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1 Introduction

Fractional differential equations and inclusions have recently been applied in various areas of engineering, mathematics,
physics and bio-engineering, and other applied sciences [1,2,3,4]. For some fundamental results in the theory of fractional
calculus and fractional differential equations we refer tothe monographs of Abbaset al. [5,6], Ahmadet al. [7], Samko
et al. [8], Kilbas et al. [9] and Zhou [10].

The measure of weak noncompactness was introduced by De Blasi [11]. The strong measure of noncompactness
was developed first by Banas̀ and Goebel [12] and subsequently developed and used in many papers; see forexample,
Akhmerovet al. [13], Alvàrez [14], Benchohraet al. [15], Guo et al. [16], and the references therein. In [15,17] the
authors considered some existence results by applying the techniques of the measure of noncompactness. Recently, several
researchers obtained other results by application of the technique of measure of weak noncompactness; see [6,18,19], and
the references therein.

Recently, considerable attention has been given to the existence of solutions of initial and boundary value problems
for fractional differential equations with Hilfer fractional derivative; [20,21,2,22,23,24], and other problems with Hilfer-
Hadamard fractional derivative; see [25,26]. In this article, we discuss the existence of weak solutions for the following
problem of Hilfer-Hadamard fractional differential equation of the form











(HDα ,β
1 u)(t) = f (t,u(t)); t ∈ I := [1,T],

(H I1−γ
1 u)(t)|t=1 = φ ,

(1)

whereα ∈ (0,1), β ∈ [0,1], γ = α +β −αβ , T > 1, φ ∈ E, f : I ×E → E is a given continuous function,E is a real (or
complex) Banach space with norm‖ · ‖E and dualE∗, such thatE is the dual of a weakly compactly generated Banach

spaceX, H I1−γ
1 is the left-sided mixed Hadamard integral of order 1− γ, andHDα ,β

1 is the Hilfer-Hadamard derivative
operator of orderα and typeβ .
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Next, we consider the following problem of Hilfer-Hadamardfractional differential inclusion of the form










(HDα ,β
1 u)(t) ∈ F(t,u(t)); t ∈ I ,

(H I1−γ
1 u)(t)|t=1 = φ ,

(2)

whereF : I ×E → P(E) is a given multi-valued map, andP(E) is the family of all nonempty subsets of a separable
Banach spaceE.

Our goal in this work is to give some existence results for functional Hilfer-Hadamard fractional differential equations
and inclusions.

2 Preliminaries

LetC be the Banach space of all continuous functionsv from I into E with the supremum (uniform) norm

‖v‖∞ := sup
t∈I

‖v(t)‖E.

As usual,AC(I) denotes the space of absolutely continuous functions fromI into E. We denote byAC1(I) the space
defined by

AC1(I) := {w : I → E :
d
dt

w(t) ∈ AC(I)}.

For a functionu∈C, set

δ [u(t)] = t
d
dt

u(t).

Let q> 0, n= [q]+1, where[q] is the integer part ofq. Define the space

ACn
δ := {u : [1,T]→ E : δ n−1[u(t)] ∈ AC(I)}.

Let γ ∈ (0,1], by Cγ,ln(I), Cγ (I) andC1
γ (I), we denote the weighted spaces of continuous functions defined by

Cγ,ln(I) = {w(t) : (ln t)1−γw(t) ∈C},

with the norm
‖w‖Cγ,ln := sup

t∈I
‖(ln t)1−γw(t)‖E,

Cγ(I) = {w : (1,T]→ E : t1−γw(t) ∈C},

with the norm
‖w‖Cγ := sup

t∈I
‖t1−γw(t)‖E,

and

C1
γ (I) = {w∈C :

dw
dt

∈Cγ},

with the norm
‖w‖C1

γ
:= ‖w‖∞ + ‖w′‖Cγ .

In the following we denote‖w‖Cγ,ln by ‖w‖C. Let (E,w) = (E,σ(E,E∗)) be the Banach spaceE with its weak topology.

Definition 1.A Banach space X is called weakly compactly generated (WCG, for short) if it contains a weakly compact
set K whose linear span is dense in X.

Examples:
1. Every separable Banach space is WCG.
2. Every reflexive Banach space is WCG.
3. EveryL1(µ)−space, withµ being aσ−finite, non-negative measure, is WCG.
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Definition 2.A function h: E →E is said to be weakly sequentially continuous if h takes eachweakly convergent sequence
in E to a weakly convergent sequence in E (i.e., for any(un) in E with un → u in (E,w) then h(un)→ h(u) in (E,w)).

Definition 3.[27] The function u: I → E is said to be Pettis integrable on I if and only if there is an element uJ ∈ E
corresponding to each J⊂ I such thatφ(uJ) =

∫

J φ(u(s))ds for all φ ∈ E∗, where the integral on the right hand side is
assumed to exist in the sense of Lebesgue, (by definition, uJ =

∫

J u(s)ds).

Let P(I ,E) be the space of allE−valued Pettis integrable functions onI , andL1(I ,E) be the Banach space of Bocher
integrable functionsu : I → E. Define the classP1(I ,E) by

P1(I ,E) = {u∈ P(I ,E) : ϕ(u) ∈ L1(I ,R); f or everyϕ ∈ E∗}.

