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1 Introduction

Fractional differential equations and inclusions havently been applied in various areas of engineering, mathiesna
physics and bio-engineering, and other applied scierdg2s3, 4]. For some fundamental results in the theory of fractional
calculus and fractional differential equations we refethi® monographs of Abbaet al.[5,6], Ahmadet al.[7], Samko

et al.[8], Kilbas et al.[9] and Zhou [LQ].

The measure of weak noncompactness was introduced by De[BIBsThe strong measure of honcompactness
was developed first by Banas and Goelig] and subsequently developed and used in many papers; serdmple,
Akhmerovet al. [13], Alvarez [14], Benchohraet al. [15], Guo et al. [16], and the references therein. |h517] the
authors considered some existence results by applyingtheigues of the measure of noncompactness. Recentlyakeve
researchers obtained other results by application of #fetque of measure of weak noncompactness;&d8,[19], and
the references therein.

Recently, considerable attention has been given to théeexis of solutions of initial and boundary value problems
for fractional differential equations with Hilfer fractial derivative; R0,21,2,22,23,24], and other problems with Hilfer-
Hadamard fractional derivative; se25[26)]. In this article, we discuss the existence of weak solwifmr the following
problem of Hilfer-Hadamard fractional differential eqioat of the form

MDPu)(t) = f(tu); tel == [1,T),
1)
M )Ok-1= 9.
wherea € (0,1), B€[0,1], y=a+B—aB, T>1 @cE, f:lxE— Eisagiven continuous functiok, is a real (or
complex) Banach space with noifm || and dualE*, such that is the dual of a weakly compactly generated Banach

spaceX, HI1 ™" is the left-sided mixed Hadamard integral of order ¥, and"D¢* is the Hilfer-Hadamard derivative
operator of ordea and typeg.
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Next, we consider the following problem of Hilfer-Hadamérakctional differential inclusion of the form

"D Pu)) e F(t ) tel,
)
(WO = 0.
whereF : | x E — 2(E) is a given multi-valued map, an@(E) is the family of all nonempty subsets of a separable
Banach spack.

Our goal in this work is to give some existence results focfiomal Hilfer-Hadamard fractional differential equati
and inclusions.

2 Preliminaries
LetC be the Banach space of all continuous functiefit®om | into E with the supremum (uniform) norm

[IVlleo := supl|v(t)]|e-
tel

As usual,AC(1) denotes the space of absolutely continuous functions framo E. We denote byAC'(l) the space
defined by

ACH(1):={w:l - E: %W(t) € AC()}.

For a functioru € C, set
d
ofu(t)] = t&u(t).

Letq> 0, n=[g] + 1, where|q] is the integer part of|. Define the space
ACY:={u:[1,T] —E: 3" Hu(t) € AC(I)}.
Letye (0,1], byCyn(l), Cy(I) andC‘%(I ), we denote the weighted spaces of continuous functions ddfipe

Cym(l) = {w(t) : (Int)* Yw(t) €C},

with the norm
. 1-
[Wllcy, -=§ulpl\(|nt) w(t)|le,
S

Cy(1) = {w: (1, T] = E:t* Yw(t) C},

with the norm
[wWic, = fulplltl‘VW(t)HE,
€

and q
10y . aw
Cy(I)={weC: ot €Cy},
with the norm

Wiz == [[Wlleo + [IW/[lc,-
In the following we denotéw||c,,, by [w]c. Let (E,w) = (E,o(E,E")) be the Banach spa&ewith its weak topology.

Definition 1.A Banach space X is called weakly compactly generated (W&Ghbrt) if it contains a weakly compact
set K whose linear span is dense in X

Examples:

1. Every separable Banach space is WCG.

2. Every reflexive Banach space is WCG.

3. EveryLi(u)—space, withu being ac —finite, non-negative measure, is WCG.
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Definition 2.A function ht E — E is said to be weakly sequentially continuous if h takes aaakly convergent sequence
in E to a weakly convergent sequence in E (i.e., for @ny in E with u, — u in (E,w) then Hup) — h(u) in (E,w)).

Definition 3.[27] The function u: | — E is said to be Pettis integrable on | if and only if there is daneent y € E
corresponding to each & | such thatg(u;) = [; @(u(s))ds for all ¢ € E*, where the integral on the right hand side is
assumed to exist in the sense of Lebesgue, (by definitien,fyu(s)ds).

