances are contemplated to follow the most
dynamical behaviors of the systems. Parameter
uncertainties enter into all system matrices whereas
stochastic disturbances are prescribed in the form of
Brownian motion. Due to the modeling inaccuracies
and/or changes in the environment of the model,
parameter uncertainties can be often confronted in real
systems as well as neural networks. In the past few years,
to solve the obstacles brought by parameter uncertainty,
robustness analysis for distinct uncertain systems has
received substantial attention, see for example [33,36,37].

Inspired by the aforementioned works, in this paper,
we aim at addressing the exponential stability analysis
problem for discrete-time cellular BAM neural network
with variable delays and the presence of Halanay type
inequality. These types of inequalities can act as a basic
tool for solving generalized difference equations. The
conditions derived in this paper are easy to check out and
are useful for designing BAM Neural networks.
Additionally, we have provided two numerical examples
with simulations that shows the less conservatism of the
structured BAM neural network.

The main contribution of our proposed work lies in five
aspects:

–This paper investigates the problem of Globally
Exponential Stability of Discrete time Cellular
Uncertain BAM Neural Networks with Variable
delays using Halanay-type Inequality. Here the neural
networks are assumed to be BAM type. Because feed
forward neural networks are easy to check stability.

But BAM has more complications to check the
stability of the neural network system.

–Regarding Research, the Halanay-type Inequality with
variable delays in discrete time is fewer in the
literature. However, up to our knowledge, the Cellular
neural network problem for discrete-time is
considered only with feed forward neural network
system and BAM is not taken into account.

–Using MATLAB LMI toolbox, the trajectory shows
that the system of this paper leads to stable which is
delivered in Example 5.1. The obtained result shows a
new contribution in the field of discrete-time neural
networks.

–Furthermore, when the stochastic disturbances or
noise affects the BAM neural network system, how
the system affects and leads to stable can be checked
with the help of MATLAB LMI toolbox which is
obtained in Remark 4.2.

–Time-invariant parameter uncertainty is used first time
in the Halanay type inequality to check the considered
BAM neural networks is exponentially stable.

The rest of the paper can be well organized as follows.
In Section 2, we have provided the problem formulation
and preliminaries. The essence of the main results are
devoted in Section 3. Section 4 address the problem of
Uncertain BAM neural networks. Section 5 contains
examples with simulation results which help us to
illustrate the effectiveness of the proposed method.
Finally, conclusions are drawn in Section 6.

Notations.The notations in this paper are quite standard.
Rn denotes the n-dimensional Euclidean space.I∗ be the
identity matrix with appropriate dimensions and diag(.)
denotes the diagonal matrix. The superscript ”T” denotes
the transpose of the matrix and||.|| stands for Euclidean
norm in Rn. λmax(x) (respectivelyλmin(x)) stands for
maximum (resp minimum) eigenvalue of matrix X.

2 System Description And Assumption

In this section, we consider the discrete time BAM neural
networks with discrete delay as

ui(n+1) =aiui(n)+
m2

∑
j=1

b ji f̃ j(v j(n))

+
m2

∑
j=1

c ji f̃ j(v j(n− k1(n)))+ Ii

v j(n+1) =l jv j(n)+
m1

∑
i=1

mi jg̃i(ui(n))

+
m1

∑
i=1

ni jg̃i(ui(n− k(n)))+ Ji, (1)

wherem1,m2 ∈N and the vector form is

u(n+1) = Au(n)+B f̃ (v(n))+C f̃ (v(n− k1(n)))+ I
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v(n+1) = Lv(n)+Mg̃(u(n))+Ng̃(u(n− k(n)))+ J, (2)

for n = {0,1, ...}, whereu(n) = [u1(n),u2(n), ...,um1(n)]
T

and v(n) = [v1(n),v2(n), ...,vm2(n)]
T are the neural state

vector; A = diag{a1,a2, ...,am1} and
L = diag{l1, l2, ..., lm2} are the state feedback co-efficient
matrices; B = [bi j]m1×m2,C = [ci j]m1×m2,M =
[mi j]m1×m2,N = [ni j]m1×m2 are the discretely delayed
connection weight matrices;
f̃ (v(n)) = [ f̃1(v(n)), f̃2(v(n)), ..., f̃m1(v(n))]

T and
g̃(u(n)) = [g̃1(u(n)), g̃2(u(n)), ..., g̃m2(u(n))]

T be the
neuron activation functions. The constant vectors
I = [I1, I2, ..., Im1]

T andJ = [J1,J2, ...Jm2]
T are the external

inputs from outside the system.

Assumption I. The activation functionf̃ j , and g̃i,

j = 1,2,3, ...,m2, i = 1,2,3, ...,m1 are bounded and
gratified conditions as follows

| f̃ j(ζ1)− f̃ j(ζ2)| ≤ Pj|ζ1− ζ2|, ∀ζ1,ζ2 ∈ R

|g̃i(γ1)− g̃i(γ2)| ≤ Qi|γ1− γ2|, ∀γ1,γ2 ∈R (3)

Since each functions̃f j , g̃i satisfies the hypothesis (3) and
satisfies

| f̃ j(ζ1)| ≤ Pj|ζ1|,

|g̃i(γ1)| ≤ Qi|γ1|. (4)

Remark 2.1 This type of activation function is clearly
more general than both the usual sigmoid activation
functions and the piecewise linear function:

f̃ j(y) =
1
2
(y+1− y−1) and

g̃i(x) =
1
2
(x+1− x−1) (5)

Which is used in [10].

