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Abstract: In this paper, we propose the modified prediction-correctieethods for solving pseudomonotone variational inetjaali
problems. The proposed methods can be viewed as an extaistem method of He et allfl, B.S. He and X.M. Yuan, Comparison
of two kinds of prediction—correction methods for monotaagiational inequalities, Computational Optimizatiordahpplications,
Vol. 27, pp. 247-267 (2004).] by additional projection se#peach iteration under the relaxed condition where the mgpis
pseudomonotone. The convergence of the proposed methadviedp The numerical results are given to verify the efficienf
the modified methods.
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1 Introduction very expensive to estimate the strongly monotone
modulus m. These strict conditions make it difficult for
In the past decades, researchers have developed a variahe applications of VI problems in some cases. To
of efficient algorithms for solving variational inequality overcome this limitation, KorpelevichlB] proposed the
problem(VI): Find a vectox® € Q such that extra-gradient method, which dispenses with the strong

. . monotonicity. It updates the iterations by the following
(x—x)TF(x") >0, Vx€ Q, (1.1)  recursions:

where Q is assumed to be a nonempty closed convex X= P [X — BeF (X)),
subset ofR" andF is assumed to be a mapping fra@h Kl .
into itself. The notation VIF, Q) denotes the solution set X7 =Po X" = BF (X)].
of (1.7).

The projection method, proposed by Goldst&ij &nd
Levitin and Polyak 14], is one of the most basic solution K :
algorithms for solving VI problems due to its simplicity. the sequencex} converges to a solution of VI problems.

This method, beginning with any starting point, generates _Recently, some researchers have proposed numerous
a new point via following formula: modified projection and extra-gradient-type methotls |

7,9,10,11,15,16)] for solving VI problems. Most of these
XL = Po [X< — BeF (X9)], methods were designed to improve the efficiency by
changing the step size parameters based on some
where Po(+) is the projection fromR" onto Q. The  appropriate principles and removing the Lipschitz
convergence of the projection method can be guaranteedonstant  with  line  search  technique. The
under a strong condition that the mappiRds strongly  prediction-correction method developed by He et &1]
monotone and Lipschitz continuous. In fact, it may be adopted the following iterative scheme:

Under the assumptions that the mappikg is
monotone and Lipschitz continuous, andk@ < 1/L,
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For givenxX € R" and B, > 0, the new point is obtained LetC be a subset dk". If C is nonempty, the distance
by ) ) ) from a pointx € R" to C is dc(x) = jrg(f:Hx—yH; if Cis
X =Po[x — yag(x, )], 0 < y < 2 also closed and convex, then for evarg R", there exists
where a unique poinf(x) € C such that/|x — Fe(X)|| = dc(X).
e(x¥, B) = XK — Po[X — BeF (xX¥)], The pointP:(x) is the metric projection af ontoC.
g(xk’Bk) _ e(Xk,Bk) _ Bk[F(Xk) _ F(Xk _ e(Xk,Bk))]a Lemma 24[ 19 Let Q be a closed convex set &', then
K o AT /oK the following statements hold:
o = PO 90 B (1) (y—Pa(y))T (x—Pa(y)) <0, Vy € R" andvx e @,
l9(, Bo)lI2 (2) [Pa(y) =X < ly=x[>~ [ly = Po(y) ]| ¥y € R"
The convergence of this method can be guarantee@ndVvx e Q,
under the conditions thd is monotone angBy suitably (3) ||IPa(y) — Pa(¥)|I> < (y = X)T(Pa(y) — Pa(x)),
chosen. vy, x € R".