Let P(I,E) be the space of aE—valued Pettis integrable functions dnandL'(I,E) be the Banach space of Bocher
integrable functions : | — E. Define the clas®i(I,E) by

Pu(I,E)={ue P(I,E) : ¢(u) € L}(1,R); for every¢p c E*}.

The spacé(1,E) is normed by

s = sup [ (8u0ojarx
¢€E* H¢H<1

whereA stands for a Lebesgue measurd on

The following result is due to Pettis (se€], Theorem 3.4 and Corollary 3.41]).

Proposition 1{28,27] If u € Pi(1,E) and h is a measurable and essentially boundedv&lued function, then ub
Pl(l ) E)

For all that follows, the symbolf” denotes the Pettis integral.
Now, we give some results and properties of fractional daku

Definition 4.[5,9,8] (Riemann-Liouville fractional integral). The left-sidemixed Riemann-Liouville integral of order
r > 0 of a function we L(1) is defined by

(1w)(t) = %/:(t—s)r‘lw(s)ds foraetel,

whererl (-) is the (Euler's) Gamma function defined by

r 5):/0 -l tdt; £ > 0,

Notice that for allr,r{,r, > 0 and eachv € C, we havelgw € C, and

(IEHPw) (1) = (1172w (t); foraetel.

Definition 5.[ 5,9, 8] (Riemann-Liouville fractional derivative). The Riemahiouville fractional derivative of order r- 0
of a function we L(1) is defined by

O = g1 W) ©

1 dan gt
= mﬁ/l (t—9)""lw(s)ds foraetel,

where n= [r] + 1and][r] is the integer part of.r

In particular, ifr € (0,1], then
d
(Dfw)1) = (alﬁf )(t)

= ey dt/ s)ds foraetel.
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Letr € (0,1], y€ [0,1) andw € C_(1). Then the following expression leads to the left inverse afmeras follows:
(DIw)(t) =w(t); forallt € (1,T].

Moreover, ifl{~"'w e C%fy(l ), then the following composition is proved i][

(I1~"'w)(1h)

r—1.
0 t' forallt e (1,T].

(11D3w)(t) = w(t) —

Definition 6.[5,9,8] (Caputo fractional derivative). The Caputo fractionalrdeative of order r> 0 of a function we
AC"(I) is defined by
chr n—r dn
D) = (11 gaw) O
_ 1 t n-r—1 d"
= Fon /1 (t—s) dng(s)ds foraetel.

In particular, ifr € (0,1], then

() = (1 gw) ©
1

' d
oo o d
B I'(1_|r)/1(t §)' qoW(s)ds foraetel.

Let us recall some definitions and properties of Hadamaudifmaal integration and differentiation. We refer @ [
for a more detailed analysis.
Definition 7.[9] (Hadamard fractional integral). The Hadamard fractionadtegral of order g> 0 for a function ge
LY(1,E), is defined as
1 X/ o x\a-1g(s)
Hdg
I = InZ 2%
M9 = g o (ng)" s
provided the integral exists.
Example lLet 0< g < 1. Then

HfInt = (Int)1*9, foraetc [0,€.

r+aq)

Remark.etg € Pi(I,E). For everyp € E*, we have

o(M1fg)t) = ("1J9g)(t), foraetel.

Set

d
6_x&,q>o, n=[q+1,

and
ACY:={u:[1,T] —»E: " Hu(x)] € AC(1)}.

Analogous to the Riemann-Liouville fractional calculuse tHadamard fractional derivative is defined in terms of the
Hadamard fractional integral in the following way:

Definition 8.[9] (Hadamard fractional derivative). The Hadamard fractairderivative of order g> O applied to the
function we AC; is defined as

("DIw)(x) = "(M17 W) (x).
In particular, ifq € (0,1], then

(MDIw) () = 8(1; W) (x).
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Example et 0< q< 1. Then

HDJInt = (Int)1"9, foraete0,€.

1
r(2-aq
It has been proved (see e.g. Kilbagq], Theorem 4.8]) that in the spaté(l,E), the Hadamard fractional derivative is
the left-inverse operator to the Hadamard fractional irgkg.e.