Definition 2.2 A vectoru∗ = (u∗1,u
∗
2,u

∗
3, ...,u

∗
m)

T andv∗ =
(v∗1,v

∗
2,v

∗
3, ...,v

∗
m)

T is called trivial solution of a NNs (1) if
the below conditions satisfied.

u∗ = aiu
∗
i +

n

∑
i=1

b ji f̃ j(v
∗
j)+

n

∑
i=1

c ji f̃ j(v
∗
j)+ Ii

v∗ = l jv
∗
j +

n

∑
i=1

mi jg̃ j(u
∗
i )+

n

∑
i=1

ni jg̃ j(u
∗
i )+ J j

To shorten our proof, we transferu∗ and v∗ to the
origin.

Let x(n) = u(n)−u∗ andy(n) = v(n)−v∗, then system
(2) can be transformed to

x(n+1) = Ax(n)+B f (y(n))+C f (y(n− k1(n)))

y(n+1) = Ly(n)+Mg(x(n))+Ng(x(n− k(n))). (6)

Definition 2.3 With the pioneering conditions
ui(s) = ϕi(s) andv j(s̃) = ω j(s̃), the equilibrium point of
(7) is forenamed to be exponentially stable if for every
solution(ui(n,ϕi),v j(n,ω j))for s, s̃ ∈ [−k,0], there exists
a scalarε ∈ (0,1) andH ≥ 1 such that

m1

∑
i=1

x2
i (n)+

m2

∑
j=1

y2
j(n)≤ H[‖φ‖2+ ‖ψ‖2]εn

, n ≥ 0, (7)

where ‖φ‖ = maxs∈[−k,0]

{

∑m1
i=1 ϕ2

i (s)
} 1

2
and

‖ψ‖= max̃s∈[−k1,0]

{

∑m2
j=1ω2

j (s̃)
} 1

2
.

In order to acquire our main result, we need the
following lemma.

Lemma 2.4 Ref [25]
Let r > 0 be a natural number, let{z(n)}n≥−r be a

sequence of real numbers satisfying the inequality

∆z(n)≤−pz(n)+ qmax
{

z(n),z(n−1), ...,z(n− r)
}

(8)

wheren ≥ 0, If 0 < q < p ≤ 1, so that

z(n)≤ max
{

0,z(0),z(−1), ...,z(−r)
}

λ n
0

Moreover,λ0 can be chosen as the smallest root in the
interval(0,1) of equation

λ r+1+(p−1)λ r− q = 0. (9)

Remark 2.5 Discrete or continuous Halanay-type
inequalities have been extensively applied to attain the
globally exponential or asymptotic stability of the
equilibria of dynamical systems with considerable delays,
notably dynamical systems of neural networks.

3 Main Results

In this section, a new Halanay type inequality is used to
check the stability of the discrete-time BAM neural
network (6) with time varying delays.

Theorem 3.1 The zero solution of equation (6) is globally
exponentially stable if

3λmax(G
T G)O2

max< min
{

1−3k2
l̃ −3λmax(F

T F)r2
l̃

}

,

whereλmax(G),λmax(F) denotes the largest eigen value of
matrixG,F andPmax= max1≤ j≤m2{p j},

Qmax= max1≤i≤m1{qi} respectively.
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Proof. Consider the following function

z(n) = xT (n)x(n)+ yT (n)y(n) (10)

Then, we obtain

z(n+1)

= xT (n+1)x(n+1)+ yT(n+1)y(n+1)

=
[

Ax(n)+B f (y(n))+C f (y(n− k(n)))
]T

×
[

Ax(n)+B f (y(n))+C f (y(n− k(n)))
]

+
[

Ly(n)+Mg(x(n))+Ng(x(n− k1(n)))
]T

[

Ly(n)+Mg(x(n))+Ng(x(n− k1(n)))
]

=
[

AxT (n)+B f T (y(n))+C f T (y(n− k(n)))
]T

[

Ax(n)+B f (y(n))+C f (y(n− k(n)))
]

+
[

LyT (n)+MgT (x(n))+NgT (x(n− k1(n)))
]T

[

Ly(n)+Mg(x(n))+Ng(x(n− k1(n)))
]

= xT (n)A2x(n)+2xT (n)AB f (y(n))+2xT (n)A

×C f (y(n− k(n)))+ f T (y(n))BT B f (y(n))

+2 f T (y(n))BTC f (y(n− k(n)))+ f T (y(n− k(n)))

×CTC f (y(n− k(n)))+ yT (n)L2y(n)+2yT (n)L

×Mg(x(n))+2yT (n)LNg(x(n− k1(n)))+ gT (x(n))

×MT Mg(x(n))+2gT (x(n))MT Ng(x(n− k1(n)))

+gT (x(n− k1(n)))N
T Ng(x(n− k1(n)))

≤ xT (n)A2x(n)+2xT (n)AB f (y(n))+2xT (n)A

×C f (y(n− k(n)))+λmax(B
T B)

×yT (n)Q2y(n)+2 f T (y(n))BTC f (y(n− k(n)))

+λmax(C
TC)Q2

maxy
T (n− k(n))

×y(n− k(n))+ yT(n)L2y(n)+2yT (n)LMg(x(n))

+2yT (n)LNg(x(n− k1(n)))+λmax(M
T M)xT (n)

×P2x(n)+2gT (x(n))MT Ng(x(n− k1(n)))

+λmax(N
T N)P2

maxx
T (n− k1(n))x(n− k1(n)) (11)

For any a,b ∈ R
m, remember that 2aT b ≤ aT a + bT b

satisfies.

