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1 Introduction

In this paper, we consider the m-point boundary value problem (BVP) for higher order fractional differential equation







































−D
η−2

0+
(u′′(t))+ f (t,u(t)) = 0, t ∈ [0,1],

u′′(0) = u′′′(0) = ...= u(n−2)(0) = 0, u′′′(1) = 0,

αu(0)−β u′(0) =
m−2

∑
p=1

ap

ξp
∫

0

u(s)ds,

γu(1)+ δu′(1) =
m−2

∑
p=1

bp

ξp
∫

0

u(s)ds,

(1)

where D
η−2

0+
is the Riemann-Liouville fractional derivative of order η −2. Throughout the paper we suppose that m,n ≥ 3,

n−1< η ≤ n where n,m ∈N and α, β , γ, δ > 0, ap, bp ≥ 0 are given constants and 0 < ξ1 < .. . < ξm−2 < 1. We assume
that f : [0,1]× [0,∞)→ [0,∞) is continuous.

Fractional calculus is the extension of integer order calculus to arbitrary order calculus. Fractional differential
equations describe many phenomena in various fields of engineering and scientific disciplines such as control theory,
physics, chemistry, biology, economics, mechanics and electromagnetic, see [1,2,3,4]. Recently, several papers have
addressed the existence and uniqueness of boundary value problems for nonlinear differential equations of fractional
order. For examples and recent development of the topic, see [5,6,7,8,9,10] and references therein. Boundary value
problems with integral boundary conditions for ordinary differential equations represent a very interesting and important
class of problems and arise in the study of various biological, physical and chemical processes [11,12,13,14] such as
heat conduction, thermo-elasticity, chemical engineering, underground water flow and plasma physics. In [15,16,17,18,
19,20,21,22,23,24], some results on the existence of positive solutions of the boundary value problems for some
specific fractional differential equations with integral boundary conditions have been obtained.

Bai and Lü [25] as well as Jiang and Yuan [26] considered the Dirichlet-type fractional boundary value problem

{

Dα
0+
(u(t))+ f (t,u(t)) = 0, 0 < t < 1,

u(0) = u(1) = 0,
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where 1 < α ≤ 2 and f : [0,1]× [0,+∞)→ [0,+∞) is continuous.

Liang and Song [27] investigated the following nonlinear fractional three-point boundary-value problem:







Dα
0+
(u(t))+ f (t,u(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

u(0) = u′(0) = 0, u′(1) =
η
∫

0

u(s)ds.

Zhang and Han [28] are concerned with the existence and uniqueness of positive solutions for the following singular
nonlinear fractional boundary value problem







Dα
0+
(x(t))+ f (t,x(t)) = 0, 0 < t < 1, n− 1 < α ≤ n, α ≥ 2,

x(k)(0) = 0, 0 ≤ k ≤ n− 2, x(1) =
1
∫

0

x(s)dA(s).

Wang and Zhang [29] explored the existence of one and two positive solutions of the nonlinear higher order fractional
boundary value problem







Dα
0+
(u(t))+ h(t) f (t,u(t)) = 0, 0 < t < 1, α ∈ (n− 1,n], α > 2,

u(0) = u′(0) = ...= u(n−2)(0) = 0, u(i)(1) = λ
η
∫

0

u(s)ds,

where η ∈ (0,1], i ∈ N and 0 ≤ i ≤ n− 2.

Jleli et al. [30] considered the fractional boundary value problem

{

Dα
0+
(u(t))+ q(t)u(t) = 0, a < t < b, n− 1 < α ≤ n, n ≥ 2,

u(a) = u′(a) = ...= u(n−2)(a) = 0, u(b) = Iα
a (hu)(b).

Yaslan and Günendi [31] investigated the existence of positive solutions to multi-point boundary value problems for
higher order fractional differential equations:















Dα
0+

u(t)+ f (t,u(t)) = 0, t ∈ [0,1], n− 1 < α ≤ n, n ≥ 3,

u(0) = u′(0) = . . .= u(n−2)(0) = 0,

u(1) =
m−2

∑
p=1

ap

ξp
∫

0

u(s)ds,

where ap ≥ 0 are given constants and 0 < ξ1 < .. . < ξm−2 < 1.

