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Abstract: In this paper, progressive-stress accelerated life testing (ALT) is studied when the lifetime of test units follows power
generalized Weibull distribution (PGW). The maximum likelihood estimates (MLEs) and Bayes estimates (BEs) of the model
parameters are obtained under type-II progressive censoring. Moreover, the approximate and credible confidence intervals (CIs) of the
estimators are derived. Furthermore, a real dataset is analyzed to show the suggested methods. Also, simulation studies are conducted
to demonstrate the precision of the MLEs and BEs for the parameters of PGW distribution. Finally, some interesting conclusions are
obtained.
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1 Introduction

Experiments of reliability and life testing are done to investigate data of failure time which occurs under the normal
operating conditions. Due to the hardness of collecting such data which needs too long time, we have tended to use ALT
in order to obtain adequate failure data in a compact time. InALT, experiments are done at greater than normal levels of
stress to expedite failure occurring. Then, the collected life data is investigated and used to estimate the life
characteristics under normal operating conditions. The stress in ALT can be applied in different ways, the most
commonly used methods are constant-stress, step-stress and progressive-stress. Nelson [1] discussed the advantages and
disadvantages of each of such methods.

The constant-stress ALT is practiced by operating every unit at a constant high stress till either failure occurs or the
test is stopped. Constant-stress models were discussed by various authors; see Kim and Bai [2], Watkins and John [3].
Abdel-Hamid [4] reviewed the constant-partially accelerated life tests for Burr type-XII distribution with type-II
progressive censoring. Guan et al. [5] discussed the optimal constant-stress accelerated life tests with uncensored
sampling for the generalized exponential distribution. Jaheen et al. [6] tested the constant partially ALT under
progressive type-II censoring for generalized exponential distribution. Mohie El-Din et al. [7] studied the constant-stress
accelerated life tests for extension of the exponential distribution under progressive censoring. Mohie El-Din et al.[8]
discussed the optimal plans of constant-stress accelerated life tests for the Lindley distribution. Mohie El-Din et al. [9]
introduced the geometric process as a constant-stress accelerated model. Abd El-Raheem [10] derived the optimal
designs of constant-stress ALTs for the extension of the exponential distribution. Abd El-Raheem [11] expanded his
results in Abd El-Raheem [10] to the censored data.

The second method is the step-stress. In step-stress ALT, the applied stress on every unit is not fixed but is increasing
step by step at prespecified times or simultaneous the occurrence of a fixed number of failures. The step-stress models
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were discussed in the literature; see Miller and Nelson [12] and Gouno et al. [13]. Balakrishnan et al. [14] studied the
simple step-stress ALT under type-II censoring by using a cumulative exposure model for exponential distribution.
Mohie El-Din et al. [15] obtained BE for step-stress ALT of PGW distribution under progressive censoring by using a
tampered random variable model. Mohie El-Din et al. [16] discussed the simple step-stress ALT under progressive
first-failure censoring by using a tampered random variablemodel for Weibull distribution. Mohie El-Din et al. [17]
discussed the parametric inference on step-stress accelerated life testing for the extension of exponential distribution
under progressive type-II censoring.

The third method is the progressive-stress. In progressive-stress ALT, the applied stress on test units is continuously
increasing in time. If an ALT has a continuous linearly increasing stress, this test is called a ramp-stress test. Yin and
Sheng [18] obtained the MLEs of parameters of the exponential progressive-stress model. Abdel-Hamid and
AL-Hussaini [19] carried out the progressive-stress ALT under progressivecensoring for Weibull distribution.
Abdel-Hamid and Abushul [20] obtained the BE of exponentiated exponential distribution under type-II progressive
hybrid censoring by using the inverse power law and the cumulative exposure model. Mohie El-Din et al. [21] studied
progressive-stress ALT for the extension of the exponential distribution.

In life testing, tests are often terminated before all unitsfail. As a result, the censored data is used to reduce test time
and cost. The most two common censoring schemes (CSs) in lifetesting and reliability experiments are type-I and
type-II censoring. Progressive type-II CS has became more common in analyzing highly reliable data. This type of CS
can be defined as follows: Assumen identical items are set on a life test, the integerm< n is a pre-specified number of
failures andR1,R2, ...,Rm arem pre-fixed integers satisfyingR1+R2+ ...+Rm+m= n. At the time of the first failure
t1:m:n,R1 of the remaining units is randomly removed. Also, at the timeof the second failuret2:m:n,R2 of the remaining
units is randomly removed and so on. At the time of them− th failure tm:m:n, the test is terminated and all remaining
Rm = n− m− (R1 + ...+ Rm−1) units are removed. For further information about progressive type-II censoring, see
Balakrishnan and Aggarwala [22].

The purpose of this study is to apply the progressive-stressALT to units whose lifetime follows PGW distribution
under type-II progressive censoring. MLEs, BEs and some inferences for the parameters of the supposed model are
studied.

