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Abstract: In this article, a general model for Influenza of two groups ispresented as a fractional order model. The fractional derivatives
for this model which consist of eight differential equations are defined in the sense of Caputo definition. To obtain an efficient numerical
method, the fraction order derivatives are approximated bythe shifted Jacobi polynomials. The proposed scheme reduces the solution
of the main problem to the solution of a system of nonlinear algebraic equations. Comparative studies between the proposed method
and both the fourth-order Runge-Kutta method and the generalized Euler method are done.
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1 Introduction

Influenza is a common respiratory disease caused by the influenza virus. This disease spreads easily from person to person
through coughing, sneezing and hands touching your eyes, mouth or nose. Several papers considered modeling Influenza
such as ([1]-[8]). On other hand, mathematical models provide important and efficient tool to describe several problems
in natural sciences disciplines such as biology, physics, meteorology science and many other fields ( [9]-[13]).

Through the past three decades, there has been an interest inthe study of the fractional differential equations (FDEs)
([14]-[20]). The applications of fractional calculus are used in various problems in science and biology ([12],[13]),
magnetic plasma [21], physics [22] and other phenomena.

In the mean time, the Jacobi polynomials have been used as basis functions of the spectral collocation method for
approximating the solution of different types of differential equations, see for example [23] and [24], [25].

In this paper, a novel Influenza model in two groups of fraction order derivatives is presented and modified
parameters are introduced to account for the fractional order. The main aim of this work is to study the approximate
solutions for Influenza model in two groups of fraction orderderivatives using the shifted Jacobi polynomials. Shifted
Legendre polynomials and shifted Chebyshev polynomials asspecial cases from Jacobi polynomials, are introduced to
solve the the proposed system and compare the numerical results obtained by the proposed method with those numerical
solutions using fourth-order Runge-Kutta (RK4) and the generalized Euler method (GEM).

This paper is organized as follows: In section2, the basic and necessary definitions of the shifted Jacobi Polynomials
and the fractional order derivatives with their propertiesare presented. In section3, fractional order derivatives for
Influenza in two-group model and the basic reproduction number are introduced; in addition, the stability of equilibrium
points is studied. In section4, procedure solution of the fractional Influenza in two-group model is presented. Numerical
simulations are given in section5. In section6, the conclusions are given.

2 Elementary Definitions

In the following, some definitions and mathematical tools ofthe fractional calculus theory which are used in this paper
are introduced.
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Definition 21[18] The Caputo fractional derivative operatorc
aDα

t of orderα is defined in the following form

c
aDα

t f (x) =
1

Γ (m−α)

∫ x

0

f m(t)
(x− t)α−m+1dt,

whereα > 0, x> 0, andm−1< α ≤ m, m∈ N,
similar to integer-order differentiation, Caputo fractional derivative operator is a linear operation
c
aDα

t (λ f (x) + µg(x))=λ c
aDα

t f (x) + µc
aDα

t g(x), where λ and µ are constant. For the Caputo’s derivative we have
DαC= 0, C is a constant and

c
aDα

t xn =

{

0, n∈ N0, n< ⌈α⌉ ,
Γ (n+1)

Γ (n+1−α)x
n−α , n∈ N0, n≥ ⌈α⌉.

(1)

Where,⌈α⌉ to denote the smallest integer greater than or equal toα , N0 = 0,1, ... and it’s called the ceiling function. For
more details on fractional derivatives definitions and theirs properties see [18] and [19].

2.1 Jacobi polynomials

The well-known Jacobi polynomials are defined on the interval [−1,1] and can be generated with the aid of the following
recurrence formula:

P(µ,β )
i (t) =

(µ +β +2i −1){µ2−β 2+ t(µ +β +2i)(µ +β +2i −2)}
2i(µ +β + i)(µ +β +2i −2)

P(µ,β )
i−1 (t)

−
(µ + i −1)(β + i −1)(µ +β +2i)

i(µ +β + i)(µ +β +2i −2)
P(µ,β )

i−2 (t),

i = 2,3, ..., where,

P(µ,β )
0 (t) = 1, P(µ,β )

1 (t) =
µ +β +2

2
t +

µ −β
2

.