Jin et al. [32] addressed the existence of a positive solution for the fractional boundary value problem































CDp(u(t)) = λ h(t) f (t,u(t)), t ∈ (0,1),

u(0)−αu(1) =
1
∫

0

g0(s)u(s)ds,

u′(0)− bCDqu(1) =
1
∫

0

g1(s)u(s)ds,

u′′(0) = u′′′(0) = ...= u(n−1)(0) = 0,

where CD is the standard Caputo derivative, n ≥ 3 is an integer, p ∈ (n−1,n), 0 < q < 1, 0 < a < 1, 0 < b <Γ (2−q) are
real numbers.

In [33], Günendi and Yaslan investigated the conditions for the existence of at least one, two and three positive
solutions for the BVP (1) using four functionals fixed point theorem, Avery-Henderson fixed point theorem and Leggett-
Williams fixed point theorem, respectively.

In this paper, conditions for the existence of at least one positive solutions to the BVP ((1)) are first discussed by using
the Krasnosel’skii fixed point theorem. Then, we apply the five functionals fixed point theorem to prove the existence of
at least three positive solutions to the BVP ((1)).
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2 Some lemmas

We give some notations and prove several lemmas which are needed later.

Definition 1.The Riemann-Liouville fractional derivative of order α > 0 for a function u : (0,∞)→R is defined by

Dα
0+u(t) =

1

Γ (n−α)

dn

dtn

∫ t

0
(t − s)n−α−1u(s)ds

where n = [α]+ 1.

Definition 2.The Riemann-Liouville fractional integral of order α > 0 of a function u : (0,∞)→R is given by

Iα
0+u(t) =

1

Γ (α)

∫ t

0
(t − s)α−1u(s)ds

where Γ (·) is the Euler gamma function.

Lemma 1.([1]) The equality D
γ
0+

I
γ
0+

f (t) = f (t), γ > 0, holds for f ∈ L(0,1).

Lemma 2.([1]) Let α > 0. Then the differential equation Dα
0+

u = 0 has a unique solution u(t) = c1tα−1 + c2tα−2 + ...+

cntα−n, ci ∈ R, i = 1, ...,n, where n− 1 < α ≤ n.

Lemma 3.([1]) Let α > 0. Then the following equality holds for u ∈ L(0,1), Dα
0+

u ∈ L(0,1);

Iα
0+Dα

0+u(t) = u(t)+ c1tα−1 + c2tα−2 + ...+ cntα−n
,

ci ∈R, i = 1, ...,n, where n− 1 < α ≤ n.

If we take −u′′(t) = y(t), the BVP

{

−D
η−2

0+
(u′′(t))+ f (t,u(t)) = 0, t ∈ [0,1],

u′′(0) = u′′′(0) = ...= u(n−2)(0) = 0, u′′′(1) = 0

becomes
{

D
η−2

0+
y(t)+ f (t,u(t)) = 0, t ∈ [0,1],

y(0) = y′(0) = ...= y(n−4)(0) = 0, y′(1) = 0.
(2)

We denote by AC[0,1] the space of real valued and absolutely continuous functions on [0,1]. Also, we denote by
ACn[0,1] the space of real valued functions f (x) which have continuous derivatives up to order n − 1 on [0,1] with

f (n−1) ∈ AC[0,1].

Lemma 4.([33]) Let u ∈ C(n−2)[0,1]∩ACη [0,1]. If y ∈ C(n−4)[0,1]∩ACη−2[0,1], then the boundary value problem (2)

has a unique solution

y(t) =

1
∫

0

H(t,s) f (s,u(s))ds

where

H(t,s) =







(1−s)η−4tη−3

Γ (η−2) , t ≤ s,

(1−s)η−4tη−3−(t−s)η−3

Γ (η−2)
, t ≥ s.