The spaceP1(I ,E) is normed by

‖u‖P1 = sup
ϕ∈E∗, ‖ϕ‖≤1

∫ T

1
|(ϕu)(x)|dλx,

whereλ stands for a Lebesgue measure onI .

The following result is due to Pettis (see [[27], Theorem 3.4 and Corollary 3.41]).

Proposition 1.[28,27] If u ∈ P1(I ,E) and h is a measurable and essentially bounded E−valued function, then uh∈
P1(I ,E).

For all that follows, the symbol ”
∫

” denotes the Pettis integral.
Now, we give some results and properties of fractional calculus.

Definition 4.[5,9,8] (Riemann-Liouville fractional integral). The left-sided mixed Riemann-Liouville integral of order
r > 0 of a function w∈ L1(I) is defined by

(I r
1w)(t) =

1
Γ (r)

∫ t

1
(t − s)r−1w(s)ds; f or a.e. t ∈ I ,

whereΓ (·) is the (Euler’s) Gamma function defined by

Γ (ξ ) =
∫ ∞

0
tξ−1e−tdt; ξ > 0.

Notice that for allr, r1, r2 > 0 and eachw∈C, we haveI r
0w∈C, and

(I r1
1 I r2

1 w)(t) = (I r1+r2
1 w)(t); f or a.e. t ∈ I .

Definition 5.[5,9,8] (Riemann-Liouville fractional derivative). The Riemann-Liouville fractional derivative of order r> 0
of a function w∈ L1(I) is defined by

(Dr
1w)(t) =

(

dn

dtn
In−r
1 w

)

(t)

=
1

Γ (n− r)
dn

dtn

∫ t

1
(t − s)n−r−1w(s)ds; f or a.e. t ∈ I ,

where n= [r]+1 and[r] is the integer part of r.

In particular, ifr ∈ (0,1], then

(Dr
1w)(t) =

(

d
dt

I1−r
1 w

)

(t)

=
1

Γ (1− r)
d
dt

∫ t

1
(t − s)−rw(s)ds; f or a.e. t ∈ I .
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Let r ∈ (0,1], γ ∈ [0,1) andw∈C1−γ(I). Then the following expression leads to the left inverse operator as follows:

(Dr
1I r

1w)(t) = w(t); f or all t ∈ (1,T].

Moreover, ifI1−r
1 w∈C1

1−γ(I), then the following composition is proved in [8]

(I r
1Dr

1w)(t) = w(t)−
(I1−r

1 w)(1+)

Γ (r)
tr−1; f or all t ∈ (1,T].

Definition 6.[5,9,8] (Caputo fractional derivative). The Caputo fractional derivative of order r> 0 of a function w∈
ACn(I) is defined by

(cDr
1w)(t) =

(

In−r
1

dn

dtn
w

)

(t)

=
1

Γ (n− r)

∫ t

1
(t − s)n−r−1 dn

dsn w(s)ds; f or a.e. t ∈ I .

In particular, ifr ∈ (0,1], then

(cDr
1w)(t) =

(

I1−r
1

d
dt

w

)

(t)

=
1

Γ (1− r)

∫ t

1
(t − s)−r d

ds
w(s)ds; f or a.e. t ∈ I .

Let us recall some definitions and properties of Hadamard fractional integration and differentiation. We refer to [9]
for a more detailed analysis.

Definition 7.[9] (Hadamard fractional integral). The Hadamard fractionalintegral of order q> 0 for a function g∈
L1(I ,E), is defined as

(H Iq
1g)(x) =

1
Γ (q)

∫ x

1

(

ln
x
s

)q−1 g(s)
s

ds,

provided the integral exists.

Example 1.Let 0< q< 1. Then
H Iq

1 ln t =
1

Γ (2+q)
(ln t)1+q

, f or a.e. t ∈ [0,e].

Remark.Let g∈ P1(I ,E). For everyϕ ∈ E∗, we have

ϕ(H Iq
1g)(t) = (H Iq

1ϕg)(t), f or a.e. t ∈ I .

Set

δ = x
d
dx

, q> 0, n= [q]+1,

and
ACn

δ := {u : [1,T]→ E : δ n−1[u(x)] ∈ AC(I)}.

Analogous to the Riemann-Liouville fractional calculus, the Hadamard fractional derivative is defined in terms of the
Hadamard fractional integral in the following way:

Definition 8.[9] (Hadamard fractional derivative). The Hadamard fractional derivative of order q> 0 applied to the
function w∈ ACn

δ is defined as

(HDq
1w)(x) = δ n(H In−q

1 w)(x).

In particular, ifq∈ (0,1], then
(HDq

1w)(x) = δ (H I1−q
1 w)(x).

c© 2018 NSP
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Example 2.Let 0< q< 1. Then

HDq
1 ln t =

1
Γ (2−q)

(ln t)1−q
, f or a.e. t ∈ [0,e].

It has been proved (see e.g. Kilbas [[29], Theorem 4.8]) that in the spaceL1(I ,E), the Hadamard fractional derivative is
the left-inverse operator to the Hadamard fractional integral, i.e.