In order to use these polynomials on the intervalx ∈ [0,L] we define the so-called shifted Jacobi polynomials by

introducing the change of variablet = 2x
L −1. Let the shifted Jacobi polynomialsP(µ,β )

i (2x
L −1) be denoted byP(µ,β )

L,i (x).

ThenP(µ,β )
L,i (x) can be generated from:

P(µ,β )
L,i (x) =

(µ +β +2i −1){µ2−β 2+(2x
L −1)(µ +β +2i)(µ +β +2i −2)}

2i(µ +β + i)(µ +β +2i −2)
P(µ,β )

i−1 (x)

−
(µ + i −1)(β + i −1)(µ +β +2i)

i(µ +β + i)(µ +β +2i −2)
P(µ,β )

i−2 (x),

i = 2,3, ..., where,

P(µ,β )
L,0 (x) = 1, P(µ,β )

L,1 (x) =
µ +β +2

2
(
2x
L

−1)+
µ −β

2
.

The analytic form of the shifted Jacobi polynomialsP(µ,β )
L,i (x) of degreei is given by

P(µ,β )
L,i (x) =

i

∑
k=0

(−1)i−k Γ (β + i +1)Γ (µ +β + i + k+1)
Γ (β + k+1)Γ (µ +β + i +1)(i − k)!k!Lk

xk
, (2)

where,

P(µ,β )
L,i (0) = (−1)i Γ (β + i +1)

Γ (β +1)i!
, P(µ,β )

L,i (L) =
Γ (µ + i +1)
Γ (µ +1)i!

.
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The orthogonality condition of shifted Jacobi polynomialsis

∫ L

0
P(µ,β )

L, j (x)P(µ,β )
L,k (x)w(µ,β )

L (x)dx= hk, (3)

wherew(µ,β )
L (x) is the weighted function, which is defined as follows:

w(µ,β )
L (x) = xβ (L− x)µ

,

hk =

{

Lµ+β+1Γ (k+µ+1)Γ (k+β+1)
(2k+µ+β+1)Γ (k+β+µ+1)k! , j = k ,
0, j 6= k.

Let v(x) be an analytic function, then it may be expressed in terms of shifted Jacobi polynomials as follows [26]:

v(x)∼=
m

∑
j=0

c jP
(µ,β )
L, j (x), (4)

where the coefficientsc j are given by:

c j =
1
hk

=
∫ L

0
P(µ,β )

L, j (x)v(x)w(µ,β )
L (x)dx, j = 0,1, ...,N. (5)

2.2 Fractional Jacobi spectral collocation method

Let us considerP(µ,β )
L,k (x) of degreei is given by (2). Using Eqs. (1) and by noting that the Caputo fractional derivative

operator is a linear operator, we can claim from (2):

c
aDα

t (P
(µ,β )
L, j (x)) =

j

∑
k=0

(−1) j−k Γ (β + j +1)Γ (µ +β + j + k+1)
Γ (β + k+1)Γ (µ +β + j +1)( j − k)!k!Lk

c

a
Dα

t (x
k),

=
j

∑
k=⌈α⌉

(−1) j−k Γ (β + j +1)Γ (µ +β + j + k+1)
Γ (β + k+1)Γ (µ +β + j +1)( j − k)!Γ (k−α +1)Lk xk−α

,

j = ⌈α⌉,⌈α⌉+1, · · · . (6)

Now, the spectral collocation method is applied by setting the residual of Eqs. (6) equal zero at them+1−⌈α⌉ collocation
points:

c
aDα

t (v(x)) =
m

∑
j=0

c jcaDα
t (P

(µ,β )
L, j (xp)) =

m

∑
j=⌈α⌉

j

∑
k=⌈α⌉

a jΘ α
j ,kx

k−α
p , p= 0,1,2, · · ·,m−⌈α⌉, (7)

where,

Θ α
j ,k = (−1) j−k Γ (β + j +1)Γ (µ +β + j + k+1)

Γ (β + k+1)Γ (µ +β + j +1)( j − k)!Γ (k−α +1)Lk ,

j = ⌈α⌉,⌈α⌉+1, · · ·,m. (8)

3 Mathematical Model

In this section, the fractional Influenza model of two groupswith modified parameters is presented, it is more general
model than the model given in [27]. The new parameters of the proposed model areθ α , β α

1 , ξ α , ρα as described in Table
2, this modified parameters are introduced to account for the fractional order [28]. The population in this model is divided
into two groups. The first group is the individuals belongingto economically higher strata and the second group is the
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individuals belonging to economically lower strata [27]. All interpretation and meaning of the variables for the proposed
model are given in Table1.