On the other hand, Bnouhachem et a].(see also4,  |emma 2517] Let Q be a closed convex set . Then
5]) introduced a new kind of extra-gradient method by x+ js a solution otvI (F, Q) if and only if

additional projection step at each iteration and the . . .
convergence of this method can be guaranteed by the X' =Po[x" = BF(x")], VB > 0. (2.1)

monotonicity off. From Lemma25, it is clear that solving MIF, Q) is

_Inspired by the above mentioned references, we willequivalent to finding a zero point of the residue function
introduce a modified general forward-backward splitting

method and a modified general extra-gradient splitting e(x,B) :=x—Po[x—BF(X)], V8>0.  (2.2)
method. We also prove the convergent theorem for  Generally, the termje(x, 1)| is referred to as the error
solving pseudomonotone variational inequalities. bound of VI(F, Q), since it measures the distancexéfom

Finally, some numerical results are presented to showhe solution set.
the efficiency of the new method. Lemma 26[3] For any x R andﬁ > B> 0, we have

. llex.B)|l < [le(x,B)l (2.3)
2 Preliminaries
and 5
In this section, some definitions and lemmas from the lex,B)Il — llexB)ll
! . > 1EX P (2.4)
literature are presented which are used throughout the B B

paper. For convenience, we consider the projection under
the Euclidean norm.

Definition 21Let F: Q — R"anda > 0. Then F is called
(i) a-strongly monotone if In this section, we describe the proposed methods. The
AT B > 2 propo;ed methods generate two predictors and eval?qate
(x=y) (FO=F)) z alx=y[% ¥xy € Q. three times per iteration. We incorporate the algorithm
with an Armijo-like line search similar to implicit method

3 Main Results

(i) monotone if and improved prediction-correction method @ [and
T [9], respectively in whichBx should satisfy two criteria.
(x=y) (F(X)=F(y)) =0, ¥x,y € Q. We also choosg, with the same way in He et al1{] to
make it a good starting step size for the next iteration.
(i) pseudomonotone if And then investigate the strategy of how to choose the
step sizeny.

T T
(x=y) 'F(y) 20 = (x—y) F(x) >0, ¥xy € Q. Remark 31[11] The sequence{f} is monotonically
Remark 22It is easy to check that a-strongly monotone ~ Nonincreasing. However, this may cause a slow

mapping is monotone and a monotone mapping isconvergence if
pseudomonotone. ) BkH(F(?f)—F()?E))II

Example 23 et K be a nonempty closed convex subset of Mic: ||)z§ _ )?EH

R and F: K — R be a mapping. ) . .
(1) If we take Fx) = 1—x and K= [0,1], then, it is is too small. In order to solve this problem, enlarging the

easy to check that the mapping F is a pseudomonotonétePt?]i?EB fqr the next iteration is necessary. Therefore, in
mapping, neither a monotone mapping nor a stronglyk+1" iteration, we take

monotone mapping. Bl { 2B/ my, if 2r < my;
+1=

(2) If a mapping F is defined by (k) = c, where c is B, otherwise.
a constant and k= R. We observe that the mapping F is
monotone, but not strongly monotone mapping. where m € (0,1/2) is a constant.
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Algorithm3.1.
Step L: Let® € Q, € >0, fp=1, m € (0,1), mp €
(0,v/2), y<€ (0,2) andk = 0.
Step 2 : If|le(x<, 1)|| < €, then stop. Otherwise, go to Step
3

S.tep 3: (1) For a giverf € Q, calculate
X = Po [X — BF (X)),
X5 = Po[X§ — BF (%5))-
(2) If Bk satisfies both

_ IB(F) —FOEDI _

Mg - =
X — ]

and
16 —35)T (F (x)
< ma X3 — %1%
B Bk

then go to Step 4; otherwise, continue.

(3) Perform an Armijo-like line search via reducifig

F (X)) — (X = 3)T (F (<) — F ()|

(3.2)

B 1= 0.75*Bk*min{1,r:]—:},

and go to Step 3.
Step 4 : Take the new iteratiodi™ by setting

(Modified general forward-backward splitting method)

k+1

XSG = Po [X— yong(X5, X5)), (3.3)

and (Modified general extra-gradient splitting method)

X = Po[X — yaiBF (%)), (3.4)
where
T
(Xk - )z;) g()_('ji_v)_(g)
O<y<2 ax= ,
196, %) |

g3, %5) = (X{ — %) — Be(F () — F (5§))-

Step 5: Choosing a suitabfg, , for the next iteration
(same as11)).

2B/ my, if 21 < my;
Bk otherwise.

