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Abstract: In this paper, we establish the existence of soliton type solutions for a class of fractional Choquard equations. Our main

technique is based on constrained minimization arguments.
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1 Introduction, motivation and preliminaries

In this paper, we address the existence of soliton type solutions for a class of fractional Choquard equations of the
following form

(−∆)su+V(x)u+κ [(−∆)su2]u = λ [|x|−µ ∗ |u|p]|u|p−2u, u > 0, x ∈R
N
, (1.1)

where 0 < s < 1, (−∆)s denotes the fractional Laplacian of order s, N > 2s, 0 < µ < N,
2N−µ

N
≤ p <

2N−µ
N−2s

and κ is a real
constant.

Solutions of (1.1) are related to the existence of solitary wave solutions for the following equations

iψt = (−∆)sψ +[V(x)+E]ψ −λ [|x|−µ ∗ |ψ |p]|ψ |p−2ψ +κ [(−∆)sρ(|ψ |2)]ρ ′(|ψ |2)ψ , (1.2)

where ψ : RN ×R→ C, κ is a real constant and ρ is a real function. Here, we handle the existence of solutions for Eq.
(1.2) with ρ(t) = t. If we set ψ(x, t) = e−iEtu(x) in (1.2), where E ∈ R and u > 0 is a real function, then (1.2) turns into
(1.1).

For κ = 0, as anticipated, problem (1.1) has nonlocal characteristics in the nonlinearity as well as in the (fractional)
diffusion. When s = 1; p = 2; N = 3 and µ = λ = 1, (1.1) boils down to the so-called Choquard equation

−∆u+V(x)u = [|x|−1 ∗ |u|2]u, x ∈ R
3
. (1.3)

This equation goes back to the description of the quantum theory of a polaron at rest by Peak in 1954 [1] and the modeling
of an electron trapped in its own hole in 1976 in the work of Choquard, as a certain approximation to Hartree-Fock
theory of one-component plasma [2]. In some particular cases, this equation is also known as the Schrödinger-Newton
equation, which was introduced by Penrose in his discussion on the selfgravitational collapse of a quantum mechanical
wave function [3]. The first investigations for existence and symmetry of the solutions to (1.3) go back to the works of
Lieb [2] and Lions [4]. Since then, many efforts have been made to study the existence of nontrivial solutions for nonlinear
Choquard equations. For related results, we refer the readers to [5,6] for the existence of sign-changing solutions, [7,8]
for the existence and concentration behavior of the semiclassical solutions, [9] for the existence of multi-bump solutions
and [10] for the critical nonlocal part with respect to the Hardy-Littlewood-Sobolev inequality.

For fractional Laplacian with local type nonlinearities, a great attention has been devoted in recent years, such as [11,
12,13] and their references therein. In [15], the authors investigated the existence of positive solutions for a class of
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critical fractional Schrödinger equations with potential vanishing at infinity by the variational method. Moreover, when
the potential and nonlinearity are asymptotically periodic in x, we obtain the existence of ground state solutions by the
Nehari method ([14]). See [16,17,18,19] and the references cited therein for recent results of soliton solutions about
fractional equations. Only few papers, including [20], addressed the existence of solutions for problem (1.1) with κ = 1
and local type nonlinearities. Quantum systems [21,22] can be manipulated via fractional Schrödinger equations.

For fractional Laplacian with nonlocal Hartree-type nonlinearities, the problem has also attracted much interest, which
arises in various branches of mathematical physics, such as the mean field limit of weakly interacting molecules, the
quantum mechanical theory, physics of multiple-particle systems, etc., see [23]. In the case s = 1

2
, problem (1.1) has

been used to model the dynamics of pseudo-relativistic boson stars. For example, Frank and Lenzmann in [24] proved
analyticity and radial symmetry of ground state solutions u > 0 for the L2- critical boson star equation

√
−∆u+ u = [|x|−1 ∗ |u|2]u, x ∈ R

3
.