The new system is described by fractional order derivativesas follows:

c
aDα

t S1 =θ α −β α
1 S1I1−β α

1 S1I2− (ξ α +θ α)S1, (9)
c
aDα

t V1 =ξ αS1− (1−ρα)β α
1 V1I1− (1−ρα)β α

1 V1I2−θ αV1, (10)
c
aDα

t I1 =β α
1 S1(I1+ I2)+ (1−ρα)β α

1 V1(I1+ I2)− (θ α +ηα)I1, (11)
c
aDα

t R1 =ηα I1−θ αR1, (12)
c
aDα

t S2 =θ α −β α
1 S2I2− (ξ α + µα)S1, (13)

c
aDα

t V2 =ξ αS2− (1−ρα)β α
1 V2I2−θ αV2, (14)

c
aDα

t I2 =β α
1 I1S2+(1−ρα)β α

1 V2I2− (θ α +ηα)I2, (15)
c
aDα

t R2 =ηα I2−θ αR2. (16)

with the following initial conditions

Si(0) = si0, Ii(0) = i i0,Ri(0) = r i0,Ci(0) = ci0,

i = 1,2.

Table 1: Definitions of the variable states of system(9)− (16).
Variable Definition

S1(t) The proportion of susceptible at timet, of higher strata group.
V1(t) The proportion of vaccinated at timet, of higher strata group.
I1(t) The proportion of infectious at timet, of higher strata group.
R1(t) The proportion of removed individuals at timet, of higher strata group.
S2(t) The proportion of susceptible of lower strata group.
V2(t) The proportion of vaccinated of lower strata group.
I2(t) The proportion of infectious of lower strata group.
R2(t) The proportion of removed individuals of lower strata group.

Table 2: All parameters and their values of the system(9)− (16).
parameter Definition Value

θ α birth and death rates. ( 1.5×10−3

day )α

ηα Removal rate due to hospitalization and isolation. ( 1.0×10−2

day )α

β α
1 Transmission rate. ( 1.5×10−1

day )α

ξ α Vaccination rate. ( 0.08
day )

α

ρα Vaccination efficacy. ( 0.99
day)

α , ( 0.94
day)

α , ...

One of the main assumptions of this model is that:

Ω = {(Si,Vi ,Ri , Ii) : Si ,Vi ,Ri , Ii ≥ 0;Si +Vi +Ri + Ii = 1;i = 1,2}
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is positively invariant for the model(9)− (16). UsingRi = 1−Si − Ii −Vi; i = 1,2 in Ω equations(12) and(16) can be
removed from the model. Therefore we have to study only following six equations:

c
aDα

t S1 =θ α −β α
1 S1I1−β α

1 S1I2− (ξ α +θ α)S1, (17)
c
aDα

t V1 =ξ αS1− (1−ρα)β α
1 V1I1− (1−ρα)β α

1 V1I2−θ αV1, (18)
c
aDα

t I1 =β α
1 S1(I1+ I2)+ (1−ρα)β α

1 V1(I1+ I2)− (θ α +ηα)I1, (19)
c
aDα

t S2 =θ α −β α
1 S2I2− (ξ α +θ α)S2, (20)

c
aDα

t V2 =ξ αS2− (1−ρα)β α
1 V2I2−θ αV2, (21)

c
aDα

t I2 =β α
1 I1S2+(1−ρα)β α

1 V2I2− (θ α +ηα)I2. (22)

3.1 Stability of equilibrium points

Let α ∈ (0,1] and consider the system(17)− (22).
c
aDα

t S1(t) = f1, c
aDα

t V1(t) = f2, c
aDα

t I1(t) = f3, c
aDα

t S2(t) = f4, c
aDα

t V2(t) = f5, c
aDα

t I2(t) = f6.
fi = fi(S1,V1, I1,S2,V2, I2) i = 1,2, ...6.