Return to Step 2, with replaced by + 1.

Brr1= {

Lemma 322] In the KM iteration, if ||e(x,1)|| > &, then
the Armijo-like line search procedure with criter(g.1)
and(3.2) is finite.

Remark 33It is a natural question that how to choose a Let 6g := [[X —x*||? — ||xS¢g

suitable optimalay is an important issue. The Criterion
(3.2 only could ensurer, > 0. In order to obtain a lower
bound (away from zero) om, we need criterion3.1). We
will discuss these issues in this section.

Remark 34Since(x — x*)TF(x*) > 0,Vx € Q wherex* €
VI(F,Q), and

X5 = P [X — BeF (X)) € Q,

we obtain .
(X5 —x*) F(x*) > 0.

By pseudomonotonicity of F, we get that
B —x) F (%) > 0. (3.5)

Sincext — BcF (X§) € R" andx* € Q, by Lemma24(1), we
deduce that

(5 —x)" (% — BF () > 0. (3.6)
By combining 8.5) and 3.6), we derive
s\ T
(5 —x)" (% — 35— BF (%) + BeF (%)) > 0.
This implies that
(¢ —x) g, 5%5) > ()" g%, %). (37

The next two lemmas are useful tools for proving the
convergence results of the two methods.

Lemma 35Modified general forward-backward splitting
method)
LetBrg := [|[X<— x*[|% — | XE5t — x*||2. Then we have

Bre > 20k (X — %) T (X, X5)

K kt1 K k(2
+[X = xg5 — akg(Xg, %3) |

—a?] g )| (3.8)

ProofSincext — ayg(x,x5) € R" andx* € Q, by Lemma
24(2), we obtain

IXEE" =17 < X~ awg(x5, %) — x|

k K ok k+1)2
—[IX¢ = ag(X7, %3) — X¢5 |
K K ok
<X = xE[JP = X = X2

T
—2a(x ~X§) g(%, %)

T
+20k(xk - Xlkz-gl) g()?f,?ﬁ),

the second inequality directly follows fron8.(7). By a
simple manipulation we deduce

2 T
Ore > X —x55t|% + 2ak(X = %) (3, %)

T
—2a (X = xE5Y) 90, %)

k ok T ook ok Kk Jktl K K\||2

= 2a(x = x3) 9(X1,%3) + X = x5 — 9(x3, %) |

oK ok
~[lang(%.5%9) 1%,
and the lemma is proved.

Lemma 36Modified general extra-gradient method)
k+1_ x*||2. Then the following

inequality holds

B > 20k(X —X5) Tg(XE, X§) + X — x5 — awg(xE, X5) >

—a? g, 3|1 (3.9)
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ProofSince Xt = Po XX — ayBF (X5)] and x* € Q, it

follows from Lemma24(2) that
IXEE = X1 < 11X — e (35) —x°|2
—[IX — aBeF (%) — x5 1%

XeG
and consequently we get

O > X< - xé+é||2+2ak(xk—x*)TﬁkF@S)
— 20 (X — X5 T BeF (%)
Using BeF () = g(x§, %) — [(Xk — X5) — BF (X)), w
obtain that
B > 20k (X< — X*)T BeF (%) + XK — X2

— 201 (X - X6 T g4, %)

+20 (x —Xlgél)T (i’i_i;) _BkF()?D]

[
> 20X —x*)TBkFo?é
20 (X — g T [ — X5) — BeF (3X5)]
+[|x — xE G — g (X5, %5) 12 — o]l g (%5, %) |12,

which can be rewritten as

Bec > 201 (X — x")T{g(, X5) — (¥ — X) — BF ()]}
205 (X = XE) T — 55) — BeF ()]
X — X G — o g (3, 5) (|2 — a2 g%, %) |12
= 201X — x") T g (%, %)
—2ak<x —x)T[(% — 55) — B ()]
205 (X = XEE) T[4 — 55) — BeF ()]
X —xggl ag(, %) |12 — a? | g (%, X5) |2
= 20 (X — x*) g (%, %)
20 (X = XEGH) — (K = x) T [ — 55) — BeF ()]
X = xET — g (%, %) |2 — o | (x5, %) |[2(3.10)

Settingy := XX — B¢F (XX) andx := x‘“rl in Lemma24(1),
we get

[¥5 — BF (%) — P (% —
[Po (X5 — BeF (x)) —
and therefore
[ —xEGH) — (K —x)T[(% — %) — BeF ()] > 0. (3.11)
Substituting(3.11) into (3.10) and by 8.7), it follows that
Bec > 20k (X — X5) T g(x, %)
+[X = x5 — akg(XE, X5)

—XgG —
it completes the proof.