(DD 1w (%) = w(x).
From Theorem 2.3 of9], we have

(M1 %) (1)

(ME)(DIW) (9 = wi) s

(Inx)9-1,

Analogous to the Hadamard fractional calculus, the Capladamard fractional derivative is defined in the following
way:

Definition 9.(Caputo-Hadamard fractional derivative). The Caputo-ldathrd fractional derivative of order ¢ O
applied to the function w ACj is defined as

(D) (x) = (M1793"W) (x).
In particular, ifq € (0,1], then
(D) (x) = (177 owW)(x).

In [2], R. Hilfer studied applications of a generalized fractboperator having the Riemann-Liouville and the Caputo
derivatives as specific cases (see ak23)).
Definition 10.(Hilfer fractional derivative). Leta € (0,1), B € [0,1], w e L(1), 11" Pl ¢ ACL(1). The Hilfer
fractional derivative of order and type@ of w is defined as

(DPw)(t) = <|f<l“>%|§”><”>w> (t); foraetel. 3)

Properties.Leta € (0,1), B € [0,1], y=a + B —aB,andwe LY(1).
1. The operato(Df’Ew) (t) can be written as

(DPw)(t) = <|f<1—a)% 11VW) (t) = (|f<1‘“>D{w) (t); foraetel.

Moreover, the parametgrsatisfies
ye (1, yza,y>p,1-y<1l-p(1l-a).

2. The generalization3f for 8 = 0 coincides with the Riemann-Liouville derivative and fér= 1 with the Caputo
derivative.
D{° =D, and O{"* = °DJ.

3. If DY My exists and irL1(1), then

(Dg’ﬁfW)(t) _ (|f(1_a)Df(l_a)W)(t); foraetel.

Furthermore, ifv € C,(1) andl} P @w e Cj(1), then

(DSPIgw)(t) =w(t); foraetel.
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4.1f DYw exists and irL1(1), then

()

(1FD%Pw)(t) = (1/DYw) (t) = w(t) — "1 foraetel.

From the Hadamard fractional integral, the Hilfer-Hadagfaaictional derivative (introduced for the first time 2§)
is defined in the following way:

Definition 11.(Hilfer-Hadamard fractional derivative). Letr € (0,1), B € [0,1], y=a + 3 —aB, we L1(l), and

HIil"’)(l’mw € ACY(1). The Hilfer-Hadamard fractional derivative of order and typeB applied to the function w is
defined as

o Pwt) = (M Hoiw) v

B(l-a) s H 1 ®
- (H|1 LIk Vw)) (t); foraetel.

This new fractional derivativel(l) may be viewed as interpolating the Hadamard fractiondldtve and the Caputo-
Hadamard fractional derivative. Indeed = 0 this derivative reduces to the Hadamard fractional dévieand when
B = 1, we recover the Caputo-Hadamard fractional derivative.

HDaO HDa and Dal HCD?.

From Theorem 21 inZ6], we conclude with the following lemma

Lemma llet f: I x E — E be such that (,u(-)) € Cyn(I) for any uc Cyn(l). Then problem) is equivalent to the
problem of the solutions of the Volterra integral equation

u(t) = %antwﬂ HIEEC,u()) ).

Definition 12[11] Let E be a Banach spac€g the bounded subsets of E angdtBe unit ball of E The De Blasi measure
of weak noncompactness is the nfapQg — [0, ») defined by

B(X) =inf{e > 0: there exists a weakly compa@tC E such thaiX C eB; + Q}.

The De Blasi measure of weak noncompactness satisfies thwifod properties:

(@A C B= B(A) < B(B), ,
(b)B(A) =0« Ais weakly relatively compact,

(C)B(AUB) = max{B(A), B(B)},
(d)B(A ) B(A), (A denotes the weak closure Af,
(e)3(A+B) < B(A) +B(B),

(HB(AA) = I/\IB( A),

(9)B(conv(A)) = B(A),
(B (U |<nAA) = hB(A).