(HDq
1)(

H Iq
1w)(x) = w(x).

From Theorem 2.3 of [9], we have

(H Iq
1)(

HDq
1w)(x) = w(x)−

(H I1−q
1 w)(1)
Γ (q)

(lnx)q−1
.

Analogous to the Hadamard fractional calculus, the Caputo-Hadamard fractional derivative is defined in the following
way:

Definition 9.(Caputo-Hadamard fractional derivative). The Caputo-Hadamard fractional derivative of order q> 0
applied to the function w∈ ACn

δ is defined as

(HcDq
1w)(x) = (H In−q

1 δ nw)(x).

In particular, ifq∈ (0,1], then
(HcDq

1w)(x) = (H I1−q
1 δw)(x).

In [2], R. Hilfer studied applications of a generalized fractional operator having the Riemann-Liouville and the Caputo
derivatives as specific cases (see also [22,23]).

Definition 10.(Hilfer fractional derivative). Letα ∈ (0,1), β ∈ [0,1], w ∈ L1(I), I (1−α)(1−β )
1 w ∈ AC1(I). The Hilfer

fractional derivative of orderα and typeβ of w is defined as

(Dα ,β
1 w)(t) =

(

Iβ (1−α)
1

d
dt

I (1−α)(1−β )
1 w

)

(t); f or a.e. t ∈ I . (3)

Properties.Let α ∈ (0,1), β ∈ [0,1], γ = α +β −αβ , andw∈ L1(I).

1. The operator(Dα ,β
1 w)(t) can be written as

(Dα ,β
1 w)(t) =

(

Iβ (1−α)
1

d
dt

I1−γ
1 w

)

(t) =
(

Iβ (1−α)
1 Dγ

1w
)

(t); f or a.e. t ∈ I .

Moreover, the parameterγ satisfies

γ ∈ (0,1], γ ≥ α, γ > β , 1− γ < 1−β (1−α).

2. The generalization (3) for β = 0 coincides with the Riemann-Liouville derivative and forβ = 1 with the Caputo
derivative.

Dα ,0
1 = Dα

1 , and Dα ,1
1 = cDα

1 .

3. If Dβ (1−α)
1 w exists and inL1(I), then

(Dα ,β
1 Iα

1 w)(t) = (Iβ (1−α)
1 Dβ (1−α)

1 w)(t); f or a.e. t ∈ I .

Furthermore, ifw∈Cγ(I) andI1−β (1−α)
1 w∈C1

γ (I), then

(Dα ,β
1 Iα

1 w)(t) = w(t); f or a.e. t ∈ I .
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4. If Dγ
1w exists and inL1(I), then

(Iα
1 Dα ,β

1 w)(t) = (I γ
1Dγ

1w)(t) = w(t)−
I1−γ
1 (1+)
Γ (γ)

tγ−1; f or a.e. t ∈ I .

From the Hadamard fractional integral, the Hilfer-Hadamard fractional derivative (introduced for the first time in [25])
is defined in the following way:

Definition 11.(Hilfer-Hadamard fractional derivative). Letα ∈ (0,1), β ∈ [0,1], γ = α + β − αβ , w ∈ L1(I), and
H I (1−α)(1−β )

1 w∈ AC1(I). The Hilfer-Hadamard fractional derivative of orderα and typeβ applied to the function w is
defined as

(HDα ,β
1 w)(t) =

(

H Iβ (1−α)
1 (HDγ

1w)
)

(t)

=
(

H Iβ (1−α)
1 δ (H I1−γ

1 w)
)

(t); f or a.e. t ∈ I .
(4)

This new fractional derivative (11) may be viewed as interpolating the Hadamard fractional derivative and the Caputo-
Hadamard fractional derivative. Indeed forβ = 0 this derivative reduces to the Hadamard fractional derivative and when
β = 1, we recover the Caputo-Hadamard fractional derivative.

HDα ,0
1 = HDα

1 , and HDα ,1
1 = HcDα

1 .

From Theorem 21 in [26], we conclude with the following lemma

Lemma 1.Let f : I ×E → E be such that f(·,u(·)) ∈ Cγ,ln(I) for any u∈Cγ,ln(I). Then problem (1) is equivalent to the
problem of the solutions of the Volterra integral equation

u(t) =
φ

Γ (γ)
(ln t)γ−1+(H Iα

1 f (·,u(·)))(t).

Definition 12.[11] Let E be a Banach space,ΩE the bounded subsets of E and B1 the unit ball of E. The De Blasi measure
of weak noncompactness is the mapβ : ΩE → [0,∞) defined by

β (X) = inf{ε > 0 : there exists a weakly compactΩ ⊂ E such thatX ⊂ εB1+Ω}.

The De Blasi measure of weak noncompactness satisfies the following properties:

(a)A⊂ B⇒ β (A)≤ β (B),
(b)β (A) = 0⇔ A is weakly relatively compact,
(c)β (A∪B) = max{β (A),β (B)},
(d)β (Aω

) = β (A), (A
ω

denotes the weak closure ofA),
(e)β (A+B)≤ β (A)+β (B),
(f)β (λA) = |λ |β (A),
(g)β (conv(A)) = β (A),
(h)β (∪|λ |≤hλA) = hβ (A).