BeF (X))

xEEl] >0

2
I

21l y( K 2 (12
—aicllg(a, ) 1%

For convenience of later analysis, we use the following

and
-
P2 = (X =) g(x§,%5)
T ok ok

—B— %) (F (%) — F (%)),

then(x —35)Tg(%, %) = p1 + p2.
Now, in order to prove the fact thag is bounded away

from zero, we need the next lemma.

(3.13)

Lemma 37Assume %€ Q, XX = Po[x* — BF (xX¥)] and
x2 = Po [x1 BxF ()?{)]. Then the following inequality is
true

P2 > ||X1—X2||2+Bk[()?§ )_(5)
— (3T (F (%) — F(

Lemma 38 et

X5))].

X = ; Po [X¢ — BiF (X)], X5 = Po [ — BeF ()]
an
(x— ) " g%k, %)

ax =
196, X5)

Thenay is bounded away from zero.

Proof Applying Lemma32 and criterion 8.2), we get

prt P > IR~ 12— B — ) (F (%) — F(%)
+Hx1—x2n2+rsk[<l %) (F (X — F (%))
— (=) (F () — F(R)]
= 2% - ||2+rsk[<x*i %5)" (F (<)
—F (%) — (&%) (F (%) ~ F ()]

|2
> 2|3 — X5/ — mB||x§ — X512

= (2—mp)[Ix =512 (3.15)
Recalling the definition of
g(x,35) = (X —X5) — Be(F (Xf) — F (%5))
and applying criterion3.1), we conclude that
(38| < (1% — %]/ + [|B(F ( )~ FE))°
< (1+my)? |\X1—X2H (3.16)

Moreover, by using3.15 together with 8.16, we get that

_ l31+1322Z 2—ms 7 (3.17)
lgGE )12 T (14 my)?

wheremy, € (0,1/2). The proof is completed.

Next, we will show the convergence result of proposed

notations: method.
R S AU

P = (x4 —%) 90X, %) Theorem 39The sequenceSE} and {xE1} generated
= [|XE — K||2 — Be(X — 2)T(F (X)—F(x5)), (3.12) by Algorithm 3.1 are bounded.
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Proof From Lemma35 and Lemm&B6, we have

6rs (andbec) > 20k (X —X5)Tg(X, X5) — a9 (X5, %5) ||
(3.18)

For simplicity, we denotéeg (and 6:g) by 6(ak) and

x<EL (andxEE) by X<1(ay). The right-hand side of the

inequality given by 8.18 is a quadratic function ofrg
which its maximum consists of

(3.19)

Let y € (0,2) be a relaxation factor andy = yay, it
follows that
T

O(yay) > 2yag (X —X5) g(x, X5) — y2or 2| g(X§, %5) |2
* T *
= yay (2(x = X5) g(x§,%5) — yag|lg(x5,%5) (%)
. T
= yag(2—y) (X —X5) g(x;,%). (3.20)
By (3.195 and 3.17), we obtain
2
X T 2—
ai - Tad R > B e w2
(1+my)
By (3.20 and @.21), we get
2
* 2—
6(vap) > y2— ) ZT g2
(1-|— ml)
This implies that
%€ = x| 2= || X2 (yary ) — x| 2
2
2_
Sy e @22)
(1—|— m1)

Then
X (yary) — x|
2
2 —
%nxﬁ—x@? (3.23)
1
According to 8.23, it follows that

< X =x 2= y(2-y)

et ]| < X < < .