The paper is organized as follows: In Section 2, a description of the lifetime model and the test assumptions. In
Section 3, the MLEs of the model parameters are obtained. In Section 4, the BEs of model parameters are obtained. In
Section 5, interval estimations for the model parameters are established. In Section 6, a real dataset is analyzed to illustrate
the suggested methods in Sections 3, 4 and 5. In Section 7, thesimulation outcomes are represented. In Section 8, the
conclusion is introduced.

2 Model description and test assumptions

2.1 Power generalized Weibull distribution

In this subsection, PGW distribution is an extension of Weibull distribution. It was founded by Bagdonavicius and
Nikulin [23] as a baseline distribution for the accelerated failure time model. It contains distributions with unimodal and
bathtub hazard shape. Moreover, PGW distribution providesa broader class of monotone hazard rate. Besides, it is a
right skewed heavy tailed distribution which is not very common in lifetime model. The PGW distribution can be a
possible alternative to the exponentiated Weibull distribution for modeling lifetime data, see Nikulin and Haghighi [24].
Many authors considered the PGW distribution as lifetime model, see for example, Nikulin and Haghighi [25], Nikulin
and Haghighi [26], Bagdonavicius and Nikulin [27], Voinov et al. [28], Mohie El-Din et al. [15] and Kumar and
Dey [29].

The PGW distribution is defined by the probability density function (PDF):

f (t) = γνσν tν−1(1+(σ t)ν)γ−1exp{1− (1+(σ t)ν)γ} , t,γ,ν,σ > 0, (1)

the corresponding cumulative distribution function (CDF)is

F(t) = 1−exp{1− (1+(σ t)ν)γ} , t,γ,ν,σ > 0, (2)

and the corresponding hazard rate function (hrf) is given by

h(t) = γνσν tν−1(1+(σ t)ν)γ−1. (3)

There exist three special cases of the PGW distribution which are:
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1-Weibull distribution whenγ = 1.
2-Extension of the exponential distribution whenν = 1, see Nadarajah and Haghighi [30].
3-Exponential distribution whenγ = 1 andν = 1.

2.2 Assumptions and test procedures

In this subsection, the progressive-stress ALT under a progressive type-II is constructed by the following assumptions:

1-The lifetime of the test units follows the PGW with shape parameterγ and scale parameterσ .
2-The progressive-stressS(t) is a function of time and directly proportional to time with aconstant rateβ , i.e,S(t) = β t,

β > 0.
3-The inverse power law is satisfied, i.e,

σ(t) =
1

a(s(t))b , a,b> 0, (4)

4-The linear cumulative exposure model is applied to show the effect of changing the stress from one level to another
level, see Nelson [1].

5-Every group containsni unit which is under the progressive-stressSi(t) = βit, 0< β1 < ... < βk for i = 1, ...,k.
6-All units have the same failure mechanism at any stress rateβi , i = 1, ...,k.

The type-II progressive censoring is applied wheren is the total number of units under the test.
S0 < S1(t) < ... < Sk(t) are the stress levels in the test andS0 is the use-stress.ni identical units are tested under each
progressive-stress levelSi(t) wherei = 1,2, ...,k. When the first failure occursti1:mi :ni , Ri1 units are randomly removed
from the remainingni − 1 units. When the second failure occursti2:mi :ni , Ri2 units are randomly removed from the
remaining ni − 2 − Ri1 units. When themi-th failure occurstimi :mi :ni , the test is finished and whole remaining
Rimi = ni −mi −∑mi−1

j=1 Ri j units are removed.

It is shown that the progressively censored data under the progressive-stress Si(t) are
ti1:mi :ni < ti2:mi :ni < ... < timi :mi :ni , i = 1,2, ...,k.

Out of the CDF of PGW distribution in (2) and the assumption ofthe linear cumulative exposure model, the CDF of
test units under progressive-stressSi(t) is defined by

Qi(t) = Fi(∆(t)), i = 1, ...,k, (5)

where∆(t) =
∫ t

0
du

σi(u)
=

aβ b
i tb+1

b+1 , andFi(.) is the CDF under the stress levelSi(t) with a scale parameter equal to one.
Hence,

Qi(t) = 1−exp

{
1−
(

1+

(
aβ b

i tb+1

b+1

)ν)γ}
, t > 0. (6)

The PDF of (6) is given by

qi(t) = aγνβ b
i tb
(

aβ b
i tb+1

b+1

)ν−1
(

1+

(
aβ b

i tb+1

b+1

)ν)γ−1

exp

{
1−
(

1+

(
aβ b

i tb+1

b+1

)ν)γ}
, t > 0. (7)

3 Estimation by maximum likelihood method

In this section, MLEs of the model parametersγ, a, ν andb are obtained under progressive type-II censoring. Assuming
thatti j :mi :ni = ti j , wherei = 1,2, · · · ,k and j = 1,2, · · · ,mi , is the observed data of the lifetime under the progressive-stress
levelSi(t). The likelihood function of the four parametersγ, a, ν andb is given by

L(γ,a,ν,b) =
k

∏
i=1

Ci

mi

∏
j=1

qi(ti j ) [1−Qi(ti j )]
Ri j , (8)
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whereCi = ni (ni −1−Ri1)(ni −2−Ri1−Ri2) · · ·
(

ni −mi +1−∑mi−1
j=1 Ri j

)
.