2xT (n)AB f (y(n))

= 2(Ax(n))T B( f (y(n)))

≤ xT (n)A2x(n)+ f T (y(n))BT B f (y(n))

≤ xT (n)A2x(n)+λmax(B
T B) f T (y(n)) f (y(n))

≤ xT (n)A2x(n)+λmax(B
T B)yT (n)Q2y(n)

2xT (n)AC f (y(n− k(n)))

= 2(A(x(n)))TC( f (y(n− k(n))))

≤ xT (n)A2x(n)+ f T (y(n− k(n)))CTC f (y(n− k(n)))

≤ xT (n)A2x(n)+λmax(C
TC) f T (y(n− k(n))) f (y(n− k(n)))

≤ xT (n)A2x(n)+λmax(C
TC)yT (n− k(n))Q2

maxy(n− k(n))

2 f T (y(n))BC f (y(n−k(n)))

= 2(B( f (y(n))))TC( f (y(n−k(n))))

≤ f T (y(n))BT B f (y(n))+ f T (y(n−k(n)))CT C f (y(n−k(n)))

≤ λmax(B
T B) f T (y(n)) f (y(n))+λmax(C

TC) f T (y(n−k(n)))

× f (y(n−k(n)))

≤ λmax(B
T B)yT (n)Q2y(n)+λmax(C

TC)yT (n−k(n))

×Q2
maxy(n−k(n))

2yT (n)LMg(x(n))

= 2(L(y(n)))T Mg(x(n))

≤ yT (n)L2y(n)+gT (x(n))MT Mg(x(n))

≤ yT (n)L2y(n)+λmax(M
T M)gT (x(n))g(x(n))

≤ yT (n)L2y(n)+λmax(MT M)xT (n)P2x(n)

2yT (n)LNg(y(n−k1(n)))

= 2(L(y(n)))T Ng(x(n−k1(n)))

≤ yT (n)L2y(n)+gT (x(n−k1(n)))N
T Ng(x(n−k1(n)))

≤ yT (n)L2y(n)+λmax(NT N)gT (x(n−k1(n)))g(x(n−k1(n)))

≤ yT (n)L2y(n)+λmax(N
T N)xT (n−k1(n))P

2
maxx(n−k1(n))

2gT (x(n))MNg(x(n−k1(n)))

= 2(M(g(x(n))))T N(g(x(n−k1(n))))

≤ gT (x(n))MT Mg(x(n))T MT Mg(x(n))+gT (x(n−k1(n)))

×NT Ng(x(n−k1(n)))

≤ λmax(M
T M)gT (x(n))g(x(n))+λmax(N

T N)

×gT (x(n−k1(n)))g(x(n−k1(n)))

≤ λmax(M
T M)xT (n)P2x(n)+λmax(N

T N)xT (n−k1(n))

×P2
maxx(n−k1(n)) (12)

where P = diag
(

p1, p2, ..., pm1

)

, Q = diag
(

q1,q2,

...,qm2

)

,m1,m2 ∈ R.

By substituting (12) into (11), we obtain

z(n+1) ≤ xT (n)3A2x(n)+ yT (n)3L2y(n)

+3λmax(B
T B)yT (n)Q2y(n)+3λmax(M

T M)

×xT (n)P2x(n)+3λmax(C
TC)yT (n− k(n))

×Q2
maxy(n− k(n))+3λmax(N

T N)

×xT (n− k1(n))P
2
maxx(n− k1(n))

≤ xT (n)
[

3A2+3λmax(M
T M)P2

]

x(n)+ yT (n)
[

3L2+3λmax(B
T B)

]

y(n)

+3λmax(C
TC)yT (n− k(n))Q2

maxy(n− k(n))

+3λmax(N
T N)xT (n− k1(n))

×P2
maxx(n− k1(n)) (13)

With the help of (6)

∆z(n) = z(n+1)− z(n)

c© 2018 NSP
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≤ −xT (n)
[

I∗−3A2−3λmax(M
T M)P2

]

x(n)

−yT (n)
[

I∗−3L2−3λmax(B
T B)Q2

]

y(n)

+3λmax(C
TC)Q2

maxy
T (n− k(n))y(n− k(n))

+3λmax(N
T N)P2

maxx
T (n− k1(n))x(n− k1(n))

(14)

Put,kl̃ = max{ai, l j}, rl̃ = max{p j,qi} and

min
[

1−3k2
l̃ −3λmax(F

T F)r2
l̃

]

= min

{

min
{

1−3a2
i −3λmax(M

T M)p2
i

}

,

min
{

1−3l2
j −3λmax(BT B)q2

j

}

}

, l̃ = 1,2, ...,N, N ∈ N

and putOmax= max{rl̃} and

3λmax(G
T G)O2

max

= max
{

(3λmax(C
TC)P2

max),(3λmax(N
T N)Q2

max)
}

and

K∗(n) = min
{

k(n),k1(n)
}

Then

∆z(n) ≤ −min
{

1−3k2
l̃ −3λmax(F

T F)rl̃

}

×
[

xT (n)x(n)+ yT (n)y(n)
]

+3λmax(C
TC)

×Q2
maxy

T (n− k(n))y(n− k(n))+3λmax(N
T N)

×P2
maxx

T (n− k1(n))x(n− k1(n))

≤ −min

{

min
{

1−3k2
l̃ −3λmax(F

T F)r2
l̃

}

×
[

xT (n)x(n)+ yT (n)y(n)
]

+
{

3λmax(G
T G)

×O2
max

}[

xT (n− k∗(n))x(n− k∗(n))

+yT (n− k∗(n))y(n− k∗(n))
]

}

≤ −min
{

1−3k2
l̃ −3λmax(F

T F)r2
l̃

}

z(n)