The next result follows directly from the Hahn-Banach ttesor

Proposition 2Let E be a normed space, anglxE with xy # 0. Then, there existg € E* with ||¢ || = Land @ (xo) = ||Xo]|-

For a given se¥ of functionsv: | — E let us denote by

V(t)={v(t):veV} tel,and V(I)={v(t):veV,tel}.
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Lemma 2[16] Let H C C be a bounded and equicontinuous subset. Then the functiofftH (t)) is continuous on,|

and
Be(H) = maxB(H(t)),

B ( / u(s)ds) < [BH(s)ds

where Hs) = {u(s) :ue H, sel}, andfc is the De Blasi measure of weak noncompactness defined onuhedd sets
of C.

and

Let Z(E) the family of all nonempty subsets Bf In what follows 2 (E) = {Y € Z(E) : Y is closed, Z,(E) = {Y €
Z(E):Yisboundedl, Zcp(E) ={Y € Z(E):Yis compac}, andZcpcv(E) = {Y € Z(E) : Y is compact and convgx

Definition 13.A multivalued map GE — Z(E) is convex (closed) valueifl G(x) is convex (closed) for all x E. We
say that G isbounded on bounded sét<5(B) is bounded in E for each bounded set B of E (segg{sup(|ly|l:y €
F(x)}} < «). The mapping G is calledpper semi-continuoysl.s.c.) on E if for eachgxe E the set Gxp) is a nonempty
closed subset of E, and for each open set N of E containiixg)Xhere exists an open neighborhoogl® X, such that
G(Np) € N. The mapping G hasfixed-pointif there is xe E such that >c G(x).

Definition 14 A multivalued map Gl — ¢ (E) is said to be measurable if for eache E the function
t—d(w,G(t)) =inf{|jw—v] :veGt)}

is measurable.

Definition 15.The selection set of a multivalued map G- Z?(E) is defined by
Se={uell(l):ut)eGt), aetell.

For each ue Cy, the set §., known aghe set of selectorfsom Fou is defined by

Srou={ve L}(1):v(t) e F(t,ut)); aetel}.

For more details on multivalued maps we refer to the booksudfildand Cellina30] and Deimling B1].

Definition 16.A function F: Q — Py cv(Q) has a weakly sequentially closed graph, if for any sequéregn) € Q x
Q.¥n € F(xn) forne {1,2,...}, with X, — x in (E, w), and yy — y in (E, w), then ye F(X).

3 Hilfer-Hadamard Fractional Differential Equations

Let us start in this section by defining what we mean by a wehkisa of the problem1).

Definition 17.By a weak solution of the problerh)(we mean a measurable functiorelCy, that satisfies the condition
(M117Yu) (1) = @, and the equatiof? DS Pu)(t) = f(t,u(t)) on I.

For our purpose we need the following fixed-point theorem:

Theorem 1[32] Let Q be a nonempty, closed, convex and equicontinuoussobs metrizable locally convex vector
space CGl,E) such tha® € Q. Suppose TQ — Q is weakly-sequentially continuous. If the implication

V =tony{0} UT(V)) =V is relatively weakly compact (5)
holds for every subset ¥ Q, then the operator T has a fixed point.

The following hypotheses is used in the sequel.
(Hq)for a.e.t € I, the functionv — f(t,v) is weakly sequentially continuous,
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(H2)for eachv € E, the functiont — f(t,v) is Pettis integrable a.e. dn
(Hz)there existgp € C(1,[0,)) such that for allp € E*, we have

P(t)
PICINS TR e

(Ha)for each bounded and measurableBet E and for eachi € |, we have

B(f(t,B) < (Int)Yp(t)B(B).

foraetel, and each L E,

Set
p* = supp(t),
tel

Theorem 2 Assume that the hypothesét ) — (Hs) hold. If

p*(InT)1*V+"

L:= 1
rita) 7

(6)

then the probleml) has at least one weak solution defined on |
Proof. Consider the operatd¥ : Cyjn, — Cy,n defined by:

First, note that the hypotheses imply that for eachCy,,, the functiont — (In tg)afl f(s’g(s)), foraetcl,is Pettis
integrable. Thus, the operatris well defined. LeR > 0 be such that

p*(InT)1*V+"
R> —Faza)

and consider the set
Q= {u €Cy: |lullc < Rand||(Intz)* Yu(tz) — (Inty)* Yu(ty) e

- p*(InT)L-v+a 2 a
- I'(l+a) ty

’ F?;) /:1 (Int2)*™ ('” tEZ) T (Inty)Y (|n tgl) H’ dS} .