From (6) and (7) in (8), we obtain the following equation

L(γ,a,ν,b) =
k

∏
i=1

Ci

mi

∏
j=1

aγνβ b
i tb

i j (υ(ti j ))ν−1(1+(υ(ti j ))ν )γ−1 exp
{
(Ri j +1)(1− (1+(υ(ti j))ν )γ )

}
, (9)

whereυ(ti j ) =
(

aβ b
i tb+1

i j
b+1

)
.

So, the log-likelihood function is written as

ℓ(γ,a,ν,b) =
k

∑
i=1

logCi +(logγ + logν + loga)
k

∑
i=1

mi +b
k

∑
i=1

mi logβi

+b
k

∑
i=1

mi

∑
j=1

logti j +(ν −1)
k

∑
i=1

mi

∑
j=1

log(υ(ti j ))+ (γ −1)
k

∑
i=1

mi

∑
j=1

log
(
1+(υ(ti j ))ν)

+
k

∑
i=1

mi

∑
j=1

(Ri j +1)(1− (1+(υ(ti j))ν )γ ) ,

(10)

the likelihood equations ofγ, a, ν andb are respectively

∂ℓ
∂γ

=
∑k

i=1mi

γ
+

k

∑
i=1

mi

∑
j=1

log
(
1+(υ(ti j ))ν)

−
k

∑
i=1

mi

∑
j=1

(Ri j +1)(1+(υ(ti j ))ν )
γ log(1+(υ(ti j ))ν ) ,

(11)

∂ℓ
∂a

=
ν ∑k

i=1mi

a
+

(γ −1)ν
b+1

k

∑
i=1

mi

∑
j=1

β b
i tb+1

i j (υ(ti j ))ν−1

(1+(υ(ti j ))ν )

− γν
b+1

k

∑
i=1

mi

∑
j=1

(Ri j +1)(β b
i tb+1

i j )(υ(ti j ))ν−1 (1+(υ(ti j ))ν)γ−1 ,

(12)

∂ℓ
∂ν

=
∑k

i=1mi

ν
+

k

∑
i=1

mi

∑
j=1

log(υ(ti j ))+ (γ −1)
k

∑
i=1

mi

∑
j=1

(υ(ti j ))ν log(υ(ti j ))
(1+(υ(ti j ))ν)

− γ
k

∑
i=1

mi

∑
j=1

(Ri j +1)(1+(υ(ti j ))ν)
γ−1

(υ(ti j ))ν log(υ(ti j )),
(13)

∂ℓ
∂b

=
k

∑
i=1

mi logβi +
k

∑
i=1

mi

∑
j=1

logti j +
ν −1
b+1

k

∑
i=1

mi

∑
j=1

(−1+(b+1)(logti j + logβi))

+
(γ −1)ν

b+1

k

∑
i=1

mi

∑
j=1

(−1+(b+1)(logti j + logβi)) (υ(ti j ))ν

(1+(υ(ti j ))ν)

− γν
b+1

k

∑
i=1

mi

∑
j=1

(Ri j +1)(−1+(b+1)(logti j + logβi)) (1+(υ(ti j ))ν)
γ−1

(υ(ti j ))ν .

(14)

Hence, four nonlinear equations in four unknownsγ, a, ν andb are obtained. It is very difficult to obtain a closed
form solution for these equations. Thus, an iterative method such as Newton-Raphson can be used to obtain numerical
solutions for the four nonlinear equations in (11), (12), (13) and (14).
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4 Bayes estimation

In this section, Bayesian inference of the model parametersγ, a, ν andb under progressive type-II censoring are calculated
by using the square error (SE) loss function and linear exponential loss function (LINEX). Assuming that the model
parametersγ, ν, a andb are independent. The two parametersγ andν have gamma prior. While, the two parametersa
andb are noninformative prior.

π1(γ) ∝ γµ1−1e
−γ
λ1 , γ > 0, µ1, λ1 > 0, (15)

π2(a) ∝
1
a
, a> 0, (16)

π3(ν) ∝ νµ2−1e
−ν
λ2 , ν > 0, µ2, λ2 > 0, (17)

π4(b) ∝
1
b
, b> 0. (18)

From (15), (16), (17) and (18), the joint prior of the parametersγ, a, ν andb is given by:

π(γ,a,ν,b) ∝
γµ1−1νµ2−1

ab
e
−
(

γ
λ1

+ ν
λ2

)

, γ,a,ν,b> 0. (19)

The joint posterior density function of the parametersγ, a, ν andb can be written from (9) and (19) as follows:

π∗(γ,a,ν,b) ∝ L(γ,a,ν,b) π(γ,a,ν,b)

∝
γ(µ1−1)+∑k

i=1 mi ν(µ2−1)+∑k
i=1 mi a−1+∑k

i=1mi e
−( γ

λ1
+ ν

λ2
)

b
×

k

∏
i=1

mi

∏
j=1

β b
i tb

i j (υ(ti j ))
ν−1(1+(υ(ti j ))ν )γ−1exp

{
(Ri j +1)

(
1− (1+(υ(ti j ))ν )

γ)}
.

