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Abstract: In this paper, we propose the modified prediction-correction methods for solving pseudomonotone variational inequalities
problems. The proposed methods can be viewed as an extensionof the method of He et al. [11, B.S. He and X.M. Yuan, Comparison
of two kinds of prediction–correction methods for monotonevariational inequalities, Computational Optimization and Applications,
Vol. 27, pp. 247–267 (2004).] by additional projection stepat each iteration under the relaxed condition where the mapping is
pseudomonotone. The convergence of the proposed method is proved. The numerical results are given to verify the efficiency of
the modified methods.

Keywords: extra-gradient method, forward-backward splitting method, pseudomonotone, variational inequality

1 Introduction

In the past decades, researchers have developed a variety
of efficient algorithms for solving variational inequality
problem(VI): Find a vectorx∗ ∈ Ω such that

(x− x∗)TF(x∗)≥ 0, ∀x∈ Ω , (1.1)

where Ω is assumed to be a nonempty closed convex
subset ofRn andF is assumed to be a mapping fromRn

into itself. The notation VI(F,Ω) denotes the solution set
of (1.1).

The projection method, proposed by Goldstein [6], and
Levitin and Polyak [14], is one of the most basic solution
algorithms for solving VI problems due to its simplicity.
This method, beginning with any starting point, generates
a new point via following formula:

xk+1 = PΩ [xk−βkF(xk)],

where PΩ (·) is the projection fromR
n onto Ω . The

convergence of the projection method can be guaranteed
under a strong condition that the mappingF is strongly
monotone and Lipschitz continuous. In fact, it may be

very expensive to estimate the strongly monotone
modulus m. These strict conditions make it difficult for
the applications of VI problems in some cases. To
overcome this limitation, Korpelevich [13] proposed the
extra-gradient method, which dispenses with the strong
monotonicity. It updates the iterations by the following
recursions:

x̄= PΩ [xk−βkF(x
k)],

xk+1 = PΩ [xk−βkF(x̄)].

Under the assumptions that the mappingF is
monotone and Lipschitz continuous, and 0< βk < 1/L,
the sequence{xk} converges to a solution of VI problems.

Recently, some researchers have proposed numerous
modified projection and extra-gradient-type methods [1,
7,9,10,11,15,16] for solving VI problems. Most of these
methods were designed to improve the efficiency by
changing the step size parameters based on some
appropriate principles and removing the Lipschitz
constant with line search technique. The
prediction-correction method developed by He et al. [11]
adopted the following iterative scheme:
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For givenxk ∈ R
n andβk > 0 , the new point is obtained

by
xk+1 = PΩ [xk− γαkg(x

k,βk)],0< γ < 2

where

e(xk,βk) = xk−PΩ [xk−βkF(xk)],

g(xk,βk) = e(xk,βk)−βk[F(x
k)−F(xk−e(xk,βk))],

αk =
e(xk,βk)

Tg(xk,βk)

‖g(xk,βk)‖2 .

The convergence of this method can be guaranteed
under the conditions thatF is monotone andβk suitably
chosen.

On the other hand, Bnouhachem et al. [2] (see also [4,
5]) introduced a new kind of extra-gradient method by
additional projection step at each iteration and the
convergence of this method can be guaranteed by the
monotonicity ofF .

Inspired by the above mentioned references, we will
introduce a modified general forward-backward splitting
method and a modified general extra-gradient splitting
method. We also prove the convergent theorem for
solving pseudomonotone variational inequalities.

Finally, some numerical results are presented to show
the efficiency of the new method.

2 Preliminaries

In this section, some definitions and lemmas from the
literature are presented which are used throughout the
paper. For convenience, we consider the projection under
the Euclidean norm.

Definition 21Let F : Ω →R
n andα > 0. Then F is called

(i) α-strongly monotone if

(x− y)T(F(x)−F(y))≥ α‖x− y‖2, ∀x,y∈ Ω .