Clearly, the subse@ is closed, convex end equicontinuous. We shall show thatofieratorN satisfies all the
assumptions of Theorefin The proof is given in several steps.

Step 1.N maps Q into itself.
Let u e Q t e | and assume that(Nu)(t) # 0. Then there exists ¢ € E* such that
[(Int)*Y(Nu)(t)[|le = [¢((Int)*~Y(Nu)(t))|. Thus

1- a
Jmet e = o (65 + G [ (n)" reuen).

Then

1INt Y(Nu)(t) e

IN

O (0" ectsuenS
pr(nT):Y a-14
T (a) /0 ('”Es) ?S

p*(InT)L-v+a
- Irl+a)
R

\ /\

IN
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Next, letty,t, € | such that; <t and letu € Q, with
(Int)YY(Nu)(t2) — (Inty)*Y(Nu)(t) # 0.
Then there existg € E* such that
1(Int2)* Y (NU)(t2) — (Inta)* Y (NU) (ta) e = [@ (INt2)* Y (NU) (t2) — (Inta)* Y (NU)(ta) ),
and|/¢| = 1. Then
1(Int2)Y(Nu)(t2) — (Inta) " Y(NU) (ta) [e = [# (Int2)*Y(NU)(t2) — (Inta)*V(NU)(t)))|

<¢ (('ntz)ly/ltz (In %)a_lf(;_’itﬁs)))ds— (Intl)lf"/ltl (In %)a_lf(;_’itﬁs)))d%
<t [ <>w

+/1I1 (lntZ)l_y(ln%)ail—(lntl)l_y(mt_;)ail

P(s)
sl'(a)ds

Thus, we get
[(Int2)XY(NU)(t2) — (Inty)* Y(NU) (ty) |e <

[
+ I‘(a)/l
HenceN(Q) C Q.

Step 2.N is weakly-sequentially continuous.
Let (un) be a sequence i@ and let(us(t)) — u(t) in (E,w) for eacht € I. Fix t € I, sincef satisfies the assumption
(H1), we havef (t,un(t)) converges weakly uniformly té(t,u(t)). Hence the Lebesgue dominated convergence theorem
for Pettis integral implie$Nuy ) (t) converges weakly uniformly tNu)(t) in (E, w), for eacht € 1. Thus,N(un) — N(u).
HenceN : Q — Qis weakly-sequentially continuous.

Step 3.The implication ) holds.
LetV be a subset o such that/ = con{N(V) U {0}). Obviously

V(t) C TOMYNV)(1)) U{0}), t 1.

Further, as/ is bounded and equicontinuous, by Lemma 334 fthe functiont — v(t) = B(V(t)) is continuous on.
From(Hs), (H4), Lemma2 and the properties of the measyefor anyt € |, we have

);

(INt)*(t) < B((IN)*Y(NV)(t) U {0})
B
(!

p*(InT)L-v+a 2 a
rl+a) 1
a-1

ds

i (0)" i ()

<
<

((INt)Y(NV)(1))

O [[(n)" popvsyas

- a
(Ir;_'l;;) y/lt (In g) 1(Ins)lfyp(s)v(s)ds
p*(InT)-v+a
- rl+a)

I /\

S

IVl
Thus
IMlc < LIV]c.

From @), we get||v|c =0, thatisv(t) = B(V(t)) =0, for eacht € |. and then by Theorem 2 i3], V is weakly relatively
compactirCy,. Applying now Theoreni, we conclude thall has a fixed-point which is a weak solution of the problem

).
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4 Hilfer-Hadamard Fractional Differential Inclusions

Let us start in this section by defining what we mean by a wehkisa of the problem2).

Definition 18 By a weak solution of the probler)(we mean a measurable functiorelCy,, that satisfies the condition
("17Yu)(17) = @, and the equatioi?D%Pu)(t) = h(t) on I, where he Sr.,.

From Lemmal, we conclude with the following lemma.

Lemma 3LetF: I x E — E be suchthatS, C Cyn(l) forany ue Cyn(I). Then problem32) is equivalent to the problem
of the solutions of the integral equation

u(t) = %anwﬂ M),

where ve Sy

For our purpose we shall need the following fixed-point tieaor

Theorem 3[32] Let E be a Banach space with Q a nonempty, bounded, closesier@nd equicontinuous subset of a
metrizable locally convex vector space C such hatQ. Suppose T. Q — Z¢ (Q) has weakly sequentially closed
graph. If the implication

V =comy{{0}UT(V)) =V is relatively weakly compact (7

holds for every subset ¥ Q, then the operator T has a fixed-point.