(20)

By using the SE and LINEX loss functions, the Bayes estimatorof the function of parametersU(ϑ) = U(γ,a,ν,b)
can be obtained, respectively, as follows :

ŨSE=

∫

ϑ
Uπ∗(ϑ)dϑ , (21)

and

ŨLINEX =−1
c

log

[∫

ϑ
e−cUπ∗(ϑ)dϑ

]
, (22)

note thatc 6= 0 represents the shape parameter of LINEX loss function. Theintegrations in equations (21) and (22) cannot
be calculated analytically. So, these integrals can be approximated by using Markov chain Monte Carlo (MCMC) method.

4.1 Bayesian inference by MCMC approach

In this subsection, MCMC approach is used to obtain samples from the posterior distribution and then the BEs ofγ, a, ν
andb are computed.

Out of the joint posterior density function in (20), the conditional posterior distributions ofγ, a, ν andb are given
respectively by:

P1(γ|a,ν,b) ∝γ(µ1−1)+∑k
i=1mi e

−γ
λ1

k

∏
i=1

mi

∏
j=1

(1+(υ(ti j ))ν )γ×

exp
{
−(Ri j +1)(1+(υ(ti j ))ν )

γ}
,

(23)
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P2(a|γ,ν,b) ∝a−1+∑k
i=1 mi×

k

∏
i=1

mi

∏
j=1

(υ(ti j ))ν−1(1+(υ(ti j ))ν)γ−1 exp
{
−(Ri j +1)(1+(υ(ti j ))ν)γ} ,

(24)

P3(ν|γ,a,b) ∝ν(µ2−1)+∑k
i=1mi e

−ν
λ2 ×

k

∏
i=1

mi

∏
j=1

(υ(ti j ))ν (1+(υ(ti j ))ν )γ−1exp
{
−(Ri j +1)(1+(υ(ti j ))ν )

γ}
,

(25)

P4(b|γ,a,ν) ∝
1
b

k

∏
i=1

mi

∏
j=1

β b
i tb

i j (υ(ti j ))
ν−1(1+(υ(ti j ))ν )γ−1

exp
{
−(Ri j +1)(1+(υ(ti j ))ν )

γ}
.

(26)

It is clear that the conditional posterior distributions ofγ, a, ν andb are very difficult to reduce analytically to known
distributions. So, Metropolis-Hasting algorithm is considered to generate random samples from these distributions;see
Upadhyay and Gupta [31].

The BEs ofU =U(γ,a,ν,b) under SE and LINEX loss functions are calculated by the following algorithm :

Algorithm(1)

1.Start with initial guess point of(γ,a,ν,b) say(γ(0),a(0),ν(0),b(0)).
2.Seti = 1.
3.Generateγ(i), a(i), ν(i) andb(i) from equations (23), (24), (25) and (26) respectively.
4.Seti = i +1.
5.Repeat steps ((2)-(4))N times.
6.The approximate means ofU ande−cU are given respectively by

E(U) =
1

N−M

N

∑
i=M+1

U(γ(i),a(i),ν(i),b(i)), (27)

E(e−cU) =
1

N−M

N

∑
i=M+1

exp{−cU(γ(i),a(i),ν(i),b(i))}, (28)

whereM is the burn-in period.

5 Confidence intervals

In this section, the approximate and credible CIs of the parametersγ, a, ν andb are obtained.

5.1 Normal approximation CI

In this subsection, the asymptotic distributions of the MLEs of the unknown parameters is considered to obtain the
approximate CIs of the four parametersϑ = (γ,a,ν,b). This asymptotic distribution of the MLEs ofϑ was introduced
by Miller [32].

(
(γ̂ − γ),(â−a),(ν̂ −ν),(b̂−b)

)
∼ N

(
0,∑

)
,

where∑ = σi j , i, j = 1,2,3,4, represents the variance-covariance matrix of the unknown parametersϑ = (γ,a,ν,b). The
approximate 100(1−ω)% two sided CI ofϑ is given by:

(
ϑ̂iL , ϑ̂iU

)
= ϑ̂i ±Z1−ω/2

√
σii , i = 1,2,3,4, (29)

whereϑ̂1 ≡ γ̂, ϑ̂2 ≡ â, ϑ̂3 ≡ ν̂, ϑ̂4 ≡ b̂ andZq is the 100q− th percentile of a standard normal distribution.
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5.2 Credible CI

A 100(1−ω)% posterior interval for a random quantityϑ is the interval which has the posterior probability(1−ω), that
ϑ exists in the interval where

p(L ≤ ϑ ≤U) =
∫ U

L
π∗(ϑ |t)dϑ = 1−ω .