The next result follows directly from the Hahn-Banach theorem.

Proposition 2.Let E be a normed space, and x0 ∈E with x0 6= 0. Then, there existsϕ ∈E∗ with ‖ϕ‖= 1 andϕ(x0) = ‖x0‖.

For a given setV of functionsv : I → E let us denote by

V(t) = {v(t) : v∈V}; t ∈ I , and V(I) = {v(t) : v∈V, t ∈ I}.

c© 2018 NSP
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Lemma 2.[16] Let H ⊂ C be a bounded and equicontinuous subset. Then the function t→ β (H(t)) is continuous on I,
and

βC(H) = max
t∈I

β (H(t)),

and

β
(

∫

I
u(s)ds

)

≤

∫

I
β (H(s))ds,

where H(s) = {u(s) : u∈ H, s∈ I}, andβC is the De Blasi measure of weak noncompactness defined on the bounded sets
of C.

Let P(E) the family of all nonempty subsets ofE. In what followsPcl(E) = {Y ∈ P(E) : Y is closed}, Pb(E) = {Y ∈
P(E) : Y is bounded}, Pcp(E) = {Y ∈P(E) : Y is compact}, andPcp,cv(E) = {Y∈P(E) :Y is compact and convex}.

Definition 13.A multivalued map G: E → P(E) is convex (closed) valuedif G(x) is convex (closed) for all x∈ E. We
say that G isbounded on bounded setsif G(B) is bounded in E for each bounded set B of E (i.e.,supx∈B{sup{‖y‖ : y∈
F(x)}}< ∞). The mapping G is calledupper semi-continuous(u.s.c.) on E if for each x0 ∈ E,the set G(x0) is a nonempty
closed subset of E, and for each open set N of E containing G(x0), there exists an open neighborhood N0 of x0 such that
G(N0)⊆ N. The mapping G has afixed-pointif there is x∈ E such that x∈ G(x).

Definition 14.A multivalued map G: I → Pcl(E) is said to be measurable if for eachω ∈ E the function

t → d(ω ,G(t)) = inf{‖ω −υ‖ : υ ∈ G(t)}

is measurable.

Definition 15.The selection set of a multivalued map G: I → P(E) is defined by

SG = {u∈ L1(I) : u(t) ∈ G(t) , a.e. t ∈ I}.

For each u∈Cγ,ln, the set SF◦u known asthe set of selectorsfrom F◦u is defined by

SF◦u = {v∈ L1(I) : v(t) ∈ F(t,u(t)); a.e. t ∈ I}.

For more details on multivalued maps we refer to the books of Aubin and Cellina [30] and Deimling [31].

Definition 16.A function F: Q → Pcl,cv(Q) has a weakly sequentially closed graph, if for any sequence(xn,yn) ∈ Q×
Q,yn ∈ F(xn) for n∈ {1,2, . . .}, with xn → x in (E,ω), and yn → y in (E,ω), then y∈ F(x).

3 Hilfer-Hadamard Fractional Differential Equations

Let us start in this section by defining what we mean by a weak solution of the problem (1).

Definition 17.By a weak solution of the problem (1) we mean a measurable function u∈Cγ,ln that satisfies the condition

(H I1−γ
1 u)(1+) = φ , and the equation(HDα ,β

1 u)(t) = f (t,u(t)) on I.

For our purpose we need the following fixed-point theorem:

Theorem 1.[32] Let Q be a nonempty, closed, convex and equicontinuous subset of a metrizable locally convex vector
space C(I ,E) such that0∈ Q. Suppose T: Q→ Q is weakly-sequentially continuous. If the implication

V = conv({0}∪T(V))⇒V is relatively weakly compact, (5)

holds for every subset V⊂ Q, then the operator T has a fixed point.

The following hypotheses is used in the sequel.

(H1)for a.e.t ∈ I , the functionv→ f (t,v) is weakly sequentially continuous,

c© 2018 NSP
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(H2)for eachv∈ E, the functiont → f (t,v) is Pettis integrable a.e. onI ,
(H3)there existsp∈C(I , [0,∞)) such that for allϕ ∈ E∗, we have

|ϕ( f (t,u))| ≤
p(t)

1+ ‖ϕ‖+ ‖u‖E
, f or a.e. t ∈ I , and each u∈ E,

(H4)for each bounded and measurable setB⊂ E and for eacht ∈ I , we have

β ( f (t,B)≤ (ln t)1−γ p(t)β (B).

Set
p∗ = sup

t∈I
p(t),

Theorem 2.Assume that the hypotheses(H1)− (H4) hold. If

L :=
p∗(lnT)1−γ+α

Γ (1+α)
< 1, (6)

then the problem (1) has at least one weak solution defined on I.

Proof. Consider the operatorN : Cγ,ln →Cγ,ln defined by:

(Nu)(t) =
φ

Γ (γ)
(ln t)γ−1+

∫ t

1

(

ln
t
s

)α−1 f (s,u(s))
sΓ (α)

ds.