(i) monotone if

(x− y)T(F(x)−F(y))≥ 0, ∀x,y∈ Ω .

(i) pseudomonotone if

(x− y)TF(y)≥ 0 ⇒ (x− y)TF(x)≥ 0, ∀x,y∈ Ω .

Remark 22It is easy to check that aα-strongly monotone
mapping is monotone and a monotone mapping is
pseudomonotone.

Example 23Let K be a nonempty closed convex subset of
R and F : K →R be a mapping.

(1) If we take F(x) = 1− x and K= [0,1], then, it is
easy to check that the mapping F is a pseudomonotone
mapping, neither a monotone mapping nor a strongly
monotone mapping.

(2) If a mapping F is defined by F(x) = c, where c is
a constant and K= R. We observe that the mapping F is
monotone, but not strongly monotone mapping.

Let C be a subset ofRn. If C is nonempty, the distance
from a pointx ∈ R

n to C is dC(x) = inf
y∈C

‖x− y‖; if C is

also closed and convex, then for everyx∈ R
n, there exists

a unique pointPC(x) ∈ C such that‖x−PC(x)‖ = dC(x).
The pointPC(x) is the metric projection ofx ontoC.

Lemma 24[19] Let Ω be a closed convex set inRn, then
the following statements hold:

(1) (y−PΩ(y))T(x−PΩ(y))≤ 0, ∀y∈R
n and∀x∈ Ω ,

(2) ‖PΩ (y)− x‖2 ≤ ‖y− x‖2−‖y−PΩ(y)‖2, ∀y∈ R
n

and∀x∈ Ω ,
(3) ‖PΩ (y) − PΩ (x)‖2 ≤ (y − x)T(PΩ (y) − PΩ (x)),

∀y,x∈ R
n.

Lemma 25[17] Let Ω be a closed convex set inRn. Then
x∗ is a solution ofVI(F,Ω) if and only if

x∗ = PΩ [x∗−βF(x∗)], ∀β > 0. (2.1)

From Lemma25, it is clear that solving VI(F,Ω) is
equivalent to finding a zero point of the residue function

e(x,β ) := x−PΩ [x−βF(x)], ∀β > 0. (2.2)

Generally, the term‖e(x,1)‖ is referred to as the error
bound of VI(F,Ω), since it measures the distance ofx from
the solution set.

Lemma 26[3] For any x∈ R
n andβ̃ ≥ β > 0, we have

‖e(x,β )‖ ≤ ‖e(x, β̃ )‖, (2.3)

and
‖e(x,β )‖

β
≥ ‖e(x, β̃ )‖

β̃
. (2.4)

3 Main Results

In this section, we describe the proposed methods. The
proposed methods generate two predictors and evaluateF
three times per iteration. We incorporate the algorithm
with an Armijo-like line search similar to implicit method
and improved prediction-correction method of [8] and
[9], respectively in whichβk should satisfy two criteria.
We also chooseβk with the same way in He et al. [11] to
make it a good starting step size for the next iteration.
And then investigate the strategy of how to choose the
step sizeαk.

Remark 31[11] The sequence{βk} is monotonically
nonincreasing. However, this may cause a slow
convergence if

rk :=
βk‖(F(x̄k

1)−F(x̄k
2))‖

‖x̄k
1− x̄k

2‖
is too small. In order to solve this problem, enlarging the
step sizeβ for the next iteration is necessary. Therefore, in
k+1th iteration, we take

βk+1 =

{

2βk/m2, if 2rk ≤ m2;
βk, otherwise.

where m2 ∈ (0,
√

2) is a constant.

c© 2018 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.12, No. 3, 501-508 (2018) /www.naturalspublishing.com/Journals.asp 503

Algorithm3 .1.
Step 1: Letx0 ∈ Ω , ε > 0, β0 = 1, m1 ∈ (0,1), m2 ∈
(0,

√
2), γ ∈ (0,2) andk= 0.