The credible CI ofγ, a, ν andb is obtained by the following algorithm :

Algorithm (2)

1.Do steps((1)− (6)) in algorithm(1).

2.Sort the posterior sample
{

ϑ (i), i = M+1, ...,N
}

to obtain the ordered values as
{

ϑ [1],ϑ [2], ...,ϑ [N−M]
}

whereM is

the burn-in period. Then, the the 100(1−ω)% credible CI ofϑ is given by

(
ϑ̂i , ϑ̂u

)
=
(

ϑ [ω(N−M)/2],ϑ [(1−ω/2)(N−M)]
)
, whereϑ is γ, a, ν or b.

6 Application

In this section, the proposed producers in Section 3, 4 and 5 are demonstrated with a real data example.
Data in Table (5.1) of Chapter 5 of Zhu [33] were collected from ramp-voltage tests of miniature lightbulbs with

voltage equal 2 V. In this test, 62 miniature light bulbs weretested by ramp-rate 2.01 V/h. Also, 61 miniature light bulbs
were tested by ramp-rate 2.015 V/h. The lifetime data resulted from the test are represented in Table (1).

To check the fitting of PGW distribution with the data in Table(1) for every ramp-stressSi(t), i = 1,2. We compute
Kolmogorov-Smirnov (K-S) distance between the empirical distribution function and the fitted distribution function when
the parameters are obtained by MLE. The values of K-S distance and the corresponding P-values for each stress level are
presented in Table (6.2). Since all resulted P-values are greater than 0.05, the PGW distribution provides a good fit to to
the given data.

Table (6.3) represents the MLEs and BEs of the four parametersγ, a, ν andb. Basyian analysis is constructed in case
of NIPs (whenµ1,µ2 → 0 andλ1,λ2 → ∞).

Table (6.4) represents the lengths of 99% and 95% approximate and credible CIs of the model parameters.
It is clear that the BEs of the model parametersγ, a, ν andb give more accurate results than the MLEs through the

length of the CIs.

Table 1The lifetime data from ramp-voltage tests

Ramp-Rate 2.01 V/h Ramp-Rate 2.015 V/h
No. Failure Time No. Failure Time No. Failure TimeNo. Failure Time No. Failure Time No. Failure Time
1 13.57 22 72.33 43 42.06 1 19.3 22 49.65 43 31.00
2 19.92 23 72.60 44 47.88 2 23.28 23 51.42 44 34.81
3 23.3 24 75.43 45 54.21 3 23.50 24 51.27 45 36.03
4 27.81 25 75.85 46 54.55 4 26.50 25 53.25 46 43.08
5 31.16 26 76.20 47 55.85 5 27.42 26 54.25 47 45.63
6 31.56 27 77.78 48 56.43 6 28.32 27 55.47 48 46.03
7 34.00 28 79.13 49 58.86 7 28.62 28 56.83 49 46.33
8 46.26 29 80.65 50 60.60 8 30.62 29 56.17 50 49.62
9 46.41 30 82.65 51 62.48 9 34.42 30 8.85 51 49.86
10 50.60 31 90.33 52 62.81 10 35.30 31 11.31 52 50.66
11 56.76 32 14.51 53 63.41 11 35.48 32 11.83 53 50.93
12 56.85 33 15.61 54 63.76 12 38.30 33 14.50 54 51.03
13 60.13 34 15.85 55 64.18 13 40.52 34 14.83 55 51.73
14 65.00 35 17.73 56 66.15 14 43.83 35 17.73 56 51.95
15 65.86 36 19.65 57 66.41 15 43.00 36 19.35 57 52.36
16 66.20 37 21.05 58 69.91 16 43.00 37 25.50 58 54.78
17 66.40 38 21.20 59 71.73 17 43.12 38 26.15 59 55.58
18 66.80 39 24.21 60 72.46 18 44.43 39 27.45 60 55.83
19 66.93 40 24.85 61 73.78 19 45.32 40 27.61 61 57.13
20 68.25 41 31.18 62 78.91 20 47.58 41 28.05
21 70.23 42 35.08 21 47.65 42 30.96
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Table 2K-S distances and the corresponding P-values of ramp-voltage tests

Ramp-Rate 2.01 V/h 2.015 V/h
K-S distance 0.2419 0.1459

P-value 0.0527 0.1492

Table 3MLEs and BEs under SE (BSE) and LINEX (BLINEX) loss functionsof γ, a, ν and b for ramp-voltage tests

Θ MLE BSE BLINEX
c=−2 c= 0.001 c= 2

γ̂ 3.2595 3.4894 3.3112 3.4894 3.4891
â 0.2756 0.6245 0.7300 0.6245 0.5993
ν̂ 0.9587 1.0198 1.0153 1.0198 1.0056
b̂ 1.3136 1.1258 1.2754 1.1258 1.1043

Table 4Lengths of99%and95%approximate and credible CIs forγ, a, ν and b for ramp-voltage tests