First, note that the hypotheses imply that for eachu ∈ Cγ,ln, the functiont 7→
(

ln t
s

)α−1 f (s,u(s))
s , f or a.e. t ∈ I , is Pettis

integrable. Thus, the operatorN is well defined. LetR> 0 be such that

R>
p∗(lnT)1−γ+α

Γ (1+α)
,

and consider the set
Q=

{

u∈Cγ : ‖u‖C ≤ R and‖(ln t2)
1−γu(t2)− (lnt1)

1−γu(t1)‖E

≤
p∗(lnT)1−γ+α

Γ (1+α)

(

ln
t2
t1

)α

+
p∗

Γ (α)

∫ t1

1

∣

∣

∣

∣

(ln t2)
1−γ

(

ln
t2
s

)α−1
− (lnt1)

1−γ
(

ln
t1
s

)α−1
∣

∣

∣

∣

ds

}

.

Clearly, the subsetQ is closed, convex end equicontinuous. We shall show that theoperatorN satisfies all the
assumptions of Theorem1. The proof is given in several steps.

Step 1.N maps Q into itself.
Let u ∈ Q, t ∈ I and assume that (Nu)(t) 6= 0. Then there exists ϕ ∈ E∗ such that
‖(lnt)1−γ(Nu)(t)‖E = |ϕ((ln t)1−γ(Nu)(t))|. Thus

‖(ln t)1−γ(Nu)(t)‖E = ϕ
(

φ
Γ (γ)

+
(ln t)1−γ

Γ (α)

∫ t

1

(

ln
t
s

)α−1
f (s,u(s))

ds
s

)

.

Then

‖(lnt)1−γ(Nu)(t)‖E ≤
(ln t)1−γ

Γ (α)

∫ t

1

(

ln
t
s

)α−1
|ϕ( f (s,u(s)))|

ds
s

≤
p∗(lnT)1−γ

Γ (α)

∫ t

0

(

ln
t
s

)α−1 ds
s

≤
p∗(lnT)1−γ+α

Γ (1+α)

≤ R.
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Next, lett1, t2 ∈ I such thatt1 < t2 and letu∈ Q, with

(ln t2)
1−γ (Nu)(t2)− (lnt1)

1−γ(Nu)(t1) 6= 0.

Then there existsϕ ∈ E∗ such that

‖(ln t2)
1−γ(Nu)(t2)− (lnt1)

1−γ(Nu)(t1)‖E = |ϕ((ln t2)
1−γ(Nu)(t2)− (lnt1)

1−γ(Nu)(t1))|,

and‖ϕ‖= 1. Then

‖(lnt2)
1−γ(Nu)(t2)− (lnt1)

1−γ(Nu)(t1)‖E = |ϕ((ln t2)
1−γ(Nu)(t2)− (lnt1)

1−γ (Nu)(t1))|

≤ ϕ
(

(ln t2)
1−γ

∫ t2

1

(

ln
t2
s

)α−1 f (s,u(s))
sΓ (α)

ds− (lnt1)
1−γ

∫ t1

1

(

ln
t1
s

)α−1 f (s,u(s))
sΓ (α)

ds

)

≤ (ln t2)
1−γ

∫ t2

t1

(

ln
t2
s

)α−1 |ϕ( f (s,u(s)))|
sΓ (α)

ds

+
∫ t1

1
|(ln t2)

1−γ
(

ln
t2
s

)α−1
− (lnt1)

1−γ
(

ln
t1
s

)α−1
|
|ϕ( f (s,u(s)))|

sΓ (α)
ds

≤ (ln t2)
1−γ

∫ t2

t1

(

ln
t2
s

)α−1 p(s)
sΓ (α)

ds

+
∫ t1

1

∣

∣

∣

∣

(ln t2)
1−γ

(

ln
t2
s

)α−1
− (lnt1)

1−γ
(

ln
t1
s

)α−1
∣

∣

∣

∣

p(s)
sΓ (α)

ds.

Thus, we get

‖(ln t2)
1−γ(Nu)(t2)− (lnt1)

1−γ(Nu)(t1)‖E ≤
p∗(lnT)1−γ+α

Γ (1+α)

(

ln
t2
t1

)α

+
p∗

Γ (α)

∫ t1

1

∣

∣

∣

∣

(ln t2)
1−γ

(

ln
t2
s

)α−1
− (lnt1)

1−γ
(

ln
t1
s

)α−1
∣

∣

∣

∣

ds.

HenceN(Q)⊂ Q.

Step 2.N is weakly-sequentially continuous.
Let (un) be a sequence inQ and let(un(t)) → u(t) in (E,ω) for eacht ∈ I . Fix t ∈ I , since f satisfies the assumption
(H1), we havef (t,un(t)) converges weakly uniformly tof (t,u(t)). Hence the Lebesgue dominated convergence theorem
for Pettis integral implies(Nun)(t) converges weakly uniformly to(Nu)(t) in (E,ω), for eacht ∈ I . Thus,N(un)→N(u).
Hence,N : Q→ Q is weakly-sequentially continuous.