The square root of the Laplacian also appears in the semi-relativistic Schrödinger-Poisson-Slater systems ([25]). In [26],
it is shown that the dynamical evolution of boson stars is described by the nonlinear evolution equation

i∂tψ =
√
−∆ +m2ψ − [|x|−1 ∗ |ψ |2]ψ (m ≥ 0),

for a field ψ : [0,T )×R3 → C. More results about the fractional Choquard equation can be found in [27] and their
references therein. The case κ = 0 has been extensively studied in recent years. However, to our best knowledge, there is
no result for (1.1) with κ 6= 0. For simplicity, set κ = 1. Furthermore, we also assume that the following condition holds.

(V ) lim
|x|→∞

V (x) = +∞.

For any 0 < s < 1, the fractional Sobolev space Hs(RN) is defined by

Hs(RN) = {u ∈ L2(RN) :
|u(x)− u(y)|
|x− y| N+2s

2

∈ L2(RN ×R
N)},

endowed with the natural norm

‖u‖Hs(RN) = (
∫

RN
u2dx+

∫

R2N

|u(x)− u(y)|2
|x− y|N+2s

dxdy)
1
2 ,

where the term

[u]Hs(RN ) := (

∫

R2N

|u(x)− u(y)|2
|x− y|N+2s

dxdy)
1
2

is the so-called Gagliardo semi-norm of u. Let S be the Schwartz space of rapidly decaying C∞ functions in R
N . For any

u ∈ S and s ∈ (0,1), (−∆)s is defined as

(−∆)su(x) =CN,sP.V.

∫

RN

u(x)− u(y)

|x− y|N+2s
dy =CN,s lim

ε→0+

∫

C Bε (x)

u(x)− u(y)

|x− y|N+2s
dy, (1.4)

where C Bε(x) = RN \Bε(x). The symbol P.V. stands for the Cauchy principal value and CN,s is a dimensional constant
that depends on N and s and is given by

CN,s = (

∫

RN

1− cosζ1

|ζ |N+2s
dζ )−1

.

Indeed, the fractional Laplacian (−∆)s can be viewed as a pseudo-differential operator of symbol |ξ |2s, as stated in
the following, check relevance to the previous part Proposition 3.3 in [29].

Let s ∈ (0,1) and (−∆)s : S → L2(RN) be the fractional Laplacian operator defined by (1.4). Then, for any u ∈ S ,

(−∆)su(x) = F
−1(|ξ |2s(Fu))(x), ∀ξ ∈ R

N
.

Here, Fu := û := (2π)−
N
2
∫
RN u(x)e−ix·ξ dx denotes the Fourier transform of u. Then we can see that an alternative

definition of the fractional Sobolev space Hs(RN) via the Fourier transform, as follows:

Hs(RN) = {u ∈ L2(RN) :

∫

RN
(1+ |ξ |2s)|û(ξ )|2dξ <+∞}.
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Propositions 3.4 and 3.6 in [29] imply that

2C−1
N,s

∫

RN
|ξ |2s|û(ξ )|2dξ = 2C−1

N,s‖(−∆)
s
2 u‖2

L2(RN) = [u]2
Hs(RN ).

Set
H = {u ∈ Hs(RN) : u2 ∈ Hs(RN)}.

Using a standard argument, we know that a weak solution of problem (1.1) is a critical point of the following functional

J(u) =
1

2

∫

RN
|ξ |2s|û(ξ )|2dξ +

1

2

∫

RN
V (x)u2dx+

1

4

∫

RN
|ξ |2s|û2(ξ )|2dξ

− λ

2p

∫

RN
[|x|−µ ∗ |u|p]|u|pdx

=
1

2

∫

RN
|ξ |2s|û(ξ )|2dξ +

1

2

∫

RN
V (x)u2dx+

1

4

∫

RN
|ξ |2s|û(ξ )∗ û(ξ )|2dξ

− λ

2p

∫

RN
[|x|−µ ∗ |u|p]|u|pdx,

where û2(ξ ) = û(ξ )∗ û(ξ ). Here, ( f ∗ g)(x) =
∫
RN f (x− y)g(y)dy. Moreover,

〈J′(u),ϕ〉=
∫

RN
(−∆)suϕdx+

∫

RN
V (x)uϕdx+

∫

RN
[(−∆)su2]uϕdx

−λ

∫

RN
[|x|−µ ∗ |u|p]|u|p−2uϕdx

=

∫

RN
|ξ |2sû(ξ ) ¯̂ϕ(ξ )dξ +

∫

RN
V (x)uϕdx+

∫

RN
|ξ |2s[û(ξ )∗ û(ξ )] · [ ¯̂u(ξ )∗ ¯̂ϕ(ξ )]dξ

−λ
∫

RN
[|x|−µ ∗ |u|p]|u|p−2uϕdx

=
1

2
CN,s

∫

R2N

[u(x)− u(y)][ϕ(x)−ϕ(y)]