Step 2 : If‖e(xk,1)‖ ≤ ε, then stop. Otherwise, go to Step
3.
Step 3 : (1) For a givenxk ∈ Ω , calculate

x̄k
1 = PΩ [xk−βkF(xk)],

x̄k
2 = PΩ [x̄k

1−βkF(x̄k
1)].

(2) If βk satisfies both

rk :=
‖βk(F(x̄k

1)−F(x̄k
2))‖

‖x̄k
1− x̄k

2‖
≤ m1, (3.1)

and

‖(x̄k
1− x̄k

2)
T(F(xk)−F(x̄k

1))− (xk− x̄k
1)

T(F(x̄k
1)−F(x̄k

2))‖

≤ m2
2‖x̄k

1− x̄k
2‖2

βk
(3.2)

then go to Step 4; otherwise, continue.
(3) Perform an Armijo-like line search via reducingβk

βk := 0.75∗βk∗min{1,
m1

rk
},

and go to Step 3.
Step 4 : Take the new iterationxk+1 by setting

(Modified general forward-backward splitting method)

xk+1
FB = PΩ [xk− γαkg(x̄

k
1, x̄

k
2)], (3.3)

and (Modified general extra-gradient splitting method)

xk+1
EG = PΩ [xk− γαkβkF(x̄k

2)], (3.4)

where

0< γ < 2, αk =
(xk− x̄k

2)
T
g(x̄k

1, x̄
k
2)

‖g(x̄k
1, x̄

k
2)‖

,

g(x̄k
1, x̄

k
2) = (x̄k

1− x̄k
2)−βk(F(x̄k

1)−F(x̄k
2)).

Step 5: Choosing a suitableβk+1 for the next iteration
(same as [11]).

βk+1 =

{

2βk/m2, if 2rk ≤ m2;
βk, otherwise.

Return to Step 2, withk replaced byk+1.

Lemma 32[2] In the kth iteration, if ‖e(xk,1)‖ ≥ ε, then
the Armijo-like line search procedure with criteria(3.1)
and(3.2) is finite.

Remark 33It is a natural question that how to choose a
suitable optimalαk is an important issue. The Criterion
(3.2) only could ensureαk > 0. In order to obtain a lower
bound (away from zero) onαk, we need criterion (3.1). We
will discuss these issues in this section.

Remark 34Since(x− x∗)TF(x∗) ≥ 0,∀x∈ Ω wherex∗ ∈
VI(F,Ω), and

x̄k
2 = PΩ [x̄k

1−βkF(x̄k
1)] ∈ Ω ,

we obtain
(x̄k

2− x∗)
T
F(x∗)≥ 0.

By pseudomonotonicity of F, we get that

βk(x̄
k
2− x∗)

T
F(x̄k

2)≥ 0. (3.5)

Sincex̄k
1−βkF(x̄k

1) ∈R
n andx∗ ∈ Ω , by Lemma24(1), we

deduce that

(x̄k
2− x∗)

T
(x̄k

1− x̄k
2−βkF(x̄k

1))≥ 0. (3.6)

By combining (3.5) and (3.6), we derive

(x̄k
2− x∗)

T
(x̄k

1− x̄k
2−βkF(x̄k

1)+βkF(x̄k
2))≥ 0.

This implies that

(xk− x∗)
T
g(x̄k

1, x̄
k
2)≥ (xk− x̄k

2)
T
g(x̄k

1, x̄
k
2). (3.7)

The next two lemmas are useful tools for proving the
convergence results of the two methods.