Now, we find the solution of the BVP



























−u′′(t) = y(t), t ∈ [0,1],

αu(0)−β u′(0) =
m−2

∑
p=1

ap

ξp
∫

0

u(s)ds

γu(1)+ δu′(1) =
m−2

∑
p=1

bp

ξp
∫

0

u(s)ds.

(3)
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Let us define θ (t) and ϕ(t) be the solutions of the corresponding homogeneous equation

u′′(t) = 0 (4)

under the initial conditions
θ (0) = β , θ ′(0) = α,

ϕ(1) = δ , ϕ ′(1) =−γ.
(5)

From (4) and (5), we can obtain
θ (t) = αt +β , ϕ(t) = γ + δ − γt.

If we define D := αγ +αδ +β γ , then the Green’s function for the BVP (3) is

G(t,s) =
1

D

{

θ (t)ϕ(s), 0 ≤ t ≤ s ≤ 1
θ (s)ϕ(t), 0 ≤ s ≤ t ≤ 1.

(6)

Lemma 5.([33]) The solution of the BVP (3) is

u(t) =

1
∫

0

G(t,s)y(s)ds+
θ (t)

D

m−2

∑
p=1

bp

ξp
∫

0

u(s)ds+
ϕ(t)

D

m−2

∑
p=1

ap

ξp
∫

0

u(s)ds

where G(t,s) is given by (6).

Lemma 6.([33]) The Green’s function G(t,s) in (6), θ (t) and ϕ(t) satisfy

0 < G(t,s)≤ G(s,s), 0 ≤ θ (t)≤ θ (1), 0 ≤ ϕ(t)≤ ϕ(0)

for (t,s) ∈ [0,1]× [0,1].

Lemma 7.([33])

The Green’s function G(t,s) in (6), θ (t) and ϕ(t) satisfy

G(t,s)≥ zG(s,s), θ (t)≥ zθ (1), ϕ(t)≥ zϕ(0)

where

z = min

{

β

α +β
,

δ

γ + δ

}

∈ (0,1) (7)

for (t,s) ∈ [0,1]× [0,1].

Lemma 8.([33]) For t,s ∈ [0,1], we have 0 ≤ H(t,s)≤ H(1,s).

Lemma 9.([33]) min
t∈[ξm−2,1]

H(t,s)≥ kη−3H(1,s) for 0 ≤ t,s ≤ 1, where k ∈ (0,ξm−2) is a constant.

From Lemma 4 and Lemma 5, we know that u(t) is a solution of the problem (1) if and only if

u(t) =

1
∫

0

G(t,s)

1
∫

0

H(s,τ) f (τ,u(τ))dτds+
θ (t)

D

m−2

∑
p=1

bp

ξp
∫

0

u(s)ds+
ϕ(t)

D

m−2

∑
p=1

ap

ξp
∫

0

u(s)ds. (8)

Let B denote the Banach space C[0,1] with the norm ‖u‖= max
t∈[0,1]

|u(t)|. Define the cone P ⊂ B by

P = {u ∈ B : u(t)≥ 0 for ∀t ∈ [0,1], min
t∈[0,1]

u(t)≥ z‖u‖}, (9)

where z is given in (7).
BVP (1) is equivalent to the nonlinear integral equation (8). We can define the operator A : P → B by

Au(t) =

1
∫

0

G(t,s)

1
∫

0

H(s,τ) f (τ,u(τ))dτds+
θ (t)

D

m−2

∑
p=1

bp

ξp
∫

0

u(s)ds+
ϕ(t)

D

m−2

∑
p=1

ap

ξp
∫

0

u(s)ds,

for u ∈ P. Hence, solving (8) in P is equivalent to finding fixed points of the operator A.
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Lemma 10.([33]) A : P → P.

We state the fixed point theorems to prove the main results of this paper.