Θ 99%CI 95%CI
Approximate CI Credible CI Approximate CI Credible CI

γ̂ 3.2591 1.0712 3.0189 1.0703
â 0.9648 0.3043 0.9564 0.1825
ν̂ 0.9688 0.4932 0.9168 0.3102
b̂ 1.3137 1.0087 1.2317 1.0049

7 Simulation studies

In this section, Monte Carlo simulation studies are performed to illustrate the performance of the MLEs and BEs. MLEs
and BEs are considered under SE and LINEX loss functions for different sample sizes(ni ,mi , i = 1,2, ...,k) and CSs
(Ri j , j = 1,2, ...,mi). Also, the 95% asymptotic and credible CIs are obtained. Theprogressive censoring schemes which
are used in the simulation studies are shown in Table (7.1). MSEs of MLEs and BEs in the case of informative priors of
the model parameters are shown in Table (7.2). Table (7.3) introduces lengths and coverage probabilities of 95%
(approximate and credible CIs) in the case of informative priors CIs.

The estimation procedure is performed according to the following algorithm.

Algorithm (3)

1.Determine the values ofni, mi , k, a, b, c andβi, i = 1,2, ...,k.
2.Generateγ from π1(γ) andν from π2(ν) by using the determined values of the prior parametersµ1, µ2, λ1 andλ2.
3.Generatek simple random samples of sizemi from Uniform(0,1) distribution,(Ui1,Ui2, ...,Uimi ), i = 1,2, ...,k.
4.Determine the values of the censored schemes,Ri j , i = 1,2, ...,k, and j = 1,2, ...,mi , such that∑mi

j=1Ri j = ni −mi .

5.SetEi j =U
1/( j+∑

mi
d=mi− j+1 Rid)

i j , j = 1,2, ...,mi andi = 1,2, ...,k.
6.Obtain the progressive type-II censored samples(U∗

i1,U
∗
i2, ...,U

∗
imi

), whereU∗
i j = 1−∏mi

d=mi− j+1Eid , j = 1,2, ...,mi ,

i = 1,2, ...,k.
7.Use step 6, to generate random samples(ti1, ti2, ..., timi ), i = 1,2, ...,k, from CDF in equation (6) as follows:

ti j =

((
b+1

aβ b
i

)ν [(
1− log(1−U∗

i j )
) 1

γ −1

]) 1
ν(b+1)

, j = 1,2, ...,mi , i = 1,2, ...,k.

8.Compute the MLEs of the model parameters by using the progressive censored data and solving the nonlinear system
((11)-(14)).

9.Compute the BEs of the model parameters relative to SE and LINEX loss functions, using algorithm(1), with N =
11000 andM = 1000.
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10.Compute the approximate confidence bounds with confidence level 95% for the model parametersγ, a, ν andb.
11.Compute 95% credible confidence intervals using algorithm (2) of the parametersγ, a, ν andb.
12.Replicate the steps((3)− (11)) 1000 times.
13.Compute the average values of the MSEs of the MLEs and BEs of the parameters.
14.Compute the average values of the length and the coverageprobability of CIs of the parameters.
15.Repeat steps ((1)-(14)) with different values ofni , mi andRi j , j = 1,2, ...,mi , i = 1,2, ...,k.

Table 5The progressive censoring schemes used in the simulation studies

C.S (Ri1, · · · ,Rimi ) C.S (Ri1, · · · ,Rimi ) C.S (Ri1, · · · ,Rimi )

[1] Ri j =





5 i = 1, j = 1
4 i = 2, j = 1
3 i = 3, j = 1
3 i = 4, j = 1
0 other wise

[2] Ri j =





5 i = 1, j = m1
4 i = 2, j = m2
3 i = 3, j = m3
3 i = 4, j = m4
0 other wise

[3] Ri j =





1 i = 1, j = 17, · · · ,20
1 i = 2, j = 9,10,11
1 i = 3, j = 8,9
1 i = 4, j = 5
0 other wise

[4] Ri j =






8 i = 1, j = 1
5 i = 2, j = 1
4 i = 3, j = 1
2 i = 4, j = 1
0 other wise

[5] Ri j =






8 i = 1, j = m1
5 i = 2, j = m2
4 i = 3, j = m3
2 i = 4, j = m4
0 other wise

[6] Ri j =






1 i = 1, j = 16, · · · ,20
1 i = 2, j = 8, · · · ,12
1 i = 3, j = 7,8,9
1 i = 4, j = 5,6
0 other wise

[7] Ri j =






6 i = 1, j = 1
5 i = 2, j = 1
4 i = 3, j = 1
3 i = 4, j = 1
0 other wise

[8] Ri j =






6 i = 1, j = m1
5 i = 2, j = m2
4 i = 3, j = m3
3 i = 4, j = m4
0 other wise

[9] Ri j =






1 i = 1, j = 28, · · · ,35
1 i = 2, j = 14, · · · ,18
1 i = 3, j = 11, · · · ,14
1 i = 4, j = 6,7
0 other wise

8 Conclusion

In this paper, we have considered a progressive-stress ALT model for PGW distribution under progressive type-II
censoring. From simulation studies, MLEs and BEs in the caseof informative priors of the model parametersγ, a, ν and
b were calculated. Point estimation of the model parametersγ, a, ν andb was illustrated via maximum likelihood and
Bayes methods. Moreover, approximate and credible CIs wereestablished for the model parametersγ, a, ν andb. The
calculations have been worked out based on different samplesizes and three different progressive CSs.