Lemma 35(Modified general forward-backward splitting
method)
Let θFB := ‖xk− x∗‖2−‖xk+1

FB − x∗‖2. Then we have

θFB ≥ 2αk(x
k− x̄k

2)
Tg(x̄k

1, x̄
k
2)

+‖xk− xk+1
FB −αkg(x̄

k
1, x̄

k
2)‖2

−α2
k‖g(x̄k

1, x̄
k
2)‖2. (3.8)

Proof.Sincexk−αkg(x̄k
1, x̄

k
2) ∈ R

n andx∗ ∈ Ω , by Lemma
24(2), we obtain

‖xk+1
FB − x∗‖2 ≤ ‖xk−αkg(x̄

k
1, x̄

k
2)− x∗‖2

−‖xk−αkg(x̄
k
1, x̄

k
2)− xk+1

FB ‖2

≤ ‖xk− x∗‖2−‖xk− xk+1
FB ‖2

−2αk(x
k− x̄k

2)
T
g(x̄k

1, x̄
k
2)

+2αk(x
k− xk+1

FB )
T
g(x̄k

1, x̄
k
2),

the second inequality directly follows from (3.7). By a
simple manipulation we deduce

θFB ≥ ‖xk− xk+1
FB ‖2+2αk(x

k− x̄k
2)

T
g(x̄k

1, x̄
k
2)

−2αk(x
k− xk+1

FB )
T
g(x̄k

1, x̄
k
2)

= 2αk(x
k− x̄k

2)
T

g(x̄k
1, x̄

k
2)+ ‖xk− xk+1

FB −g(x̄k
1, x̄

k
2)‖2

−‖αkg(x̄
k
1, x̄

k
2)‖2,

and the lemma is proved.

Lemma 36(Modified general extra-gradient method)
Let θEG := ‖xk− x∗‖2−‖xk+1

EG − x∗‖2. Then the following
inequality holds

θEG ≥ 2αk(x
k− x̄k

2)
Tg(x̄k

1, x̄
k
2)+ ‖xk− xk+1

EG −αkg(x̄
k
1, x̄

k
2)‖2

−α2
k‖g(x̄k

1, x̄
k
2)‖2. (3.9)
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Proof.Since xk+1
EG = PΩ [xk − αkβkF(x̄k

2)] and x∗ ∈ Ω , it
follows from Lemma24(2) that

‖xk+1
EG − x∗‖2 ≤ ‖xk−αkβkF(x̄k

2)− x∗‖2

−‖xk−αkβkF(x̄
k
2)− xk+1

EG ‖2,

and consequently we get

θEG ≥ ‖xk− xk+1
EG ‖2+2αk(x

k− x∗)T βkF(x̄
k
2)

−2αk(x
k− xk+1

EG )T βkF(x̄
k
2)

Using βkF(x̄k
2) = g(x̄k

1, x̄
k
2) − [(x̄k

1 − x̄k
2) − βkF(x̄k

1)], we
obtain that

θEG ≥ 2αk(x
k− x∗)TβkF(x̄k

2)+ ‖xk− xk+1
EG ‖2

−2αk(x
k− xk+1

EG )Tg(x̄k
1, x̄

k
2)

+2αk(x
k− xk+1

EG )T [(x̄k
1− x̄k

2)−βkF(x̄
k
1)]

≥ 2αk(x
k− x∗)TβkF(x̄k

2)

+2αk(x
k− xk+1

EG )T [(x̄k
1− x̄k

2)−βkF(x̄
k
1)]

+‖xk− xk+1
EG −αkg(x̄

k
1, x̄

k
2)‖2−α2

k‖g(x̄k
1, x̄

k
2)‖2,

which can be rewritten as

θEG ≥ 2αk(x
k− x∗)T{g(x̄k

1, x̄
k
2)− [(x̄k

1− x̄k
2)−βkF(x̄k

1)]}
+2αk(x

k− xk+1
EG )T [(x̄k

1− x̄k
2)−βkF(x̄

k
1)]

+‖xk− xk+1
EG −αkg(x̄

k
1, x̄

k
2)‖2−α2

k‖g(x̄k
1, x̄

k
2)‖2

= 2αk(x
k− x∗)Tg(x̄k

1, x̄
k
2)