The following hypotheses are used in the sequel.

(H)F 11 x E—= Zcpa.cv(E) has weakly sequentially closed graph,
(H5)for each continuous: | — E, there exists a measurable functioa Sy a.e. onl andv is Pettis integrable oh
(H3)there exists) € C(1,[0,)) such that for allp € E*, we have

[F(t,u)ll» = sup [§(V) qt)

| < ——————— foraetel, and each e E,
VESray 1+l + llulle

(H,)for each bounded and measurableBet E and for each € |, we have
B(F(t,B) < (Int)* Yq(t)B(B).

Set
q° = supq(t),

tel

Theorem 4 Assume that the hypotheses ) — (Hy) hold. If

q'(InT)L-v+a

L=
rl+a)

<1, (8)
then the problem2) has at least one weak solution defined on |
Proof. Consider the multi-valued madyp: Cyjn — ¢ (Cy,in) defined by:

v(s)
sl (a)

(Nu)(t):{hecwn;h(t):%(lnt)y_l+/lt n))"

Note that the hypotheses imply that for eack Cyn, there exists a Pettis integrable functior Sy, and for each
s€ [1,t], the function

ds ve SFOU}.

tyo-1
t— (Ing) v(s); foraetel,
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is Pettis integrable. Thus, the multi-functibhis well defined. LeR > 0 be such that

q*(InT)i-v+a

R> rita)

and consider the set
Q= {U € Cyin : [|ullc < R and||(Intz)* Yu(tz) — (Inty)*"u(t1) |e
g (InT)t-va 7t
-1
ds} .

n_
- I'(1+ G) < t1>
q* /-tl | 1—)’( tz)a—l 1- t1\ @
nt In= —(Int V(In—)
+ INCIRA (Intz) S (Inty) s
Clearly, the subse@’ is closed, convex end equicontinuous. We shall show thatofieratorN satisfies all the
assumptions of TheoreB The proof is given in several steps.

Step 1.N(u) is convex for each & Q'.
For that, lethy,h, € N(u). Then there existy, v, € S=oy such that, for eache |, and for anyi = 1,2, we have

o ®P —_ tr 1\ 1 vi(s)
()= Fos (DY 1+/1 () s

Let0O< A <1 Then, foreach €|, we have

+(1—A)va(s)
s (a)

SinceS:. is convex (becaude has convex values), it follows that

9 [ LA
b+ (1= A)hdt) = 6 (n)Y 1+/1 (n2) ds
/\h1+(1—/\)h26N(u).
Step 2.N maps Qinto itself.

Takeh e N(Q'). Then there exists € Q' with h € N(u), and there exists a Pettis integrabtd — E with v(t) € F(t,u(t));
fora.e.t € 1. Assume thah(t) # 0, then there exist$ € E* with ||¢| = 1 such that

I(Int)*Yh(t)[le = [#((Int)* h(t))].

Then
N B @ (nt)tv st tya-1  ds
it ol =4 (65 + gy [ (m)” %)
Thus
1 a

jmot e < L [ (ind) " jowis S

G(nT)Y 1o tya-lds

= ") /1('”§) S
(n )l y+a

r(i+a)
<R.

Next, lett;, t; € | such that; < t, and leth € N(u), with

(Into)*Yh(t2) — (Inty) Y Vh(ty) # 0.