From the results in Tables (7.1)-(7.3), we observed the following:

1.The MSEs of MLEs and BEs of the parameters decrease as the sample size increases, except for few cases. This may
be due to variation in data.

2.The BEs ofγ, a, ν andb give more accurate results through the MSEs than MLEs, except for few cases.
3.The BEs ofγ, a, ν andb under LINEX loss function(c = 2) have the smallest MSEs as compared with estimates

under SE and LINEX(c=−2) loss function.
4.The BEs ofγ, a, ν andb under LINEX loss function(c = .001) have the same MSEs as estimates under SE loss

function.
5.The lengths of approximate and credible CIs decrease as the sample size increases, except for few cases. This may be

due to variation in data.
6.The credible CIs ofγ, a, ν andb give more accurate results than approximate CIs through lengths.
7.The coverage probability of credible CIs ofγ, a, ν and b greater than the corresponding coverage probability of

approximate CIs.
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Table 6MSEs of MLEs and BEs under SEL and LINEXL function ofγ, a,ν and b with true values (γ = 1.1, a= 0.4, ν =
1.1 and b= 0.8), values of the prior parameters (µ1 = 12.1, µ2 = 12.1 andλ1 = 0.0909, λ2 = 0.0909), k= 4, β1 = 4,
β2 = 8, β3 = 12andβ4 = 16.

ni mi CS θ ML SEL LINEXL
c=−2 c= .001 c= 2

ni =






20 i = 1
16 i = 2
12 i = 3
10 i = 4

mi =






15 i = 1
12 i = 2
9 i = 3
7 i = 4

1

γ 1.7486 0.0112 0.0244 0.0112 0.0141
a 0.2365 0.0514 0.0937 0.0514 0.0344
ν 0.1869 0.0360 0.0937 0.0360 0.0309
b 0.3225 0.1563 0.3791 0.1563 0.1133

2

γ 1.7571 0.0067 0.0242 0.0067 0.0088
a 0.1471 0.0399 0.0561 0.0398 0.0233
ν 0.1391 0.0299 0.0396 0.0299 0.0264
b 0.3352 0.1435 0.4096 0.1434 0.0952

3

γ 1.6506 0.0033 0.0285 0.0033 0.0016
a 0.1716 0.0305 0.0740 0.0305 0.0250
ν 0.1216 0.0207 0.0451 0.0207 0.0103
b 0.3185 0.1336 0.3089 0.1336 0.0985

ni =





20 i = 1
16 i = 2
12 i = 3
10 i = 4

mi =





20 i = 1
16 i = 2
12 i = 3
10 i = 4

γ 1.3091 0.0034 0.0260 0.0034 0.0019
a 0.1703 0.0212 0.0657 0.0212 0.0101
ν 0.1426 0.0134 0.0411 0.0134 0.0105
b 0.2359 0.1229 0.3366 0.1228 0.0861

ni =





45 i = 1
25 i = 2
20 i = 3
10 i = 4

mi =





37 i = 1
20 i = 2
16 i = 3
8 i = 4

4

γ 1.2809 0.0025 0.0135 0.0025 0.0012
a 0.0614 0.0198 0.0417 0.0198 0.0087
ν 0.1034 0.0121 0.0210 0.0121 0.0054
b 0.1534 0.0993 0.1027 0.0993 0.0315

5

γ 1.2766 0.0015 0.0311 0.0015 0.0009
a 0.0456 0.0162 0.0387 0.0162 0.0010
ν 0.0948 0.0173 0.0452 0.0173 0.0031
b 0.1533 0.0965 0.1847 0.0965 0.0722

6

γ 0.9813 0.0012 0.0293 0.0012 0.0008
a 0.0108 0.0121 0.0302 0.0121 0.0088
ν 0.0725 0.0126 0.0315 0.0126 0.0066
b 0.1433 0.0765 0.2261 0.0765 0.0145

ni =






45 i = 1
25 i = 2
20 i = 3
10 i = 4

mi =






45 i = 1
25 i = 2
20 i = 3
10 i = 4

γ 0.6287 0.0018 0.0373 0.0018 0.0002
a 0.0087 0.0106 0.0327 0.0106 0.0065
ν 0.0672 0.0103 0.0265 0.0103 0.0026
b 0.1193 0.0726 0.2045 0.0726 0.0066

ni =





50 i = 1
30 i = 2
25 i = 3
15 i = 4

mi =





44 i = 1
25 i = 2
21 i = 3
12 i = 4

7

γ 0.4527 0.0017 0.0487 0.0017 0.0005
a 0.0040 0.0051 0.0319 0.0051 0.0019
ν 0.0763 0.0089 0.0303 0.0089 0.0057
b 0.0969 0.0618 0.1456 0.0618 0.0357