−2αk(x
k− x∗)T [(x̄k

1− x̄k
2)−βkF(x̄

k
1)]

+2αk(x
k− xk+1

EG )T [(x̄k
1− x̄k

2)−βkF(x̄
k
1)]

+‖xk− xk+1
EG −αkg(x̄

k
1, x̄

k
2)‖2−α2

k‖g(x̄k
1, x̄

k
2)‖2

= 2αk(x
k− x∗)Tg(x̄k

1, x̄
k
2)

+2αk[(x
k− xk+1

EG )− (xk− x∗)]T [(x̄k
1− x̄k

2)−βkF(x̄k
1)]

+‖xk− xk+1
EG −αkg(x̄

k
1, x̄

k
2)‖2−α2

k‖g(x̄k
1, x̄

k
2)‖2.(3.10)

Settingy := x̄k
1−βkF(x̄k

1) andx := xk+1
EG in Lemma24(1),

we get

[x̄k
1−βkF(x̄k

1)−PΩ(x̄k
1−βkF(x̄

k
1))]

T

[PΩ (x̄k
1−βkF(x̄k

1))− xk+1
EG ]≥ 0

and therefore

[(xk− xk+1
EG )− (xk− x∗)]T [(x̄k

1− x̄k
2)−βkF(x̄k

1)]≥ 0. (3.11)

Substituting(3.11) into (3.10) and by (3.7), it follows that

θEG ≥ 2αk(x
k− x̄k

2)
Tg(x̄k

1, x̄
k
2)

+‖xk− xk+1
EG −αkg(x̄

k
1, x̄

k
2)‖2−α2

k‖g(x̄k
1, x̄

k
2)‖2,

it completes the proof.

For convenience of later analysis, we use the following
notations:

ρ1 = (x̄k
1− x̄k

2)
T
g(x̄k

1, x̄
k
2)

= ‖x̄k
1− x̄k

2‖2−βk(x̄
k
1− x̄k

2)
T
(F(x̄k

1)−F(x̄k
2)), (3.12)

and

ρ2 = (xk− x̄k
1)

T
g(x̄k

1, x̄
k
2)

= (xk− x̄k
1)

T
(x̄k

1− x̄k
2)

−βk(x
k− x̄k

1)
T
(F(x̄k

1)−F(x̄k
2)), (3.13)

then(xk− x̄k
2)

Tg(x̄k
1, x̄

k
2) = ρ1+ρ2.

Now, in order to prove the fact thatαk is bounded away
from zero, we need the next lemma.

Lemma 37Assume xk ∈ Ω , x̄k
1 = PΩ [xk − βkF(xk)] and

x̄k
2 = PΩ [x̄k

1 − βkF(x̄k
1)]. Then the following inequality is

true

ρ2 ≥ ‖x̄k
1− x̄k

2‖2+βk[(x̄
k
1− x̄k

2)
T
(F(xk)−F(x̄k

1))

−(xk− x̄k
1)

T
(F(x̄k

1)−F(x̄k
2))]. (3.14)

Lemma 38Let
x̄k

1 = PΩ [xk−βkF(xk)], x̄k
2 = PΩ [x̄k

1−βkF(x̄k
1)]

and

αk =
(xk− x̄k

2)
T
g(x̄k

1, x̄
k
2)

‖g(x̄k
1, x̄

k
2)‖

.

Thenαk is bounded away from zero.