+
{

3λmax(G
T G)O2

max

}{

z(n),z(n−1), ...,

×z(n− k∗)
}

= −p∗z(n)+ q∗max
{

z(n),z(n−1), ...,z(n− k∗)
}

(15)

where k∗ = max{k∗(n)}, p∗ =
{

1 − 3k2
l̃

−3λmax(FT F)r2
l̃

}

and q∗ = 3λ (GT G)O2
max, I∗ be the

identity matrix

By Lemma 2.4, ifq∗ = 3λmax(GT G)O2
max < p∗ then∃ a

scalarλ0 (0< λ0 < 1) such that

z(n) = xT (n)x(n)+ yT (n)y(n)

=
m1

∑
i=1

x2
i +

m2

∑
j=1

y2
j(n)

≤ max
{

0,z(0),z(−1), ...,z(−k∗)
}

λ n
0

= max
{

0,
m1

∑
i=1

x2
i (0)+

m2

∑
j=1

y2
j(0), ...,

m1

∑
i=1

x2
i (−k∗)

+
m2

∑
j=1

y2
j(−k∗)

}

λ n
0

≤
[

||φ ||2+ ||ψ ||2
]

λ n
0 (16)

Uncertain Discrete-time BAM Neural Networks using
Halanay Type Inequality Uncertainties are undeniable
in neural networks because of the existence of modeling
errors and external disturbances in practical
performances. To reflect such a phenomenon, while
modeling the network, unavoidable parameter
uncertainties should be taken into account.

In our manuscript, the stability of uncertain discrete-
time BAM neural networks with parameter uncertainties
are mentioned as,

x(n+1) =
[

A+∆A
]

x(n)+
[

B+∆B
]

f (y(n))

+
[

C+∆C
]

f (y(n− k1(n)))

y(n+1) =
[

L+∆L
]

y(n)+
[

M+∆M
]

g(x(n))

+
[

N +∆N
]

g(x(n− k(n))). (17)

for n = {0,1, ...}, where x(n) = [x1(n),x2(n),
...,xm1(n)]

T and y(n) = [y1(n),y2(n), ...,ym2(n)]
T are the

neural state vector;A = diag{a1,a2, ...,am1} and
L = diag{l1, l2, ..., lm2} are the state feedback co-efficient
matrices; B = [bi j]m1×m2,C = [ci j]m1×m2,M =
[mi j]m1×m2,N = [ni j]m1×m2 are the discretely delayed
connection weight matrices; f (y(n)) = [ f1(y(n)),
f2(y(n)), ..., fm1(y(n))]

T and g(x(n)) = [g1(x(n)),
g2(x(n)), ...,gm2(x(n))]

T be the neuron activation
functions.

∆A, ∆B, ∆C, ∆L, ∆M, ∆N denotes the time-invariant
structured uncertainties, which are of the following form,
[

∆A, ∆B, ∆C, ∆L, ∆M, ∆N
]

=W O
[

Ea Eb Ec El Em En

]

(18)

where W,Ea,Eb,Ec,El ,Em,En are known real constant
matrices of appropriate dimensions;O is unknown
time-invariant matrix function satisfying

OT O ≤ I∗. (19)
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Remark 4.1 The parameter uncertainty structure as in
(18), (19) has been extensively abused in the problems of
robust control and filtering of uncertain systems (see, e.g.,
[38] and the references therein). Many practical systems
acquire parameter uncertainties which can be either
explicitly modeled or overbounded by (19). Observe that
the unknown matrix O in (18) can even be allowed to be
state-dependent, i.e.,O = O(t,x(t)), as long as (19) is
satisfied.

We first introduce one lemma which are essential for
the proof of the main result in this proposed work.

Lemma 4.2 Ref [35] Let a positive scalarε and positive
definite matrixQ > 0 such that

NQNT
< εI

Assume that∆A = MFN, whereFFT ≤ I∗, M and N are
constant matrices with appropriate dimensions. Then

(An +∆A)Q(An +∆A)T ≤ An(Q
−1− ε−1NT N)−1AT

n + εMMT

holds for all admissible perturbations.
In next theorem, we establish the required conditions

for the stability of uncertain discrete-time BAM neural
networks

Theorem 4.3 The zero solution of equation (17) is
globally exponentially stable if

3λmax{F∗}< min
{

1−D∗
}

,

whereD∗ andF∗ are defined in the proof of the theorem
andPmax= max1≤ j≤m2{Pj},

Qmax= max1≤i≤m1{Qi} respectively.

Proof. Consider the following function

z(n) = xT (n)x(n)+ yT (n)y(n) (20)

Then, we Obtain

z(n+1) = xT (n+1)x(n+1)+yT (n+1)y(n+1)

=
[

(A+∆A)x(n)+(B+∆B) f (y(n))

+(C+∆C) f (y(n−k(n)))
]T [

(A+∆A)x(n)

+(B+∆B) f (y(n))+(C+∆C) f (y(n−k(n)))
]

+
[

(L+∆L)y(n)+(M+∆M)

×g(x(n))+(N +∆N)g(x(n−k1(n)))
]T

×
[

(L+∆L)y(n)+(M+∆M)g(x(n))

+(N +∆N)g(x(n−k1(n)))
]

=
[

(A+∆A)xT (n)+(B+∆B) f T (y(n))

+(C+∆ ) f T (y(n−k(n)))
]T [

(A+∆A)x(n)

+(B+∆B) f (y(n))+(C+∆C) f (y(n−k(n)))
]

+
[

(L+∆L)yT (n)+(M +∆M)

×gT (x(n))+(N +∆N)gT (x(n−k1(n)))
]T

×
[

(L+∆L)y(n)+(M+∆M)g(x(n))

+(N +∆N)g(x(n−k1(n)))
]