With the initial values (S1(0), V1(0), I1(0), S2(0), V2(0), I2(0)). To evaluate the equilibrium point letc
aDα

t S1 =
c
a Dα

t V1 =
c
a

Dα
t I1 =c

a Dα
t S2 =

c
a Dα

t V2 =
c
a Dα

t I2 = 0
⇒ fi(S

eq
1 ,Veq

1 , Ieq
1 ,Seq

2 ,Veq
2 , Ieq

2 ) = 0, i = 1,2,3, ...,6.
Then we can get the equilibrium points(Seq

1 ,Veq
1 , Ieq

1 ,Seq
2 ,Veq

2 , Ieq
2 ). To evaluate the asymptotic stability let

S1(t) =Seq
1 + ε1(t), (23)

V1(t) =Veq
1 + ε2(t), (24)

I1(t) =Ieq
1 + ε3(t), (25)

S2(t) =Seq
2 + ε4(t), (26)

V2(t) =Veq
2 + ε5(t), (27)

I2(t) =Ieq
2 + ε6(t). (28)

So the equilibrium point (Seq, Leq
s , Leq

m , Leq
x , Ieq

s , Ieq
m , Ieq

x , Req) is locally asymptotically stable if all eignvalues of Jacobian
evaluated at the equilibrium point satisfies Matignon’s conditions given by

|argλi|>
απ
2

, where i= 1,2, ...,6 ([29], [30]).

3.2 Control reproduction number

Control reproductive numberRc for the model(17)− (22) is defined as follows:

Rα
c =

β α
1 [θ α +(1−ρα)ξ α ]

(ηα +θ α)(ξ α +θ α)
. (29)

For more details see [27]. If there is no vaccination or the vaccination is totally ineffective, i.e.,ξ α = 0 or ρα = 0. Then
the control reproductive number become basic reproductivenumberRα

0 and

Rα
0 =

β α
1

θ α +ηα . (30)

It is clear that,Rα
c ≤ Rα

0 .

3.3 Stability of the disease free equilibrium point

To evaluate the equilibrium points:
Let Dα

t S1(t) =c
a Dα

t V1(t) =c
a Dα

t I1(t) =c
a Dα

t S2(t) =c
a Dα

t V2(t)c
aDα

t I2(t) = 0 ⇒ fi(S
eq
1 ,Veq

1 , Ieq
1 ,Seq

2 ,Veq
2 , Ieq

2 ) = 0 i =

1,2, ...,6. Now, if I1 = I2 = 0, then DFE( µα

µα+ξ α ,
ξ α

µα+ξ α ,0,
µα

µα+ξ α ,
ξ α

µα+ξ α ,0) i. e., the model(17)− (22) has exactly one

equilibrium pointE0 = ( µα

µα+ξ α ,
ξ α

µα+ξ α ,0,
µα

µα+ξ α ,
ξ α

µα+ξ α ,0) in Ω , with no disease in the population. We calculate the

Jacobian matrix of the system(17)− (22) at DFE point as following:
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J(E0) =



























−(ξ α +θ α) 0 −β α
1 θ α

ξ α+θ α 0 0 −β α
1 θ α

ξ α+θ α

ξ α −θ α −
(1−ρα )β α

1 ξ α

ξ α+θ α 0 0 −
(1−ρα )β α

1 ξ α

ξ α+θ α

0 0 β α
1 [θ α+(1−ρα )ξ α ]

ξ α+θ α −θ α −ηα 0 0 β α
1 [θ α+(1−ρα )ξ α ]

ξ α+θ α

0 0 0 −(ξ α +θ α) 0 −β α
1 θ α

ξ α+θ α

0 0 0 ξ α −θ α −
(1−ρα )β α

1 ξ α

ξ α+θ α

0 0 0 0 0 β α
1 [θ α+(1−ρα )ξ α ]

ξ α+θ α −θ α −ηα



























The characteristic equation ofE0 is as follows:

(λ +θ α )2(λ +ξ α +θ α )2)[λ −
β α

1 {θ α +(1−ρα )ξ α}

ξ α +θ α +θ α +ηα ]2 = 0

or,
(λ +θ α )2(λ +ξ α +θ α )2[λ − (θ α +ηα )(Rα

c −1)]2 = 0.

Thus four roots are negative and remaining two roots are negative if Rα
c < 1 and positive ifRα

c > 1. Hence by Hurwitz’s criteria DFE
is locally asymptotically stable if all eigenvalues of the Jacobian matrix satisfies Matignon’s conditions given by [31]:

|argλi |>
απ
2

, where i= 1,2, ....,6.