Proof.Applying Lemma32and criterion (3.2), we get

ρ1+ρ2 ≥ ‖x̄k
1− x̄k

2‖2−βk(x̄
k
1− x̄k

2)
T
(F(x̄k

1)−F(x̄k
2))

+‖x̄k
1− x̄k

2‖2+βk[(x̄
k
1− x̄k

2)
T
(F(xk)−F(x̄k

1))

−(xk− x̄k
1)

T
(F(x̄k

1)−F(x̄k
2))]

= 2‖x̄k
1− x̄k

2‖2+βk[(x̄
k
1− x̄k

2)
T
(F(xk)

−F(x̄k
1))− (xk− x̄k

2)
T
(F(x̄k

1)−F(x̄k
2))]

≥ 2‖x̄k
1− x̄k

2‖2−m2
2‖x̄k

1− x̄k
2‖2

= (2−m2
2)‖xk− x̄k

2‖2. (3.15)

Recalling the definition of

g(x̄k
1, x̄

k
2) = (x̄k

1− x̄k
2)−βk(F(x̄k

1)−F(x̄k
2))

and applying criterion (3.1), we conclude that

‖g(x̄k
1, x̄

k
2)‖ ≤ (‖x̄k

1− x̄k
2‖+ ‖β (F(x̄k

1)−F(x̄k
2))‖)

2

≤ (1+m1)
2‖x̄k

1− x̄k
2‖

2
(3.16)

Moreover, by using (3.15) together with (3.16), we get that

αk =
ρ1+ρ2

‖g(x̄k
1, x̄

k
2)‖2

≥ 2−m2
2

(1+m1)2 > 0, (3.17)

wherem2 ∈ (0,
√

2). The proof is completed.

Next, we will show the convergence result of proposed
method.

Theorem 39The sequences{xk+1
FB } and{xk+1

EG } generated
by Algorithm 3.1 are bounded.
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Proof.From Lemma35and Lemma36, we have

θFB (andθEG) ≥ 2αk(x
k− x̄k

2)
Tg(x̄k

1, x̄
k
2)−α2

k‖g(x̄k
1, x̄

k
2)‖2.

(3.18)

For simplicity, we denoteθFB (and θEG) by θ (αk) and
xk+1

FB (andxk+1
EG ) by xk+1(αk). The right-hand side of the

inequality given by (3.18) is a quadratic function ofαk
which its maximum consists of

α∗
k =

(xk− x̄k
2)

T
g(x̄k

1, x̄
k
2)

‖g(x̄k
1, x̄

k
2)‖2

. (3.19)

Let γ ∈ (0,2) be a relaxation factor andαk = γα∗
k , it

follows that

θ (γα∗
k ) ≥ 2γα∗

k (x
k− x̄k

2)
T
g(x̄k

1, x̄
k
2)− γ2α∗2

k ‖g(x̄k
1, x̄

k
2)‖2

= γα∗
k (2(x

k− x̄k
2)

T
g(x̄k

1, x̄
k
2)− γα∗

k‖g(x̄k
1, x̄

k
2)‖2)

= γα∗
k (2− γ)(xk− x̄k

2)
T
g(x̄k

1, x̄
k
2). (3.20)

By (3.15) and (3.17), we obtain

α∗
k (x

k− x̄k
2)

T
g(x̄k

1, x̄
k
2)≥

(2−m2
2)

2

(1+m1)
2‖x̄k

1− x̄k
2‖2. (3.21)

By (3.20) and (3.21), we get

θ (γα∗
k )≥ γ(2− γ)

(2−m2
2)

2

(1+m1)
2‖x̄k

1− x̄k
2‖2.

This implies that

‖xk− x∗‖2− ‖ xk+1(γαk)− x∗‖2

≥ γ(2− γ)
(2−m2

2)
2

(1+m1)
2‖x̄k

1− x̄k
2‖2. (3.22)

Then

‖xk+1(γαk)− x∗‖2

≤ ‖xk− x∗‖2− γ(2− γ)
(2−m2

2)
2

(1+m1)
2‖x̄k

1− x̄k
2‖2. (3.23)

According to (3.23), it follows that

‖xk+1− x∗‖ ≤ ‖xk− x∗‖ ≤ ·· · ≤ ‖x0− x∗‖.

Hence the sequence{xk}⊂R
n generated by Algorithm 3.1

is bounded.