= xT (n)
[

(A+∆A)T (A+∆A)
]

x(n)

+2xT (n)
[

(A+∆A)T (B+∆B)
]

f (y(n))+2xT (n)

×
[

(A+∆A)T (C+∆C)
]

f (y(n−k(n)))

+ f T (y(n))
[

(B+∆B)T (B+∆B)
]

f (y(n))

+2 f T (y(n))
[

(B+∆B)T (C+∆C)
]

f (y(n−k(n)))

+ f T (y(n−k(n)))
[

(C+∆C)T

×(C+∆C)
]

f (y(n−k(n)))+yT (n)
[

(L+∆L)T

×(L+∆L)
]

y(n)+2yT (n)
[

(L+∆L)T

×(M+∆M)
]

g(x(n))+2yT (n)
[

(L+∆L)T

×(N +∆N)
]

g(x(n−k1(n)))+gT (x(n))

×
[

(M+∆M)T (M+∆M)
]

g(x(n))+2gT (x(n))

×
[

(M+∆M)T (N +∆N)
]

×g(x(n−k1(n)))+gT (x(n−k1(n)))
[

(N +∆N)T

×(N +∆N)
]

g(x(n−k1(n)))

≤ xT (n)
[

(A+∆A)T (A+∆A)
]

x(n)

+2xT (n)
[

(A+∆A)T (B+∆B)
]

f (y(n))

+2xT (n)

×
[

(A+∆A)T (C+∆C)
]

f (y(n−k(n)))

+λmax

[

(B+∆B)T (B+∆B)
]

yT (n)Q2y(n)

+2 f T (y(n))
[

(B+∆B)T (C+∆C)
]

f (y(n−k(n)))

+λmax

[

(C+∆C)T (C+∆C)
]

Q2
max

×yT (n−k(n))y(n−k(n))+yT (n)
[

(L+∆L)T

×(L+∆L)
]

y(n)+2yT (n)

×
[

(L+∆L)T (M+∆M)
]

g(x(n))+2yT (n)
[

(L

+∆L)T (N +∆N)
]

g(x(n−k1(n)))

+λmax

[

(M+∆M)T (M+∆M)
]

xT (n)P2x(n)
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+2gT (x(n))
[

(M+∆M)T (N +∆N)
]

×g(x(n−k1(n)))λmax

[

(N +∆N)T

×(N +∆N)
]

P2
maxx

T (n−k1(n))x(n−k1(n)) (21)

Recall that the inequality 2aT b ≤ aT a+bT b holds for any
a,b ∈R

m
, we have

2xT (n)
[

(A+∆A)T (B+∆B)
]

f (y(n))

= 2
[

(A+∆A)x(n)T
][

B+∆B
]

( f (y(n)))

≤ xT (n)
[

(A+∆A)T (A+∆A)
]

x(n)

+ f T (y(n))
[

(B+∆B)T (B+∆B)
]

f (y(n))

≤ xT (n)
[

(A+∆A)T (A+∆A)
]

x(n)

+λmax

[

(B+∆B)T (B+∆B)
]

f T (y(n)) f (y(n))

≤ xT (n)
[

(A+∆A)T (A+∆A)]x(n)

+λmax[(B+∆B)T (B+∆B)
]

yT (n)Q2y(n)

2xT (n)
[

(A+∆A)T (C+∆C)
]

f (y(n− k(n)))

= 2
[

(A+∆A)T (x(n))
]T [

(C+∆C)
]

( f (y(n− k(n))))

≤ xT (n)
[

(A+∆A)T (A+∆A)
]

x(n)

+ f T (y(n− k(n)))
[

(C+∆C)T (C+∆C)
]

f (y(n− k(n)))

≤ xT (n)
[

(A+∆A)T (A+∆A)
]

x(n)+λmax

[

(C

+∆C)T (C+∆C)
]

f T (y(n− k(n))) f (y(n− k(n)))

≤ xT (n)
[

(A+∆A)T (A+∆A)
]

x(n)+λmax

[

(C

+∆C)T (C+∆C)
]

yT (n− k(n))Q2
maxy(n− k(n))

2 f T (y(n))
[

(B+∆B)(C+∆C)
]

f (y(n− k(n)))

= 2
[

(B+∆B)( f (y(n)))
]T [

(C+∆C)
]

( f (y(n−k(n))))

≤ f T (y(n))
[

(B+∆B)T (B+∆B)
]

f (y(n))

+ f T (y(n−k(n)))[(C +∆C)T (C+∆C)] f (y(n−k(n)))

≤ λmax

[

(B+∆B)T (B+∆B)
]

f T (y(n)) f (y(n))

+λmax

[

(C+∆C)T (C+∆C)
]

f T (y(n−k(n))) f (y(n−k(n)))

≤ λmax

[

(B+∆B)T (B+∆B)
]

yT (n)Q2y(n)+λmax

[

(C

+∆C)T (C+∆C)
]

yT (n−k(n))×Q2
maxy(n−k(n))

2yT (n)
[

(L+∆L)(M+∆M)
]

g(x(n))

= 2
[

(L+∆L)(y(n))
]T [

M+∆M
]

g(x(n))

≤ yT (n)
[

(L+∆L)T (L+∆L)
]

y(n)

+gT (x(n))
[

(M+∆M)T (M+∆M)
]

g(x(n))

≤ yT (n)
[

(L+∆L)T (L+∆L)
]

y(n)

+λmax

[

(M +∆M)T (M+∆M)
]

gT (x(n))g(x(n))

≤ yT (n)
[

(L+∆L)T (L+∆L)
]

y(n)+λmax

[

(M

+∆M)T (M+∆M)
]

xT (n)P2x(n)