Theorem 31The proposed model(17)− (22) has a unique solution(S1(t), V1(t), I1(t), S2(t),V2(t), I2(t)) and the solution remains in
R6
+.

Proof.The existence and the uniqueness of the solution of system(17)− (22) in (0,∞) can be obtained from [6]. We need to show that
the domainR6

+ is positively invariant.
Sincec

aDα
t S1(t)|s1=0 = θ α ≥ 0, c

aDα
t V1(t)|v1=0 = ξ α S1 ≥ 0, c

aDα
t I1(t)|i1=0 = β α

1 S1I2+(1−ρα )β1V1I2 ≥ 0, c
aDα

t S2(t)|s2=0 = θ α ≥
0, c

aDα
t V2(t)|v2=0 = ξ α S2 ≥ 0, c

aDα
t I2(t)|i2=0 = β α

1 S2I1 ≥ 0 and in view of the generalized mean-value theorem (GMVT), on each
hyperplane bounding the non-negative octant, the vector field point intoR6

+.

4 Procedure Solution of the Fractional Influenza in Two-Group Model

Consider the system given in Eqs.(17)− (22). In order to use Jacobi polynomials of m-degree, first we approximateS1(t), V1(t),
I1(t),S2(t),V2(t) andI2(t) as follows:

S1(t) =
m

∑
i=0

aiP
(µ,β )
L,i (t), V1(t) =

m

∑
i=0

biP
(µ,β )
L,i (t), (31)

I1(t) =
m

∑
i=0

ciP
(µ,β )
L,i (t), S2(t) =

m

∑
i=0

diP
(µ,β )
L,i (t), (32)

V2(t) =
m

∑
i=0

eiP
(µ,β )
L,i (t), I2(t) =

m

∑
i=0

fiP
(µ,β )
L,i (t), (33)

now, we collocate the solution at(m+1−⌈α⌉) pointstp (p= 0,1, ..,m+1−⌈α⌉) as follows

m

∑
i=⌈α⌉

i

∑
k=⌈α⌉

aiΘ α
i,ktk−α

p =θ α −β α
1

m

∑
i=0

aiP
(µ,β )
L,i (tp)

m

∑
i=0

ciP
(µ,β )
L,i (tp)−β α

1

m

∑
i=0

aiP
(µ,β )
L,i (tp)

m

∑
i=0

fiP
(µ,β )
L,i (tp)

− (ξ α +θ α )
m

∑
i=0

aiP
(µ,β )
L,i (tP), (34)

m

∑
i=⌈α⌉

i

∑
k=⌈α⌉

biΘ α
i,ktk−α

p =ξ α
m

∑
i=0

aiP
(µ,β )
L,i (tp)− (1−ρα )β α

1

m

∑
i=0

biP
(µ,β )
L,i (tp)

m

∑
i=0

ciP
(µ,β )
L,i (tp)

− (1−ρα )β α
1

m

∑
i=0

biP
(µ,β )
L,i (tp)

m

∑
i=0

fiP
(µ,β )
L,i (tp)−θ α

m

∑
i=0

biP
(µ,β )
L,i (tp), (35)
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Fig. 1: The solutions graph using GEM and RK4 withα = 1, ρ = 0.94,Rα
c = 1.0082.
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Fig. 2: The solutions graph using the shifted Jacobi spectral method with differentα and,ρα = (0.94)α , µ = 0, β = 0.
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Fig. 3: The solutions graph with differentα by using GEM,ρα = (0.94)α .
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Fig. 4: The solutions graph with differentα by using the shifted Jacobi spectral method,ρα = (0.99)α , µ = 0.5, β = 0.5.

m

∑
i=⌈α⌉

i

∑
k=⌈α⌉

ciΘ α
i,ktk−α

p =β α
1

m

∑
i=0

aiP
(µ,β )
L,i (tp)(

m

∑
i=0

ciP
(µ,β )
L,i (tp)+

m

∑
i=0

fiP
(µ,β )
L,i (tp)

+(1−ρα )β α
1

m

∑
i=0

biP
(µ,β )
L,i (tp)

m

∑
i=0

ciP
(µ,β )
L,i (tp)+

m

∑
i=0

fiP
(µ,β )
L,i (tp)