Step 3.The implication (5) holds.
LetV be a subset ofQ such thatV = conv(N(V)∪{0}). Obviously

V(t)⊂ conv(NV)(t))∪{0}), t ∈ I .

Further, asV is bounded and equicontinuous, by Lemma 3 in [33] the functiont → v(t) = β (V(t)) is continuous onI .
From(H3), (H4), Lemma2 and the properties of the measureβ , for anyt ∈ I , we have

(ln t)1−γv(t) ≤ β ((ln t)1−γ(NV)(t)∪{0})

≤ β ((ln t)1−γ(NV)(t))

≤
(lnT)1−γ

Γ (α)

∫ t

1

(

ln
t
s

)α−1
p(s)β (V(s))ds

≤
(lnT)1−γ

Γ (α)

∫ t

1

(

ln
t
s

)α−1
(lns)1−γ p(s)v(s)ds

≤
p∗(lnT)1−γ+α

Γ (1+α)
‖v‖C.

Thus
‖v‖C ≤ L‖v‖C.

From (6), we get‖v‖C = 0, that isv(t) = β (V(t)) = 0, for eacht ∈ I . and then by Theorem 2 in [34], V is weakly relatively
compact inCγ,ln. Applying now Theorem1, we conclude thatN has a fixed-point which is a weak solution of the problem
(1).
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4 Hilfer-Hadamard Fractional Differential Inclusions

Let us start in this section by defining what we mean by a weak solution of the problem (2).

Definition 18.By a weak solution of the problem (2) we mean a measurable function u∈Cγ,ln that satisfies the condition

(H I1−γ
1 u)(1+) = φ , and the equation(HDα ,β

1 u)(t) = h(t) on I, where h∈ SF◦u.

From Lemma1, we conclude with the following lemma.

Lemma 3.Let F : I×E →E be such that SF◦u ⊂Cγ,ln(I) for any u∈Cγ,ln(I). Then problem (2) is equivalent to the problem
of the solutions of the integral equation

u(t) =
φ

Γ (γ)
(ln t)γ−1+(H Iα

1 v)(t),

where v∈ SF◦u.

For our purpose we shall need the following fixed-point theorem:

Theorem 3.[32] Let E be a Banach space with Q a nonempty, bounded, closed, convex and equicontinuous subset of a
metrizable locally convex vector space C such that0 ∈ Q. Suppose T: Q → Pcl,cv(Q) has weakly sequentially closed
graph. If the implication

V = conv({0}∪T(V))⇒V is relatively weakly compact, (7)

holds for every subset V⊂ Q, then the operator T has a fixed-point.

The following hypotheses are used in the sequel.

(H ′
1)F : I ×E → Pcp,cl,cv(E) has weakly sequentially closed graph,

(H ′
2)for each continuousu : I → E, there exists a measurable functionv∈ SF◦u a.e. onI andv is Pettis integrable onI ,

(H ′
3)there existsq∈C(I , [0,∞)) such that for allϕ ∈ E∗, we have

‖F(t,u)‖P = sup
v∈SF◦u

|ϕ(v)| ≤
q(t)

1+ ‖ϕ‖+ ‖u‖E
, f or a.e. t ∈ I , and each u∈ E,

(H ′
4)for each bounded and measurable setB⊂ E and for eacht ∈ I , we have

β (F(t,B)≤ (ln t)1−γq(t)β (B).

Set
q∗ = sup

t∈I
q(t),

Theorem 4.Assume that the hypotheses(H ′
1)− (H ′

4) hold. If

L′ :=
q∗(lnT)1−γ+α

Γ (1+α)
< 1, (8)

then the problem (2) has at least one weak solution defined on I.

Proof. Consider the multi-valued mapN : Cγ,ln → Pcl(Cγ,ln) defined by:

(Nu)(t) =

{

h∈Cγ,ln : h(t) =
φ

Γ (γ)
(ln t)γ−1+

∫ t

1

(

ln
t
s

)α−1 v(s)
sΓ (α)

ds; v∈ SF◦u

}

.

Note that the hypotheses imply that for eachu ∈ Cγ,ln, there exists a Pettis integrable functionv ∈ SF◦u, and for each
s∈ [1, t], the function

t 7→
(

ln
t
s

)α−1
v(s); f or a.e. t ∈ I ,
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is Pettis integrable. Thus, the multi-functionN is well defined. LetR′ > 0 be such that

R′
>

q∗(lnT)1−γ+α

Γ (1+α)
,

and consider the set
Q′ =

{

u∈Cγ,ln : ‖u‖C ≤ R′ and‖(ln t2)
1−γu(t2)− (lnt1)

1−γu(t1)‖E

≤
q∗(lnT)1−γ+α

Γ (1+α)

(

ln
t2
t1

)α

+
q∗

Γ (α)

∫ t1

1

∣

∣

∣

∣

(ln t2)
1−γ

(

ln
t2
s

)α−1
− (lnt1)

1−γ
(

ln
t1
s

)α−1
∣

∣

∣

∣

ds

}

.

Clearly, the subsetQ′ is closed, convex end equicontinuous. We shall show that theoperatorN satisfies all the
assumptions of Theorem3. The proof is given in several steps.