Theorem 1.[34] (Krasnosel’skii Fixed Point Theorem)Let E be a Banach space, and let K ⊂ E be a cone. Assume Ω1 and

Ω2 are open bounded subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

A : K ∩ (Ω2 \Ω1)→ K

be a completely continuous operator such that either

(i) ‖Au‖ ≤ ‖u‖ for u ∈ K ∩∂Ω1, ‖Au‖ ≥ ‖u‖ for u ∈ K ∩∂Ω2;

or

(ii)‖Au‖ ≥ ‖u‖ for u ∈ K ∩∂Ω1, ‖Au‖ ≤ ‖u‖ for u ∈ K ∩∂Ω2

hold. Then A has a fixed point in K ∩ (Ω2 \Ω1).

Let ϕ ,η ,θ be nonnegative continuous convex functionals on the cone P, and γ,Ψ nonnegative continuous concave
functionals on the cone P. For nonnegative numbers h, p,q,d and r, define the following convex sets:



















P(ϕ ,r) = {x ∈ P : ϕ(x)< r},
P(ϕ ,γ, p,r) = {x ∈ P : p ≤ γ(x),ϕ(x) ≤ r},
Q(ϕ ,η ,d,r) = {x ∈ P : η(x)≤ d,ϕ(x)≤ r},

P(ϕ ,θ ,γ, p,q,r) = {x ∈ P : p ≤ γ(x),θ (x)≤ q,ϕ(x)≤ r},
Q(ϕ ,η ,Ψ ,h,d,r) = {x ∈ P : h ≤Ψ(x),η(x) ≤ d,ϕ(x)≤ r}.

(10)

Now, we give the five functionals fixed point theorem found in [35].

Theorem 2.(Five Functionals Fixed Point Theorem) Let P be a cone in a real Banach space E. Suppose that there exist

nonnegative numbers r and M, nonnegative continuous concave functionals γ and Ψ on P, and nonnegative continuous

convex functionals ϕ ,η and θ on P, with

γ(x)≤ η(x),‖x‖ ≤ Mϕ(x),∀x ∈ P(ϕ ,r).

Suppose that A : P(ϕ ,r)→P(ϕ ,r) is a completely continuous and there exist nonnegative numbers h, p,k,q,with 0< p< q

such that

(i){x ∈ P(ϕ ,θ ,γ,q,k,r) : γ(x)> q} 6= /0 and γ(Ax)> q for x ∈ P(ϕ ,θ ,γ,q,k,r),
(ii){x ∈ Q(ϕ ,η ,Ψ ,h, p,r) : η(x)< p} 6= /0 and η(Ax)< p for x ∈ Q(ϕ ,η ,Ψ ,h, p,r),

(iii)γ(Ax)> q, for x ∈ P(ϕ ,γ,q,r), with θ (Ax)> k,

(iv)η(Ax)< p, for x ∈ Q(ϕ ,η , p,r), with Ψ(Ax)< h,

then A has at least three fixed points x1,x2,x3 ∈ P(ϕ ,r) such that

η(x1)< p,γ(x2)> q,η(x3)> p with γ(x3)< q.

3 Existence of positive solutions

We define

M =

1
∫

0

H(1,τ)dτ, (11)

L =

1
∫

0

G(s,s)ds, (12)

I =

1
∫

ξm−2

G(s,s)ds (13)
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and

K =
1

D

(

(α +β )
m−2

∑
p=1

bpξp +(γ + δ )
m−2

∑
p=1

apξp

)

. (14)

To prove the existence of at least one positive solution for the BVP (1), we apply the Krasnosel’skii Fixed Point
Theorem.

Theorem 3.Assume u ∈C(n−2)[0,1]∩ACη [0,1]. Let there exist numbers 0 < r < R < ∞ such that

f (s,u(s)) ≤ (1−K)u(s)

ML
, for (s,u(s)) ∈ [0,1]× [0,r],

and

f (s,u(s)) ≥ u(s)

z2IM
, for (s,u(s)) ∈ [0,ξm−2]× [R,∞).

Then the BVP (1) has at least one positive solution.