− (θ α +ξ α )
m

∑
i=0

ciP
(µ,β )
L,i (tp), (36)

m

∑
i=⌈α⌉

i

∑
k=⌈α⌉

diΘ α
i,ktk−α

p =θ α −β α
1

m

∑
i=0

diP
(µ,β )
L,i (tp)

m

∑
i=0

fiP
(µ,β )
L,i (tp)− (ξ α +θ α )

m

∑
i=0

diP
(µ,β )(tp), (37)

m

∑
i=⌈α⌉

i

∑
k=⌈α⌉

eiΘ α
i,ktk−α

p =ξ α
m

∑
i=0

diP
(µ,β )(tp)− (1−ρα )β α

1

m

∑
i=0

eiP
(µ,β )
L,i (tp)

m

∑
i=0

fiP
(µ,β )
L,i (tp)−θ α

m

∑
i=0

eiP
(µ,β )
L,i (tp), (38)

m

∑
i=⌈α⌉

i

∑
k=⌈α⌉

fiΘ α
i,ktk−α

p =β α
1

m

∑
i=0

diP
(µ,β )
L,i (tp)

m

∑
i=0

fiP
(µ,β )
L,i (tp)+(1−ρα )β α

1

m

∑
i=0

eiP
(µ,β )
L,i (tp)

m

∑
i=0

fiP
(µ,β )
L,i (tp)

− (θ α +ηα )
m

∑
i=0

fiP
(µ,β )
L,i (tp). (39)

For suitable collocation points we use roots of Jacobi spectral collocation methodP(µ,β )
L,i (t). By substituting the initial conditions in

Eqs.(31)− (33), we can obtain six equations as follows:

m

∑
i=0

(−1)i
Γ (β + i+1)
Γ (β +1)i!

ai = S10,
m

∑
i=0

(−1)i
Γ (β + i+1)
Γ (β +1)i!

bi =V10,
m

∑
i=0

(−1)i
Γ (β + i+1)
Γ (β +1)i!

ci = I10, (40)
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Fig. 5: The solutions graph using the shifted Chebyshev polynomials with differentα andρα = (0.94)α .

m

∑
i=0

(−1)i
Γ (β + i+1)
Γ (β +1)i!

di = S20,
m

∑
i=0

(−1)i
Γ (β + i+1)
Γ (β +1)i!

ei =V20,
m

∑
i=0

(−1)i
Γ (β + i+1)
Γ (β +1)i!

fi = I20. (41)

Equations(34)− (39), together with the equations(40)− (41), give 6(m+ 1) of algebraic equations. This system is solved by the
Newton’s iteration method for the unknownsai , bi , ci , di , ei and fi , i = 0,1, ...,m.

5 Numerical Experiment

In the following, the shifted Jacobi polynomials are used toobtain approximate solutions for the system(17)− (22) with the initial
conditionS1(0) = 0.5,V1(0) = 0.05, I1(0) = 0.45, S2(0) = 0.7,V2(0) = 0.2, I2(0) = 0.1 and the parameters given in Table2. Letm= 6
andT = 10, Fig. 1 shows the behavior of the approximate solutions using GEM and RK4 with α = 1, ρα = 0.94 andRα

c = 1.0082.
Using the same data given in Fig.1, considerµ = 0, β = 0 in Eq. (7), Fig. 2 shows the behavior of the approximate solutions with
different values ofα using the shifted Jacobi spectral method. We have noted that, whenα = 1, the approximate solutions using the
shifted Jacobi spectral method are in excellent agreement with the solution by using RK4 and GEM. Fig.3 shows the behavior of the
approximate solutions with differentα by using GEM. Fig.4 shows the behavior of the approximate solutions with differentα by using
the shifted Jacobi spectral method whenµ = 0.5, β = 0.5. The obtained results using the shifted Jacobi spectral method with different
values ofµ, β andα = 1 are listed in Table3. We noted that, the results almost equal in all cases ofµ, β . The results using the shifted
Jacobi spectral method whenµ = 0.5, β = 0.5 and different values ofα are listed in Table4. Moreover, we can generate the shifted

Chebyshev polynomials of first kind from the Jacobi polynomials according to the following relationshipTL,i(x) =
i!Γ ( 1

2 )

Γ ( 1
2+i)

P
(− 1

2 ,−
1
2 )

L,i (x).