|x− y|N+2s
dxdy+

∫

RN
V (x)uϕdx

+
1

2
CN,s

∫

R2N

[u2(x)− u2(y)][u(x)ϕ(x)− u(y)ϕ(y)]

|x− y|N+2s
dxdy

−λ
∫

RN
[|x|−µ ∗ |u|p]|u|p−2uϕdx

for all u, ϕ ∈ H.
It seems quite clear that H is the working space for studying the problem (1.1). However, H is not a linear space.

Consequently, the classical critical point theory and usual min-max techniques cannot be directly applied to the energy
functional J, so we encounter the difficulties caused by the lack of an appropriate working space. Motivated by [30], we
use a constrained minimization argument to give a solution of Eq. (1.1).

2 Main result

Set

X := {u ∈ Hs(RN) :

∫

RN
V (x)u2dx <+∞}

with the norm

‖u‖2
X =

∫

RN
|ξ |2s|û(ξ )|2dξ +

∫

RN
V (x)u2dx.

For any a > 0, we define
ma := inf

u∈Ma

E(u),

where

Ma := {u ∈ H :

∫

RN
[|x|−µ ∗ |u|p]|u|pdx = a}
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and

E(u) =
∫

RN
|ξ |2s|û(ξ )|2dξ +

∫

RN
V (x)u2dx+

∫

RN
|ξ |2s|û(ξ )∗ û(ξ )|2dξ .

Because we are concerned with the nonlocal problems, we would like to recall the well-known Hardy-Littlewood-
Sobolev inequality, which will be frequently used throughout the paper.

Proposition 2.1. [31] (Hardy-Littlewood-Sobolev inequality) Let r, t > 1 and 0 < µ < N with 1
r
+ µ

N
+ 1

t
= 2. Let

g ∈ Lr(RN) and h ∈ Lt(RN). Then, there exists a sharp constant Cr,N,µ,t independent of g and h such that

∫

RN

∫

RN

g(x)h(y)

|x− y|µ dxdy ≤Cr,N,µ,t‖g‖Lr(RN)‖h‖Lt(RN ).

Remark 2.2. In general, set F(u) = |u|q for some q > 0. By Hardy-Littlewood-Sobolev inequality,∫
RN

∫
RN

F(u(x))F(u(y))
|x−y|µ dxdy is well defined if F(u) ∈ Lt (RN) for t > 1 defined by 2

t
+ µ

N
= 2. Thus, for u ∈ Hs(RN), there

must hold
2N − µ

N
≤ q ≤ 2N − µ

N − 2s
.

Our main result is the following:
Theorem 2.3 Assume that (V ) holds. Then, there exists λn →+∞ such that Eq. (1.1) with λ = λn has a solution.

Proof. We divide the proof into two steps.
Step 1: We claim that for each a > 0, ma is achieved at some ua ∈ Ma, which is a weak solution of equation (1.1) with

λ = λa satisfying λa =
ma

ap+1 .

Indeed, we fix a > 0. Let {un} ⊂ Ma be a minimizing sequence for ma. We may assume un ≥ 0 for all n. Then, by
the proof of Lemma 3.4 in [32], we know that the embedding X →֒ Lq(RN) is compact for 2 ≤ q < 2∗s . Hence, up to a
subsequence, we have un ⇀ ua in X , un → ua in Lq(RN) for 2 ≤ q < 2∗s and un(x)→ ua(x)≥ 0 for almost all x ∈RN . Note
that ∫

RN
|ξ |2s|ûn(ξ )∗ ûn(ξ )|2dξ =

∫

RN
|ξ |2s|û2

n(ξ )|2dξ

=
1

2
CN,s

∫

R2N

|u2
n(x)− u2

n(y)|2
|x− y|N+2s

dxdy.