Proof.The operator A : P → P is completely continuous by a standard application of the Arzelà-Ascoli theorem. If we let

Ω1 := {u ∈ P : ‖u‖< r},

then for u ∈ P∩∂Ω1, we get

‖Au‖ = max
t∈[0,1]

(
1

∫

0

G(t,s)

1
∫

0

H(s,τ) f (τ,u(τ))dτds

+
θ (t)

D

m−2

∑
p=1

bp

ξp
∫

0

u(s)ds+
ϕ(t)

D

m−2

∑
p=1

ap

ξp
∫

0

u(s)ds

)

≤
1

∫

0

G(s,s)

1
∫

0

H(s,τ) f (τ,u(τ))dτds

+
θ (1)

D

m−2

∑
p=1

bp

ξp
∫

0

u(s)ds+
ϕ(0)

D

m−2

∑
p=1

ap

ξp
∫

0

u(s)ds

≤ (1−K)‖u‖
ML

ML+K‖u‖
= ‖u‖.

Thus, ‖Au‖ ≤ ‖u‖ for u ∈ P∩∂Ω1.

Let us now set

Ω2 := {u ∈ P : ‖u‖< 1

z
R}.

Then u ∈ P∩∂Ω2 implies

u(t)≥ z‖u‖= R, t ∈ [0,1].

c© 2021 NSP
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Thus,

‖Au‖ ≥ z

1
∫

0

G(s,s)

1
∫

0

H(s,τ) f (τ,u(τ))dτds

≥ z

1
∫

ξm−2

G(s,s)

1
∫

0

H(s,τ) f (τ,u(τ))dτds

≥ kη−3z

1
∫

ξm−2

G(s,s)

1
∫

0

H(1,τ) f (τ,u(τ))dτds

≥ kη−3z
z‖u‖

kη−3z2IM
IM

= ‖u‖.

Hence, ‖Au‖ ≥ ‖u‖ for u ∈ P∩ ∂Ω2. By the first part of Theorem 1, A has a fixed point in P∩ (Ω2 \Ω1), such that

r ≤ ‖u‖ ≤ 1
z
R. Therefore, the BVP (1) has at least one positive solution.

Now, we will apply the five functionals fixed point theorem to investigate the existence of at least three positive
solutions for the BVP (1).

Theorem 4.Let u ∈C(n−2)[0,1]∩ACη [0,1]. Assume that there exist constants a,b,c with 0 < a < b <
b
z
< c such that the

function f satisfies the following conditions:

(i) f (t,u(t))≤ (1−K)c
ML

for (t,u(t)) ∈ [0,1]× [0,c],

(ii) f (t,u(t))> b
kη−3zIM

for (t,u(t)) ∈ [ξm−2,1]× [b, b
z
],

(iii) f (t,u(t))< (1−K)a
ML

for (t,u(t)) ∈ [0,1]× [0,a],

where M,L, I,K are as defined in (11),(12),(13),(14), respectively. Then the BVP (1) has at least three positive solutions

u1,u2 and u3 such that

max
t∈[0,1]

u1(t)< a < max
t∈[0,1]

u3(t),

min
t∈[ξm−2,1]

u3(t)< b < min
[ξm−2,1]

u2(t).

Proof.Define the cone P as in (9) and define these maps ζ (u) =Ψ(u) = min
t∈[ξm−2,1]

u(t), ν(u) = max
t∈[ξm−2,1]

u(t), and φ(u) =

ω(u) = max
t∈[0,1]

u(t). Then ζ and Ψ are nonnegative continuous concave functionals on P, and φ ,ω and ν are nonnegative

continuous convex functionals on P. Let P(φ ,c), P(φ ,ζ ,a,c), Q(φ ,ω ,d,c), P(φ ,ν,ζ ,a,b,c) and Q(φ ,ω ,Ψ ,h,d,c) be
defined by (10). It is clear that

ζ (u)≤ ω(u), ‖u‖= φ(u), ∀u ∈ P(φ ,c).

If u ∈ P(φ ,c), then we have u(t) ∈ [0,c] for all t ∈ [0,1]. By hypothesis (i), we get

φ(Au) ≤
1

∫

0

G(s,s)

1
∫

0

H(s,τ) f (τ,u(τ))dτds+
θ (1)

D

m−2

∑
p=1

bp

ξp
∫

0

u(s)ds+
ϕ(0)

D

m−2

∑
p=1

ap

ξp
∫

0

u(s)ds

≤ (1−K)c

ML
ML+Kc

= c.