Fig. 5 shows the behavior of the approximate solutions using shifted Chebyshev spectral method with differentα andρα = (0.94)α .
We have noted from Fig.5 and Table5 that the obtained results are the same whenµ = 0, β = 0. Fig. 6 shows the behavior of the
approximate solutions with differentρα by using the shifted Jacobi spectral methodµ = 0 andβ = 0. We have noted that whenever the
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Fig. 6: The solutions graph with differentρα by using the shifted Jacobi spectral method,µ = 0, β = 0 andα = 0.99.

values ofρα increase the values ofI1, I2 decrease. Fig.7 illustrates the relation between the variables whenα = 0.90,ρα = (0.50)0.90

by using the shifted Jacobi spectral method andµ = 1, β = 1.

Table 3: Numerical solutions by the shifted Jacobi spectral method when,α = 1, T = 10.
ρα Rα

c µ β V1 I1 V2 I2
0.99 0.3689 0.5 0.5 1.6763×10−1 5.3289×10−1 5.5071×10−1 1.7537×10−1

−0.5 −0.5 1.6763×10−1 5.3289×10−1 5.5071×10−1 1.7537×10−1

1 1 1.6763×10−1 5.3289×10−1 5.5071×10−1 1.7537×10−1

−0.5 0.5 1.6763×10−1 5.3289×10−1 5.5071×10−1 1.7537×10−1

0 0 1.6764×10−1 5.3288×10−1 5.5071×10−1 1.7537×10−1

0.90 1.5204 0.5 0.5 1.5681×10−1 5.3984×10−1 5.4214×10−1 1.8499×10−1

−0.5 0.5 1.5681×10−1 5.3984×10−1 5.4214×10−1 1.8499×10−1

0 0 1.5681×10−1 5.3983×10−1 5.4214×10−1 1.8499×10−1

Table 4: Numerical solutions by the shifted Jacobi spectral method with different values ofα, Rα
c andT = 10, µ = 0.5, β = 0.5.

α Rα
c V1 I1 V2 I2

0.98 1.4267 1.5707×10−1 5.3509×10−1 5.4219×10−1 1.8300×10−1

0.90 1.1153 1.5852×10−1 5.1442×10−1 5.4144×10−1 1.7400×10−1

0.80 0.8410 1.6112×10−1 4.8424×10−1 5.3839×10−1 1.6033×10−1

0.50 0.4622 1.6720×10−1 3.6319×10−1 5.0630×10−1 1.0677×10−1

0.30 0.3692 1.5385×10−1 2.9292×10−1 4.2715×10−1 7.4409×10−2
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Fig. 7: Relation between the state variables whenα = 0.90,ρα = (0.50348)α by using the shifted Jacobi spectral method andµ = 1,
β = 1.
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Table 5: Numerical solutions by using the shifted Chebyshev polynomials and different values ofα, Rα
c andT = 10.

α Rα
c V1 I1 V2 I2

1 0.3689 1.6764×10−1 5.3288×10−1 5.5071×10−1 1.7537×10−1

1 1.5204 1.5681×10−1 5.3983×10−1 5.4214×10−1 1.8499×10−1

0.98 1.4267 1.5709×10−1 5.3507×10−1 5.4225×10−1 1.8302×10−1

0.90 1.1153 1.5865×10−1 5.1443×10−1 5.4172×10−1 1.7406×10−1

0.80 0.8410 1.6163×10−1 4.8446×10−1 5.3907×10−1 1.6042×10−1

6 Conclusions

In this paper, the shifted Jacobi polynomials and their properties together with the collocation method are used to solve two-group
Influenza model of the fractional order derivatives. The fractional derivative is considered in the Caputo sense. Two polynomials from
Jacobi polynomials; the shifted Legendre polynomials and shifted Chebyshev polynomials as special cases from the shifted Jacobi
polynomial are introduced to solve the proposed model. The obtained results by proposed method are compared with the results
obtianed by RK4 and GEM methods. It’s found that the results obtained by the method suggested here are in excellent agreement with
the results obtianed by RK4 and GEM, in integer-order case. Some figures are given to demonstrate how the fractional modelis a
generalization of the integer-order model. All computed results are obtained using Matlab programming.
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