Hence the sequend&}  R" generated by Algorithm 3.1
is bounded.

Theorem 31uppose that the solution set\df(F, Q) is
nonempty. Then the sequenfé} ¢ R" generated by
Algorithm 3.1 converges to a solution\6f(F, Q).

ProofLet x* be a solution of V(F, Q). First, it follows
from (3.23 that

< y2-y)2-mp)? ‘
5 YEVC I 1 < x| < on
k=0

which means that

lim [ — 5512 = 0.

k—co0
According to Theoren39, the sequencéx®} is bounded.
Thus, it has at least one cluster point. Assume Kids

a cluster point of{x}. Then there exists a subsequence

{xki} that converges ta*. It follows from the continuity
of eand Q.3 that

le(x”, Bl = lim le(xs,B)]|
j—r°
< lim [0, B )| = lim X9 — x| = 0.
" kj—ow T Kj—reo 1 2

Thereforex* is a solution of V[F, Q).

In the following, we prove that the sequenpé} has
exactly one cluster point. Assume thas another cluster
point, and denoted := ||xX— x*L\ > 0. Sincex* andx are
cluster point of the sequende”}, there is &; € N such
that

X < 2,k
and there is & € N such that
K o

=5 < 5. vk ke,

and choose&y = max{ks,ko}. On the other hand, since
x* e VI(F,Q), thus

1€ = x| < [[x0 — x|, Yk > ko,
It follows that
Kk T Uk Ko * o
X=X} = [[x=>x = [IX® = x| = 5, Vk > ko,

This is a contradiction withx is a cluster point, thus the
sequencégx*} converges ta* € VI (F, Q).

However, the following theorem shows that in each

iterative step, we may expect the modified general
extra-gradient method to get closer with the solution than

the modified general forward-backward splitting method.

Theorem 311 et X! and X be defined as in33 and
(3.4). Then

k+1 k+1||2

K412
IXFg —XgG 5

k & K
< [IX*— akg(x1, X2) — X
k Kk k12
—[IX¢ — akg(X3,%3) — Xgg 1|%-
ProofSety := x* — ayg(x5, x5) andx := xEtL, by applying
Lemma24(2), we obtain
Kl Gki1)j2 K K ok k12
IX€s —Xea [1© < [IX — akg (X3, X3) — g |

k * ok k+l)2
—[IX¢ = awg(X5, X3) — X555 1|

This leads us to the conclusion.
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Table 1: Example 1: Numerical results for starting poift =

Table 2: Example 1: Numerical results for starting poft =

(1,0,1,0,..)7 (-2,-2,-2,.)7

TAB 1 | method in L1] | Modified FB | Modified EG TAB 2 | method in[L1] | Modified FB | Modified EG

dimN it cpu it cpu it cpu dimN it cpu it cpu it cpu
10 112 | 0.031 | 178 | 0.062| 55 | 0.000 10 156 | 0.046 | 191 | 0.031| 58 | 0.015
50 497 | 0.046 | 344 | 0.062| 131 | 0.046 50 704 | 0.062 | 375 | 0.046| 131 | 0.031
100 | 1035| 0.187 | 489 | 0.171| 183 | 0.093 100 | 1393 | 0.234 | 514 | 0.187| 183 | 0.093
200 | 2117 | 0.437 | 676 | 0.265| 267 | 0.125 200 | 2769 | 0.546 | 711 | 0.265| 262 | 0.109
500 5367 | 1.796 | 1054 | 0.656 | 427 | 0.312 500 6900 | 2.515 | 1081 | 0.750 | 399 | 0.265