This proves that A : P(φ ,c)→ P(φ ,c).
Now we verify that the remaining conditions of Theorem 2.
Let u1 = b+ε1 such that 0< ε1 < ( 1

z
−1)b. Since ζ (u1) = b+ε1 > b, ν(u1) = b+ε1 <

b
z

and φ(u1) = b+ε1 <
b
z
< c,

we obtain {u ∈ P(φ ,ν,ζ ,b, b
z
,c) : ζ (u)> b} 6= /0.

If u ∈ P(φ ,ν,ζ ,b, b
z
,c), we have b ≤ u(t)≤ b

z
for all t ∈ [ξm−2,1]. Using the hypothesis (ii), we get
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ζ (Au) ≥ z

1
∫

0

G(s,s)

1
∫

0

H(s,τ) f (τ,u(τ))dτds ≥ z

1
∫

ξm−2

G(s,s)

1
∫

0

H(s,τ) f (τ,u(τ))dτds

≥ kη−3z

1
∫

ξm−2

G(s,s)

1
∫

0

H(1,τ) f (τ,u(τ))dτds

≥ kη−3z
b

kη−3zIM
IM

= b.

Thus, the condition (i) of Theorem 2 holds.
Let u2 = a− ε2 such that 0 < ε2 < (1− z)a. Since ω(u2) = a− ε2 < a, Ψ(u2) = a− ε2 > za and φ(u2) = a− ε2 < c,

we find {u ∈ Q(φ ,ω ,Ψ ,za,a,c) : ω(u) < a} 6= /0. If u ∈ Q(φ ,ω ,Ψ ,za,a,c), then we obtain 0 ≤ u(t) ≤ a, for t ∈ [0,1].
Hence,

ω(Au) ≤
1

∫

0

G(s,s)

1
∫

0

H(s,τ) f (τ,u(τ))dτds

+
θ (1)

D

m−2

∑
p=1

bp

ξp
∫

0

u(s)ds+
ϕ(0)

D

m−2

∑
p=1

ap

ξp
∫

0

u(s)ds

<
(1−K)a

ML
ML+Ka

= a

by hypothesis (iii). It follows that condition (ii) of Theorem 2 is fulfilled.
The conditions (iii) and (iv) of Theorem 2 are clear.

This completes the proof.

Example 1.Taking n = m = 4, ξ1 = 1
3
, ξ2 =

1
2
, α = γ = 1, β = δ = 2, a1 = b1 = 1, a2 = b2 =

1
2
, k = 1

4
and η = 7

2
, we

consider the boundary value problem







































−D
3
2

0+
(u′′(t))+ 10u2

u2+1
= 0, t ∈ [0,1],

u′′(0) = 0, u′′′(1) = 0,

u(0)− 2u′(0) =

1
3
∫

0

u(s)ds+ 1
2

1
2
∫

0

u(s)ds,

u(1)+ 2u′(1) =

1
3
∫

0

u(s)ds+ 1
2

1
2
∫

0

u(s)ds.

Then, we have M = 8
3
√

π
, L = 37

30
, I = 37

60
, z = 2

3
and D = 5. If we take a = 0.015, b = 1 and c = 60, all the conditions in

Theorem 4 are satisfied. Thus the boundary value problem has at least three positive solutions u1,u2 and u3 such that

max
t∈[0,1]

u1(t)< 0.015 < max
t∈[0,1]

u3(t), min
t∈[ 1

2 ,1]
u3(t)< 1 < min

[ 1
2 ,1]

u2(t).

4 Conclusion

In the present work, the nonlinear higher order multi-point fractional boundary value problems were studied. First, we
obtained the criteria for the existence of at least one positive solution of the BVP ((1)) as a result of the Krasnosel’skii
fixed point theorem. Then, by using the five functionals fixed-point theorem, the existence results of at least three positive
solutions of the BVP ((1)) were established.
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