Theorem 310Suppose that the solution set ofVI(F,Ω) is
nonempty. Then the sequence{xk} ⊂ R

n generated by
Algorithm 3.1 converges to a solution ofVI(F,Ω).

Proof.Let x∗ be a solution of VI(F,Ω). First, it follows
from (3.23) that

∞

∑
k=0

γ(2− γ)(2−m2
2)

2

(2+m1)2 ‖x̄k
1− x̄k

2‖2 ≤ ‖x0− x∗‖2 <+∞,

which means that

lim
k→∞

‖x̄k
1− x̄k

2‖2 = 0.

According to Theorem39, the sequence{xk} is bounded.
Thus, it has at least one cluster point. Assume thatx∗ is
a cluster point of{xk}. Then there exists a subsequence
{xkj } that converges tox∗. It follows from the continuity
of eand (2.3) that

‖e(x∗,β )‖ = lim
kj→∞

‖e(xkj ,β )‖

≤ lim
kj→∞

‖e(xkj ,βkj )‖= lim
kj→∞

‖x
kj
1 − x

kj
2 ‖= 0.

Therefore,x∗ is a solution of VI(F,Ω).
In the following, we prove that the sequence{xk} has

exactly one cluster point. Assume that ¯x is another cluster
point, and denotesδ := ‖x̄− x∗‖ > 0. Sincex∗ and x̄ are
cluster point of the sequence{xk}, there is ak1 ∈ N such
that

‖xk− x∗‖ ≤ δ
2
, ∀k≥ k1,

and there is ak2 ∈ N such that

‖xk− x̄‖ ≤ δ
2
, ∀k≥ k2,

and choosek0 = max{k1,k2}. On the other hand, since
x∗ ∈ VI(F,Ω), thus

‖xk− x∗‖ ≤ ‖xk0 − x∗‖,∀k≥ k0,

It follows that

‖xk− x̄‖ ≥ ‖x̄− x∗‖−‖xk0 − x∗‖ ≥ δ
2
,∀k≥ k0,

This is a contradiction with ¯x is a cluster point, thus the
sequence{xk} converges tox∗ ∈ VI(F,Ω).

However, the following theorem shows that in each
iterative step, we may expect the modified general
extra-gradient method to get closer with the solution than
the modified general forward-backward splitting method.

Theorem 311Let xk+1
FB and xk+1

EG be defined as in (3.3) and
(3.4). Then

|xk+1
FB − xk+1

EG ‖2 ≤ ‖xk−αkg(x̄
k
1, x̄

k
2)− xk+1

EG ‖2

−‖xk−αkg(x̄
k
1, x̄

k
2)− xk+1

FB ‖2.

Proof.Sety := xk−αkg(x̄k
1, x̄

k
2) andx := xk+1

EG , by applying
Lemma24(2), we obtain

‖xk+1
FB − xk+1

EG ‖2 ≤ ‖xk−αkg(x̄
k
1, x̄

k
2)− xk+1

EG ‖2

−‖xk−αkg(x̄
k
1, x̄

k
2)− xk+1

FB ‖2.

This leads us to the conclusion.
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Table 1: Example 1: Numerical results for starting pointx0 =
(1,0,1,0, ...)T

TAB 1 method in [11] Modified FB Modified EG
dimN it cpu it cpu it cpu

10 112 0.031 178 0.062 55 0.000
50 497 0.046 344 0.062 131 0.046
100 1035 0.187 489 0.171 183 0.093
200 2117 0.437 676 0.265 267 0.125
500 5367 1.796 1054 0.656 427 0.312

4 Numercal experiments

In this section, we use two examples given in [7] and [18]
to show the efficiency of the proposed new algorithm. All
codes are written in Matlab 7.12 and run on a desktop
computer(CPU:Intel Pentium 4 3.00 GHz, Memory:1.00
GB).