2yT (n)
[

(L+∆L)(N +∆N)
]

g(y(n− k1(n)))

= 2
[

(L+∆L)(y(n))
]T [

N +∆N
]

g(x(n− k1(n)))

≤ yT (n)
[

(L+∆L)T (L+∆L)
]

y(n)

+gT (x(n− k1(n)))
[

(N +∆N)T (N +∆N)
]

g(x(n− k1(n)))

≤ yT (n)
[

(L+∆L)T (L+∆L)
]

y(n)

+λmax

[

(N +∆N)T (N +∆N)
]

gT (x(n− k1(n)))g(x(n− k1(n)))

≤ yT (n)
[

(L+∆L)T (L+∆L)
]

y(n)+λmax

[

(N

+∆N)T (N +∆N)
]

xT (n− k1(n))P
2
maxx(n− k1(n))

2gT (x(n))
[

(M+∆M)(N +∆N)
]

g(x(n− k1(n)))

= 2
[

(M+∆M)(g(x(n)))
]T [

N +∆N
]

(g(x(n− k1(n))))

≤ gT (x(n))
[

(M +∆M)(M+∆M)
]

g(x(n))T
[

(M

+∆M)T (M+∆M)
]

g(x(n))+ gT (x(n− k1(n)))

×
[

(N +∆N)T (N +∆N)
]

g(x(n− k1(n)))

≤ λmax

[

(M+∆M)T (M+∆M)
]

gT (x(n))g(x(n))+λmax

[

(N

+∆N)T (N +∆N)
]

gT (x(n− k1(n)))g(x(n− k1(n)))

≤ λmax

[

(M+∆M)T (M+∆M)
]

xT (n)P2x(n)

+λmax

[

(N +∆N)T (N +∆N)
]

xT (n− k1(n))

×P2
maxx(n− k1(n)) (22)

where P = diag
(

p1, p2, ..., pm1

)

,Q = diag
(

q1,q2,

...,qm2

)

,m1,m2 ∈ R.

By substituting (22) into (21), we attain

z(n+1)

≤ xT (n)
[

(A+∆A)T (A+∆A)
]

x(n)+ xT (n)
[

(A+∆A)T

c© 2018 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


552 C. Sowmiya et al.: Exponential stability of discrete-time cellular...

×(A+∆A)]x(n)+ yT(n)
[

λmaxQ
2
[

(B+∆B)T

×(B+∆B)
]]

y(n)+ xT (n)
[

(A+∆A)T

(A+∆A)
]

x(n)+ yT (n− k(n))

×
[

λmaxQ
2
max

[

(C+∆C)T (C+∆C)
]]

y(n− k(n))

+λmax

[

(B+∆B)T (B+∆B)
]

yT (n)

×Q2y(n)+ yT (n)
[

λmaxQ
2
[

(B+∆B)T (B

+∆B)
]]

y(n)+ yT (n− k(n))
[

λmaxQ
2
max

×
[

(C+∆C)T (C+∆C)
]]

y(n− k(n))+λmax

[

(C

+∆C)T (C+∆C)
]

Q2
maxy

T (n− k(n))

×y(n− k(n))+ yT(n)
[

(L+∆L)T (L

+∆L)
]

y(n)+ yT (n)
[

(L+∆L)T (L+∆L)]y(n)

xT (n)
[

λmaxP
2
[

(M+∆M)T (M+∆M)
]]

x(n)

+yT (n)
[

(L+∆L)T (L+∆L)
]

y(n)

+xT (n− k(n))
[

λmaxP
2
max

[

(N +∆N)T (N +∆N)
]]

x(n− k(n))+λmax

[

(M +∆M)T (M+∆M)
]

×xT (n)P2x(n)+ xT (n)
[

λmaxP
2
[

(M+∆M)T (M+

∆M)
]]

x(n)+ xT (n− k(n))
[

λmaxP
2
max

[

(N +

×∆N)T (N +∆N)
]]

x(n− k(n))+λmax

[

(N

+∆N)T (N +∆N)
]

Q2
maxx

T (n− k(n))x(n− k(n))

By using the Lemma 4.2, we get

z(n+1)

≤ xT (n)
[

3
(

A(I−1− ε−1ET
a Ea)

−1AT

+εWW T
)]

x(n)+ yT (n)
[

3
(

L(I−1− ε−1ET
l

×El)
−1LT + εWW T

)]

y(n)

+yT (n)
[

3λmax

(

B(I−1− ε−1ET
b Eb)

−1BT

+εWW T
)]

Q2y(n)+ xT (n)

×
[

3λmax

(

M(I−1− ε−1ET
mEm)

−1MT

+εWW T
)]

P2x(n)+ yT (n− k(n))

×
[

3λmax

(

C(I−1− ε−1ET
c Ec)

−1CT

+εWW T
)]

Q2
maxy(n− k(n))+ xT (n− k1(n))

×
[

3λmax

(

N(I−1− ε−1ET
n En)

−1NT

+εWW T
)]

P2
maxx(n− k1(n))

z(n+1

≤ xT (n)
[

A1

]

x(n)+ yT (n)
[

B1

]

y(n)+
[

B2

]

yT (n)Q2y(n)

+
[

A2

]

xT (n)P2x(n)+C1yT (n− k(n))Q2
max

×y(n− k(n))+D1xT (n− k1(n))P
2
maxx(n− k1(n))

≤ xT (n)
[

A1+A2

]

x(n)+ yT (n)
[

B1+B2

]

y(n)

+C1Q2
maxy(n− k(n))+D1xT (n− k1(n))

×P2
maxx(n− k1(n))

≤ xT (n)
[

A∗
]

x(n)+ yT (n)
[

B∗
]

y(n)