Table 3: Example 2: Numerical results for starting poft =

4 Numercal experiments (=5,5,—5,...)T
TAB 3 method in [L1] Modified FB | Modified EG
In this section, we use two examples givenThdnd [1§] dimN it cpu it cpu it cpu
to show the efficiency of the proposed new algorithm. All| 10 256 0.031 | 210 | 0.046| 66 | 0.031
codes are written in Matlab 7.12 and run on a desktog 50 32805 | 1.656 | 399 | 0.078| 160 | 0.062
computer(CPU:Intel Pentium 4 3.00 GHz, Memory:1.00| 100 | 138985| 20.328| 550 | 0.171| 228 | 0.109
GB). 200 - - 766 | 0.296 | 332 | 0.140
Two examples of the linear complementarity problem| 500 - - 1191 ] 0.796 | 526 | 0.296
are adopted in this paper: " —" represents that the CPU time is longer than 60 s

x> 0,F(x) > 0,x"F(x) =0,

whereF (x) = Mx+q. Table 4: Example 2: Numerical results for starting poift=

Examplel (3,3,3,..)7
- TAB 4 method in [L1] Modified FB | Modified EG
12 .. ... 2 _ ; . .
dimN it cpu it cpu it cpu
o1 2-- 10 2596 0.171 | 66 | 0.031| 55 | 0.015
M= |:- - _( 1.1 1)T 50 65295 | 3.718 | 154 | 0.046 | 126 | 0.031
I ==L —L = 100 | 261237| 38.031| 180 | 0.109 | 219 | 0.078
.2 200 - - 250 | 0.109 | 311 | 0.140
N 500 - - 381 | 0.312 | 489 | 0.281
0 - 0 1]
Example2 " —" represents that the CPU time is longer than 60 s
122 2
25 6 6
M= (269 10 , modified general extra-gradient method can converge
. faster than the modified general forward-backward
Ceos T : method which is consistent with TheoreBll We
[2610--- 4(n—1)+1 confirm that all examples coding by accord to the theory.

Next, in Example 3 is an example of mappifg
which is not monotone but is pseudomonotone (48 [
Inourtestwetak® =RT_ . B=1 m =09 m= Thus, our algorithm can apply to solve the problem but
03, a = 18, p? = 2/3 and the stop as soon as the algorithmin L1] can not.
le(xk,1)|] < 10~7. We are going to compare the method ~ Example3
generated by algorithm 3.1 with the method proposed by X1+ X2 + X3+ Xq — AXX3X4
He et al. [L1].The test results for Example 1 are reported F(x) = X1+ X2 + X3+ Xa — 4X1X3Xa
in tables 1 and 2 and the test results for Example 2 are X1+ Xz + X3+ Xa — 4X1XoXa |’
reported in tables 3 and 4. "it" denotes the number of X1+ X2 + X3+ Xa — 4X1X2X3
iterations and "cpu” is computation time (second). andQ = {xcR*:1<x <5,i=1,...,4}.
Tabled

I

The initial point is generated randomly. And because

The numerical results show that the method generatedf the dimension of this problem is very small, the
by algorithm 3.1 is more effective than the method calculation is too fast, so it is not appropriate to compare
presented in I1], which can achieve the solution with performance of the methods by time. We compare the
fewer iteration and time. Moreover, it seems that theaverage of number of iterations for each method by
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Table 5: Example 3: Numerical results for a random start point [10]B.S. He and H. Yang, Modified Goldstein—Levitin—

- 4
in [-10,10) . _ _ Polyak projection method for asymmetric strongly monotone
__methodin 1] Modified FB  Modified EG variational inequalities, Journal of Optimization Theanyd
Avg it NAN 19 12 Applications, Vol. 112, pp. 129-143 (2002).

[11] B.S. He, X.M. Yuan and J.J. Zhang, Comparison of
two kinds of prediction—correction methods for monotone
variational inequalities, Computational Optimizationdan
Applications, Vol. 27, pp. 247-267 (2004).

[12] X. Hu and J. Wang, Solving pseudomonotone variational

. . . .. Inequalities and pseudoconvex optimization problemsgusin
]E;alculatrl]ng 5?]0 times, _thenhestlmate th? ?verage OT T the projection neural network, IEEE Transactions on Neural
or each method (Avg it). The test result for example 3 Networks, Vol. 17, pp. 1487-1499 (2006).

"NAN” represents that the iteration is endless calculation

has been shown in the table below. [13] G.M. Korpelevich, The extragradient method for finding
saddle points and other problems, Matecon, Vol. 12, pp. 747—
756 (1976).
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