By Fatou Lemma, we have

∫

R2N

|u2
a(x)− u2

a(y)|2
|x− y|N+2s

dxdy ≤ liminf
n→∞

∫

R2N

|u2
n(x)− u2

n(y)|2
|x− y|N+2s

dxdy.

Consequently, ∫

RN
|ξ |2s|ûa(ξ )∗ ûa(ξ )|2dξ ≤ liminf

n→∞

∫

RN
|ξ |2s|ûn(ξ )∗ ûn(ξ )|2dξ .

Hence, by weakly lower semi-continuity of the norm, one has

E(ua)≤ liminf
n→∞

[

∫

RN
|ξ |2s|ûn(ξ )|2dξ +

∫

RN
V (x)u2

ndx]+ liminf
n→∞

∫

RN
|ξ |2s|ûn(ξ )∗ ûn(ξ )|2dξ

≤ liminf
n→∞

E(un).

Since
2N−µ

N
≤ p <

2N−µ
N−2s

, the Hardy-Littlewood-Sobolev inequality implies that

|
∫

RN
[|x|−µ ∗ |un|p]|un|pdx−

∫

RN
[|x|−µ ∗ |ua|p]|ua|pdx|

≤C(‖un‖p
2N p

2N−µ

+ ‖ua‖p
2N p

2N−µ

)‖|un|p −|ua|p‖ 2N
2N−µ

→0

as n → ∞. It follows that
∫
RN [|x|−µ ∗ |ua|p]|ua|pdx = a, so ma ≤ E(ua)≤ liminf

n→∞
E(un) = ma, i.e., E(ua) = ma. Hence, ma

is achieved at some ua ∈ Ma. We can conclude that ua is a weak solution of

(−∆)su+V(x)u+[(−∆)su2]u = λa[|x|−µ ∗ |u|p]|u|p−2u. (2.1)
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Multiplying the Eq. (2.1) by ua and integrating over RN , we have

∫

RN
|ξ |2s|ûa(ξ )|2dξ +

∫

RN
V (x)u2

adx+

∫

RN
|ξ |2s|ûa(ξ )∗ ûa(ξ )|2dξ

=λa

∫

RN
[|x|−µ ∗ |ua|p]|ua|pdx = λa ·a,

which means that λa ·a = E(ua) = ma, i.e., λa =
ma

a
.

Step 2: We prove that λa →+∞ as a → 0.
Indeed, suppose the conclusion is false, then there exists an → 0 such that λn := λan ≤C1. Set un := uan . By

∫
RN [|x|−µ ∗

|un|p]|un|pdx = an → 0 as n → ∞, one has

‖un‖2
X +

∫

RN
|ξ |2s|ûn(ξ )∗ ûn(ξ )|2dξ = λn

∫

RN
[|x|−µ ∗ |un|p]|un|pdx ≤C1an → 0.

On the other hand, the Hardy-Littlewood-Sobolev inequality together with Sobolev embedding theorem implies that

∫

RN
[|x|−µ ∗ |un|p]|un|pdx ≤C2‖un‖2p

2N p
2N−µ

≤C3‖un‖2p
X .

Consequently,

‖un‖2
X +

∫

RN
|ξ |2s|ûn(ξ )∗ ûn(ξ )|2dξ

=λn

∫

RN
[|x|−µ ∗ |un|p]|un|pdx

≤C1C3[‖un‖2
X +

∫

RN
|ξ |2s|ûn(ξ )∗ ûn(ξ )|2dξ ]p,

which implies that ‖un‖2
X +

∫
RN |ξ |2s|ûn(ξ )∗ ûn(ξ )|2dξ ≥C4 > 0 since p ≥ 2N−µ

N
> 1, a contradiction. By Steps 1 and 2,

we complete the proof of Theorem 2.3.

3 Conclusion

The existence of soliton type solutions for the fractional Choquard equation (1.1) was established using a constrained
minimization argument. To the best of our knowledge, there is no paper considering the fractional Choquard equation
(1.1) with κ 6= 0.
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