+C1Q2
maxy(n− k(n))+D1xT (n− k1(n))

×P2
maxx(n− k1(n)) (23)

where

A1 =
[

3
(

A(I−1− ε−1ET
a Ea)

−1AT + εWW T
)]

A2 =
[

3λmax

(

M(I−1− ε−1ET
mEm)

−1MT + εWW T
)]

B1 =
[

3
(

L(I−1− ε−1ET
l El)

−1LT + εWW T
)]

B2 =
[

3λmax

(

B(I−1− ε−1ET
b Eb)

−1BT + εWW T
)]

C1 =
[

3λmax

(

C(I−1− ε−1ET
c Ec)

−1CT + εWW T
)]

D1 =
[

3λmax

(

N(I−1− ε−1ET
n En)

−1NT + εWW T
)]

For our convenience, we denote

A1+A2 = A∗
, B1+B2 = B∗

By the aid of (17)

∆z(n) = z(n+1)− z(n)

≤ −xT (n)
[

I∗−A∗
]

x(n)− yT (n)
[

I∗−B∗
]

y(n)

+C1Q2
maxy

T (n− k(n))y(n− k(n))

+D1P2
maxx

T (n− k1(n))x(n− k1(n)) (24)

Put,D∗ = max
{

A∗
,B∗

}

and

min
[

1−D∗
]

= min

{

min
{

1−A∗
i

}

,min
{

1−B∗
i

}

}

,

and

F∗ = max
{

C1,D1

}

and

K∗(n) = min
{

k(n),k1(n)
}
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Then

∆z(n) ≤ −min
{

1−D∗
}[

xT (n)x(n)+ yT (n)y(n)
]

+3λmaxF
∗[xT (n− k∗(n))x(n− k∗(n))

+yT (n− k∗(n))y(n− k∗(n))]+3λmax(N
T N)

≤ −min
{

1−D∗
}

z(n)+
{

3λmaxF
∗
}

×
{

z(n),z(n−1), ...,z(n− k∗)
}

= −p∗z(n)+ q∗max
{

z(n),z(n−1), ...,z(n− k∗)
}

(25)

where k∗ = max{k∗(n)}, p∗ =
{

1 − D∗
}

and

q∗ = 3λmaxF∗
, I∗ be the identity matrix

By Lemma 4.2, ifq∗ = 3λmax(F∗) < p∗ then∃ a scalar
λ0 ∈ (0,1) such that

z(n) = xT (n)x(n)+ yT (n)y(n)

=
m1

∑
i=1

x2
i +

m2

∑
j=1

y2
j(n)

≤ max
{

0,z(0),z(−1), ...,z(−k∗)
}

λ n
0

= max
{

0,
m1

∑
i=1

x2
i (0)+

m2

∑
j=1

y2
j(0), ...,

m1

∑
i=1

x2
i (−k∗)

+
m2

∑
j=1

y2
j(−k∗)

}

λ n
0

≤
[

||φ ||2+ ||ψ ||2
]

λ n
0 (26)

Remark 4.4 In [31], [1], the authors considered
parameter uncertainties as a time-varying matrix valued
function. Further, the admissible parameters as a
time-invariant structure uncertainties was discussed in
[33], [36], [37]. However, in the proposed work, we dealt
with the exponential stability problem of uncertain BAM
neural networks with the help of Halanay type inequality
for the first time and uncertainty is examined in the form
of time-invariant matrix valued function.

Remark 4.5 With the research motivation of function of
the human brain, artificial neural networks are able to
learn from experience. These powerful problem solvers
are highly effective where traditional, formal analysis
would be complexity or impossible. Their strength lies in
their ability to make sense out of difficult, noisy, or
nonlinear data. Neural networks can provide robust
solutions to problems in a wide range of disciplines,
particularly areas involving filtering, pattern recognition,
classification, prediction, function approximation and
optimization. Time delay is unavoidable in real-world
neural networks. In practical implementations by

electrical circuits, time-delays occur in the finite
switching speed amplifiers and the signal transmissions
among neurons. As is well known that the existence of
time-delays in discrete term causes poor performance,
oscillation and instability of the concerned neural
networks. Thus, by the help of different
Lyapunov-Krasovskii functional, the oscillations and
instability are controlled while checking the stability in
exponential sense.

4 Illustrative Examples

In this section, two illustrative examples are introduced to
demonstrate the less conservativeness of our proposed
method.

Example 5.1 The discrete-time delayed Bi-directional
associative cellular NNs (6) with the following
parameters as below

G =

(

0.05 0.04
0.07 0.02

)

, F =

(

0.04 0.08
0.01 0.03

)

, K =

(

0.08 0
0 0.06

)

and the activation function are taken to be
f (y) = sin(0.6y) andg(x) = sin(0.6x) which satisfies the
hypothesis (4) with
O1 = O2 = 1.
Furthermore, one can easily check that

3λmax(G
T G)O2

max < min{1−3k2
i −3λmax(F

T F)r2
i }

3λmax(G
T G)O2

max = 0.156

min{1−3k2
i −3λmax(F

T F)r2
i } = 0.3241

Therefore, we obtain
0.156< 0.3241 (27)
Hence from the Theorem 3.1 which is stated in the main
result, it pursue that the neural networks (6) satisfies the
definition 2.3. In order to execute the trajectory of the
cellular NNs (6) we ratify the following inputs:

A =

(

0.09 0
0 0.6

)

, L =

(

0.08 0
0 0.7

)

, B =

(

0.06 1.35
−0.2 0.5

)

C =

(

−1.25−0.8
0.04 0.05

)

, M =

(

0.7 −0.8
0.02 0.9

)