Two examples of the linear complementarity problem
are adopted in this paper:

x≥ 0,F(x)≥ 0,xTF(x) = 0,

whereF(x) = Mx+q.
Example1

M =



















1 2 · · · · · · 2

0 1 2 · · ·
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . 2
0 · · · · · · 0 1



















,q= (−1,−1, · · · ,−1)T .

Example2

M =















1 2 2 · · · 2
2 5 6 · · · 6

2 6 9
... 10

...
...

...
. . .

...
2 6 10· · · 4(n−1)+1















,

q= (−1,−1, · · · ,−1)T .

In our test we takeΩ = R
n
++ ,β = 1, m1 = 0.9, m2 =

0.3, α = 1.8, µ2 = 2/3 and the stop as soon as
‖e(xk,1)‖ ≤ 10−7. We are going to compare the method
generated by algorithm 3.1 with the method proposed by
He et al. [11].The test results for Example 1 are reported
in tables 1 and 2 and the test results for Example 2 are
reported in tables 3 and 4. ”it” denotes the number of
iterations and ”cpu” is computation time (second).

Table4

The numerical results show that the method generated
by algorithm 3.1 is more effective than the method
presented in [11], which can achieve the solution with
fewer iteration and time. Moreover, it seems that the

Table 2: Example 1: Numerical results for starting pointx0 =
(−2,−2,−2, ...)T

TAB 2 method in [11] Modified FB Modified EG
dimN it cpu it cpu it cpu

10 156 0.046 191 0.031 58 0.015
50 704 0.062 375 0.046 131 0.031
100 1393 0.234 514 0.187 183 0.093
200 2769 0.546 711 0.265 262 0.109
500 6900 2.515 1081 0.750 399 0.265

Table 3: Example 2: Numerical results for starting pointx0 =
(−5,5,−5, ...)T

TAB 3 method in [11] Modified FB Modified EG
dimN it cpu it cpu it cpu

10 256 0.031 210 0.046 66 0.031
50 32805 1.656 399 0.078 160 0.062
100 138985 20.328 550 0.171 228 0.109
200 - - 766 0.296 332 0.140
500 - - 1191 0.796 526 0.296

” − ” represents that the CPU time is longer than 60 s.

Table 4: Example 2: Numerical results for starting pointx0 =
(3,3,3, ...)T

TAB 4 method in [11] Modified FB Modified EG
dimN it cpu it cpu it cpu

10 2596 0.171 66 0.031 55 0.015
50 65295 3.718 154 0.046 126 0.031
100 261237 38.031 180 0.109 219 0.078
200 - - 250 0.109 311 0.140
500 - - 381 0.312 489 0.281

” − ” represents that the CPU time is longer than 60 s.

modified general extra-gradient method can converge
faster than the modified general forward-backward
method which is consistent with Theorem311. We
confirm that all examples coding by accord to the theory.

Next, in Example 3 is an example of mappingF
which is not monotone but is pseudomonotone (see [12]).
Thus, our algorithm can apply to solve the problem but
the algorithm in [11] can not.

Example3

F(x) =







x1+ x2+ x3+ x4−4x2x3x4
x1+ x2+ x3+ x4−4x1x3x4
x1+ x2+ x3+ x4−4x1x2x4
x1+ x2+ x3+ x4−4x1x2x3






,

andΩ = {x∈ R
4 : 1≤ xi ≤ 5, i = 1, . . . ,4}.

The initial point is generated randomly. And because
of the dimension of this problem is very small, the
calculation is too fast, so it is not appropriate to compare
performance of the methods by time. We compare the
average of number of iterations for each method by
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Table 5: Example 3: Numerical results for a random start point
in [−10,10]4

method in [11] Modified FB Modified EG
Avg it NAN 19 12

”NAN” represents that the iteration is endless calculation.

calculating 500 times, then estimate the average of ”it”
for each method (Avg it). The test result for example 3
has been shown in the table below.
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