Step 1.N(u) is convex for each u∈ Q′.

For that, leth1,h2 ∈ N(u). Then there existv1,v2 ∈ SF◦u such that, for eacht ∈ I , and for anyi = 1,2, we have

hi(t) =
φ

Γ (γ)
(ln t)γ−1+

∫ t

1

(

ln
t
s

)α−1 vi(s)
sΓ (α)

ds.

Let 0≤ λ ≤ 1. Then, for eacht ∈ I , we have

[λh1+(1−λ )h2](t) =
φ

Γ (γ)
(ln t)γ−1+

∫ t

1

(

ln
t
s

)α−1 λv1(s)+ (1−λ )v2(s)
sΓ (α)

ds.

SinceSF◦u is convex (becauseF has convex values), it follows that

λh1+(1−λ )h2 ∈ N(u).

Step 2.N maps Q′ into itself.
Takeh∈N(Q′). Then there existsu∈Q′ with h∈N(u), and there exists a Pettis integrablev : I →E with v(t)∈ F(t,u(t));
for a.e.t ∈ I . Assume thath(t) 6= 0, then there existsϕ ∈ E∗ with ‖ϕ‖= 1 such that

‖(lnt)1−γh(t)‖E = |ϕ((ln t)1−γh(t))|.

Then

‖(ln t)1−γh(t)‖E = ϕ
(

φ
Γ (γ)

+
(ln t)1−γ

Γ (α)

∫ t

1

(

ln
t
s

)α−1
v(s)

ds
s

)

.

Thus

‖(lnt)1−γh(t)‖E ≤
(ln t)1−γ

Γ (α)

∫ t

1

(

ln
t
s

)α−1
|ϕ(v(s))|

ds
s

≤
q∗(lnT)1−γ

Γ (α)

∫ t

1

(

ln
t
s

)α−1 ds
s

≤
q∗(lnT)1−γ+α

Γ (1+α)

≤ R′
.

Next, lett1, t2 ∈ I such thatt1 < t2 and leth∈ N(u), with

(ln t2)
1−γh(t2)− (lnt1)

1−γh(t1) 6= 0.

Then there existsϕ ∈ E∗ such that

‖(ln t2)
1−γ h(t2)− (lnt1)

1−γh(t1)‖E = |ϕ((ln t2)
1−γh(t2)− (lnt1)

1−γ h(t1))|,
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and‖ϕ‖= 1. Then, we have

‖(ln t2)
1−γ h(t2)− (lnt1)

1−γh(t1)‖E = |ϕ((ln t2)
1−γh(t2)− (lnt1)

1−γ h(t1))|

≤ ϕ
(

(ln t2)
1−γ

∫ t2

1

(

ln
t2
s

)α−1 v(s)
sΓ (α)

ds− (lnt1)
1−γ

∫ t1

1

(

ln
t1
s

)α−1 v(s)
sΓ (α)

ds

)

≤ (ln t2)
1−γ

∫ t2

t1

(

ln
t2
s

)α−1 |ϕ(v(s))|
sΓ (α)

ds

+

∫ t1

1

∣

∣

∣

∣

(ln t2)
1−γ(t2− s)α−1− (lnt1)

1−γ
(

ln
t1
s

)α−1
∣

∣

∣

∣

|ϕ(v(s))|
sΓ (α)

ds

≤ (ln t2)
1−γ

∫ t2

t1

(

ln
t2
s

)α−1 q(s)
sΓ (α)

ds

+

∫ t1

1

∣

∣

∣

∣

(ln t2)
1−γ

(

ln
t2
s

)α−1
− (lnt1)

1−γ
(

ln
t1
s

)α−1
∣

∣

∣

∣

q(s)
sΓ (α)

ds.

Hence, we get

‖(lnt2)
1−γh(t2)− (lnt1)

1−γ h(t1)‖E ≤
q∗(lnT)1−γ+α

Γ (1+α)

(

ln
t2
t1

)α

+
q∗

Γ (α)

∫ t1

1

∣

∣

∣

∣

(ln t2)
1−γ

(

ln
t2
s

)α−1
− (lnt1)

1−γ
(

ln
t1
s

)α−1
∣

∣

∣

∣

ds.

This implies thath∈ Q′. HenceN(Q′)⊂ Q′.

Step 3.N has weakly-sequentially closed graph.
Let (un,wn) be a sequence inQ′×Q′

, with un(t)→ u(t) in (E,ω) for eacht ∈ I , wn(t)→ w(t) in (E,ω) for eacht ∈ I ,
andwn ∈ N(un) for n∈ {1,2, . . .}.
We show thatw∈ N(u). Sincewn ∈ N(un), there existsvn ∈ SF◦un such that

wn(t) =
φ

Γ (γ)
(ln t)γ−1+

∫ t

1

(

ln
t
s

)α−1 vn(s)
sΓ (α)

ds.

We show that there existsv∈ SF◦u such that, for eacht ∈ I ,

w(t) =
φ

Γ (γ)
(ln t)γ−1+

∫ t

1

(

ln
t
s

)α−1 v(s)
sΓ (α)

ds.