,

N =

(

0.09 0.02
0.03−1.22

)

Here the activation functions are defined as
f1(y) = sin(0.6y), g1(x) = sin(0.6x)

f2(y) = sin(0.6y), g2(x) = sin(0.6x)

According to Theorem 3.1, we obtained that system (6)
with the above given parameters are exponentially stable
with the help of Halanay type inequality and the
trajectories of the state variablesx1(n), xn(k), yn(k), yn(k)
of the discrete-time BAM neural network (6) are depicted
in figure 1.
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Fig. 1: The state responsex(n), y(n) of (6) with BAM neural
networks

Remark 5.2 Suppose, we consider a noise disturbance in
Neural networks system (6), then it can be reformulated as
follows:

x(n+1) = Ax(n)+B f̃ (y(n))+C f̃ (y(n− k1(n)))

+δ
(

x(n), y(n), y(n− k1(n)), n
)

ω1(k)

y(n+1) = Ly(n)+Mg̃(x(n))+Ng̃(x(n− k(n)))

+σ
(

y(n), x(n), x(n− k(n)), n
)

ω2(k)

(28)

whereδ : Rn × R
n × R −→ R

n andσ : Rn × R
n × R −→

R
n are non-linear vector function representing the

disturbance intensities.w1(k) and w2(k) are the weiner
process on the probability space[Ω , F , β ]
E[w1(k)] = 0, E[w2

1(k)] = 1, E[w1(i)w1( j)] = 0 (i 6= j),

E[w2(k)] = 0, E[w2
2(k)] = 1, E[w2(i)w2( j)] = 0 (i 6= j),

(29)

and E(.) being the mathematical expectation operator.
The trajectory of the neural network system (28) with the
following parameters:

A =

(

0.09 0
0 0.6

)

,B =

(

0.7 −0.8
0.02 0.9

)

,

C =

(

−1.25−0.8
0.04 0.05

)

,L =

(

0.08 0
0 0.7

)

,

M =

(

0.06 1.35
−0.2 0.05

)

, N =

(

0.09 0.02
0.03−1.22

)

,

δ =

(

0.04(sinh(π
2 )) 0

0 0.06(sinh(π
2 )−3)

)

,

σ =

(

0.08(sinh(π
2 )) 0

0 0.05(sinh(π
2 )−0.9)

)

ω1 = 0.07; ω2 = 0.09;. The activation functions are
taken as

f1(y) = g1(x) =





tanh(−0.6y)
tanh(−0.6y)
tanh(−0.6y)



 ,

f2(y) = g2(x) =





tanh(−0.6x)
tanh(−0.6x)
tanh(−0.6x)





0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

k

S
ta

te
 r

es
po

ns
e

 

 
x1
x2
y1
y2

Fig. 2: For ω1= 0.07,ω2 = 0.09, the state responsex(n), y(n) of
(17) with Stochastic Disturbances

According to Remark 5.2, we obtained that system
(28) with the above given parameters are stable and the
trajectories of x1(n), x2(n), y1(n), y2(n) of the
discrete-time Stochastic BAM neural network (28) are
portrayed in figure 2.

Example 5.3 Consider the discrete time uncertain BAM
cellular neural networks (17) with the following
parameters

A =

(

0.5 0.4
0.7 0.08

)

, B =

(

0.8 0.1
0.07 0.05

)

, C =

(

0.04 0.08
0.4 0.06

)

L =

(

0.09 0.04
0.2 0.06

)

, M =

(

0.07 0.3
0.8 0.06

)

, N =

(

0.4 0.9
0.03 0.56

)

Ea = Eb = Ec = El = Em = En =

(

0.2 0.2
0.2 0.2

)

,

I =

(

1 0
0 1

)

, W =

(

0.1 0.1
0.1 0.1

)

ε = 0.05.
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Furthermore, one can easily check that

3λmax(F
∗) < min{1−D∗}

3λmax(F
∗) = 0.546

min{1−D∗} = 0.728

Therefore, we obtain

0.546< 0.728 (30)

Hence from the Theorem 4.3, which is stated in the main
result, it pursue that the neural networks (17) is satisfied.
In order to execute the trajectory of cellular neural
networks(17) we follow the following inputs:

A =

(

0.09 0
0 0.0.08

)

, L =

(

0.08 0
0 0.09

)

,

B =

(

−0.06 1.35
−0.2 0.05

)

,C =

(

−1.25−0.8
0.04 0.05

)

,

M =

(

0.7 −0.8
0.02 0.9

)

, N =

(

0.09 0.02
0.03−1.22

)

Here the activation functions are defined as

f1(y) = exp(−6y), g1(x) = sin(0.6x)

f2(y) = sin(0.6y), g2(x) = sin(0.6x)

According to Theorem 4.3, we obtained that system
(17) with the above given parameters are exponentially
stable with the help of Halanay type inequality and the
trajectories of the state variablesx1(n), x2(k), y1(k), y2(k)
of the cellular BAM neural network (17) are depicted in
figure .

5 Conclusions

We have investigated a class of discrete time BAM
cellular neural networks with time varying delays in this
manuscript. Here we introduced a new discrete type
Halanay inequalities and helps to study the discretized
system of functional difference equation to derive the
global stability conditions for non-linear difference
equations by using the inequalities obtained. Uncertain
parameters with time invariant is introduced using
halanay type inequality. Finally, we have given three
numerical examples to show the advantages and
fruitfulness of our obtained theoretical results.
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Fig. 3: The state responsex(k), y(k) of(ref(18))with uncertain
parameters
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Fig. 4: The state responsex(n), y(n) of (17) with BAM neural
networks
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