8

γ 0.3821 0.0011 0.0331 0.0011 0.0006
a 0.0072 0.0043 0.0361 0.0043 0.0015
ν 0.0648 0.0074 0.0242 0.0074 0.0017
b 0.0770 0.0531 0.1603 0.0531 0.0126

9

γ 0.1050 0.0009 0.0295 0.0009 0.0005
a 0.0055 0.0049 0.0344 0.0049 0.0009
ν 0.0608 0.0065 0.0243 0.0065 0.0018
b 0.0659 0.0401 0.1363 0.0401 0.0064

ni =





50 i = 1
30 i = 2
25 i = 3
15 i = 4

mi =





50 i = 1
30 i = 2
25 i = 3
15 i = 4

γ 0.0547 0.0007 0.0399 0.0007 0.0004
a 0.0048 0.0021 0.0285 0.0021 0.0014
ν 0.0607 0.0048 0.0278 0.0048 0.0019
b 0.0590 0.0370 0.1188 0.0369 0.0093
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Table 7Lengths and coverage probabilities of95%approximate and credible CIs forγ, a, ν and b with true values (γ =
1.1, a= 0.4, ν = 1.1 and b= 0.8), values of the prior parameters (µ1 = 12.1, µ2 = 12.1 andλ1 = 0.0909, λ2 = 0.0909),
k= 4, β1 = 4, β2 = 8, β3 = 12andβ4 = 16.

ni mi CS θ Length Coverage Probability
Approximate CI Credible CI Approximate CI Credible CI

ni =






20 i = 1
16 i = 2
12 i = 3
10 i = 4

mi =






15 i = 1
12 i = 2
9 i = 3
7 i = 4

1

γ 8.0009 1.1786 0.967 1
a 1.8818 0.9703 0.825 0.958
ν 1.5984 0.9919 0.95 0.975
b 2.1435 1.6071 0.892 0.958

2

γ 7.6616 1.1423 0.975 1
a 1.7164 0.9038 0.858 0.975
ν 1.4573 0.9840 0.967 1
b 2.0622 1.6244 0.967 0.975

3

γ 7.5078 1.1380 0.963 1
a 1.6525 0.9010 0.825 0.983
ν 1.3239 1.0067 0.975 1
b 2.0825 1.5575 0.967 0.975

ni =






20 i = 1
16 i = 2
12 i = 3
10 i = 4

mi =






20 i = 1
16 i = 2
12 i = 3
10 i = 4

γ 6.1523 1.1091 0.98 1
a 1.5521 0.8621 0.85 0.97
ν 1.2860 0.9175 0.98 0.99
b 1.7563 1.4605 0.96 0.96

ni =





45 i = 1
25 i = 2
20 i = 3
10 i = 4

mi =





37 i = 1
20 i = 2
16 i = 3
8 i = 4

4

γ 6.5284 1.1156 0.95 1
a 1.4023 0.8025 0.87 0.96
ν 1.2506 0.9091 0.97 0.99
b 1.5209 1.3516 0.95 0.951

5

γ 6.0251 1.0873 0.933 1
a 1.3474 0.7810 0.883 0.967
ν 1.2151 0.9067 0.967 0.992
b 1.4314 1.2554 0.95 0.982

6

γ 5.3377 1.0631 0.933 1
a 1.3733 0.7381 0.833 0.975
ν 1.1244 0.8463 0.958 0.983
b 1.3540 1.2063 0.917 0.958

ni =





45 i = 1
25 i = 2
20 i = 3
10 i = 4

mi =





45 i = 1
25 i = 2
20 i = 3
10 i = 4

γ 4.2698 1.0514 0.968 1
a 1.1845 0.6869 0.858 0.975
ν 1.0451 0.8013 0.958 0.992
b 1.3045 1.1654 0.95 0.951

ni =






50 i = 1
30 i = 2
25 i = 3
15 i = 4

mi =






44 i = 1
25 i = 2
21 i = 3
12 i = 4

7

γ 4.1178 1.0456 0.958 1
a 1.1736 0.6687 0.85 0.951
ν 1.0182 0.7712 0.975 1
b 1.2284 1.1252 0.985 0.985

8

γ 3.8391 1.0394 0.942 1
a 1.1386 0.6249 0.883 1
ν 1.0354 0.8022 0.967 1
b 1.2406 1.1047 0.965 0.967

9

γ 3.2952 1.0185 0.962 1
a 1.0526 0.6172 0.858 0.958
ν 1.0126 0.7203 0.975 1
b 1.2150 1.0942 0.967 0.95

ni =





50 i = 1
30 i = 2
25 i = 3
15 i = 4

mi =





50 i = 1
30 i = 2
25 i = 3
15 i = 4

γ 3.0757 1.0120 0.962 1
a 1.0432 0.6095 0.825 0.975
ν 0.9221 0.7510 0.973 0.983
b 1.1356 0.9734 0.967 0.967
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