SinceF(·, ·) has compact values, there exists a subsequencevnm such thatvnm is Pettis integrable,

vnm(t) ∈ F(t,un(t)) a.e.t ∈ I ,

vnm(·)→ v(·) in (E,ω) asm→ ∞.

As F(t, ·) has weakly-sequentially closed graph,v(t) ∈ F(t,u(t)). Then by the Lebesgue dominated convergence theorem
for the Pettis integral, we obtain

ϕ(wn(t))→ ϕ
(

φ
Γ (γ)

(ln t)γ−1+
∫ t

1

(

ln
t
s

)α−1 v(s)
sΓ (α)

ds

)

,

i.e.wn(t)→ (Nu)(t) in (E,ω). Since this holds, for eacht ∈ I , then we getw∈ N(u).
Step 4.The implication (7) holds.

LetV be a subset ofQ′, such thatV = conv(N(V)∪{0}). ObviouslyV(t)⊂ conv(N(V)(t))∪{0}) for eacht ∈ I . Further,
asV is bounded and equicontinuous, the functiont → v(t) = β (V(t)) is continuous onI . By (H ′

4) and the properties of
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the measureβ , for anyt ∈ I we have

(ln t)1−γv(t) ≤ β ((ln t)1−γ(NV)(t)∪{0})

≤ β ((ln t)1−γ(NV)(t))

≤ β{(lnt)1−γ(Nu)(t) : u∈V}

≤ β
{

(lnT)1−γ
∫ t

1

(

ln
t
s

)α−1 v(s)
sΓ (α)

ds: v(t) ∈ SF◦u, u∈V

}

≤ β
{

(lnT)1−γ
∫ t

1

(

ln
t
s

)α−1 F(s,V(s))
sΓ (α)

ds

}

≤ (lnT)1−γ
∫ t

1

(

ln
t
s

)α−1 β (V(s))
sΓ (α)

ds

≤ (lnT)1−γ
∫ t

1

(

ln
t
s

)α−1 (lns)1−γq(s)v(s)
sΓ (α)

ds

≤
q∗(lnT)1−γ+α

Γ (1+α)
‖v‖C.

In particular,
‖v‖C ≤ L′‖v‖C.

By (8) it follows that‖v‖C = 0, that is,v(t) = β (V(t)) = 0 for eacht ∈ I , and thenV is weakly relatively compact inC.
Applying now Theorem3, we conclude thatN has a fixed-point which is a weak solution of the problem (2).

5 Examples

Let

E = l1 =

{

u= (u1,u2, . . . ,un, . . .),
∞

∑
n=1

|un|< ∞

}

be the Banach space with the norm

‖u‖E =
∞

∑
n=1

|un|.

Example 1.Consider the problem of Hilfer-Hadamard fractional differential equation of the form






(HD
1
2 ,

1
2

1 un)(t) = fn(t,u(t)); t ∈ [1,e],

(H I
1
4
1 u)(t)|t=1 = (2−1,2−2, . . . ,2−n, . . .),

(9)

where

fn(t,u(t)) =
ct2

1+ ‖u(t)‖E

un(t)
et+4 ; t ∈ [1,e],

with

u= (u1,u2, . . . ,un, . . .), and c:=
e3

8
Γ
(

1
2

)

.

Set
f = ( f1, f2, . . . , fn, . . .).

Clearly, the functionf is continuous.
For eachu∈ E andt ∈ [1,e], we have

‖ f (t,u(t))‖E ≤ ct2
1

et+4 .

Hence, the hypothesis(H3) is satisfied withp∗ = ce−3. We shall show that condition (6) holds withT = e. Indeed,

p∗(lnT)1−γ+α

Γ (1+α)
=

2ce−3

Γ (1
2)

=
1
4
< 1.
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Simple computations show that all conditions of Theorem2 are satisfied. It follows that the problem (9) has at least one
weak solution defined on[1,e].

Example 2.Consider the problem of Hilfer-Hadamard fractional differential inclusion of the form






(HD
1
2 ,

1
2

1 un)(t) ∈ Fn(t,u(t)); t ∈ [1,e],

(H I
1
4
1 u)(t)|t=1 = (1,0, . . . ,0, . . .),

(10)

where

Fn(t,u(t)) =
ct2e−4−t

1+ ‖u(t)‖E
[un(t)−1,un(t)]; t ∈ [1,e],

with

u= (u1,u2, . . . ,un, . . .), and c:=
e3

8
Γ
(

1
2

)

.

Set
F = (F1,F2, . . . ,Fn, . . .).

We assume thatF is closed and convex valued. Clearly, the functionF is continuous.
For eachu∈ E andt ∈ [1,e], we have

‖F(t,u(t))‖P ≤ ct2
1

et+4 .

Hence, the hypothesis(H ′
3) is satisfied withq∗ = ce−3. We shall show that condition (8) holds withT = e. Indeed,

q∗(lnT)1−γ+α

Γ (1+α)
=

2ce−3

Γ (1
2)

=
1
4
< 1.

Simple computations show that all conditions of Theorem4 are satisfied. It follows that the problem (10) has at least one
weak solution defined on[1,e].
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