Then there existg € E* such that

[ (Int2)h(t2) — (Inty)*Yh(te) | = |#((Int2)Vhi(tz) — (Inty)*h(ty)).
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and| ¢|| = 1. Then, we have

[(Int2)*Yh(tz) — (Int)*h(ty) e = [¢ ((Int2)*h(t2) — (Inty)*Vh(ta))|

§¢<(|nt2)ly/l (In%)a ' V((S — (nty)* y/ltl n t_l a-1 V(Sg)ds)
< (Intp)+Y /: (mtSZ)“ L]g (((Z)))| .
+ [ |imt a9 nty o ()| L2

s (a)
+/1tl (Intz)lf"(lnt—é)tjlil—(Intl)1 V(Intsl)a

-1

Hence, we get

* 1-y+a a
Imt2)* ) (mey e < T ()
g [
Jrl'(or)/l

1— toya-1 1- t1\a-1
(Inty) V(In g) —(Inty) V(Ing)
This implies thah € Q. HenceN(Q') C Q.
Step 3.N has weakly-sequentially closed graph.
Let (up,Wn) be a sequence i@’ x Q', with un(t) — u(t) in (E, w) for eacht € 1, wy(t) — w(t) in (E, w) for eacht €1,
andw, € N(up) forne {1,2,...}.
We show thatv € N(u). Sincew, € N(up), there existsy, € Sroy, such that

ds

We show that there existsc S-., such that, for eache I,

S

v(
sl'(a)ds

SinceF (-,-) has compact values, there exists a subsequgpcich thaw,,, is Pettis integrable,

Vi (1) € F(t,un(t)) a.etel,

Vi, () = v(+) in (E,w) asm— co.

AsF(t,-) has weakly-sequentially closed grapft) € F(t,u(t)). Then by the Lebesgue dominated convergence theorem
for the Pettis integral, we obtain

oto0) ¢ (E50mr -+ [ (i) 15509),

i.e.Wn(t) — (Nu)(t) in (E,w). Since this holds, for eadhe I, then we getv € N(u).

Step 4.The implication {) holds.
LetV be a subset @, such tha¥ = tony{N(V) U {0}). ObviouslyV (t) c tconN(V)(t)) U{0}) for eacht € I. Further,
asV is bounded and equicontinuous, the functior v(t) = B(V(t)) is continuous on. By (H;) and the properties of
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the measur@, for anyt € | we have
(INtX () < B((INEY(NV) (1) U {0})
< B((Int)*V(NV) (1))

< B{(IN)YY(Nu)(t) :ue V}

<B {(lnT)l—V/lt (in Es)al;((sg)ds: V(t) € Srou, U ev}
o )
< f (o)
conme [ (nf) 8 e
< T e
In particular,

IVllc < L[IVllc.

By (8) it follows that |v||c = O, that is,v(t) = B(V(t)) = O for eacht < |, and therV is weakly relatively compact i.
Applying now Theoren8, we conclude thall has a fixed-point which is a weak solution of the probl&n (

5 Examples

Let
E=I1= {u:(ul,uz,...,un,...), |un| <oo}
1

n=

be the Banach space with the norm
lule =S |ual.
n=1

Example 1.Consider the problem of Hilfer-Hadamard fractional diffetial equation of the form

(* le’?un)(t) = fa(t,u(t)); t€ [1,€], )

HIFw )= (271272270, ),
where ) 0

ct Un(t)

fn(t,u(t)) = m é+4 y t E [1,8],

with &
u=(ug,Up,...,Un,...), and c:= E/‘ (%) )

Set

f=(f1,f2,...,fn,...).
Clearly, the functiorf is continuous.
For eachu € E andt € [1,€], we have

1
[f(t,ut))lle < Ct2@~

Hence, the hypothesislz) is satisfied withp* = ce3. We shall show that conditior§) holds withT = e. Indeed,

p'(InT)vra  2ce® 1

ri+a) 1@ 4°
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Simple computations show that all conditions of Theoteare satisfied. It follows that the proble) (has at least one
weak solution defined ofi, €.

Example 2.Consider the problem of Hilfer-Hadamard fractional diéfetial inclusion of the form

(D} 2un)(1) € Fut.u(t)); t € [Le.

I (10)
(Hlfu)(t)h:l: (1,0,...,0,...),
where
Ct2e747t .
with &
u=(uy,Up,...,Un,...), and c:= EI’ (%) .
Set

F=(F,F,...,F,...).
We assume thdt is closed and convex valued. Clearly, the functtois continuous.
For eactu € E andt € [1,€], we have

1
IF(t,ut)]» < Ctzﬁ.

Hence, the hypothesi$i}) is satisfied withg* = ce3. We shall show that conditior8) holds with T = e. Indeed,

q(InT)t vt 2ce® 1 1
rl+a) rgy 4

Simple computations show that all conditions of Theoreane satisfied. It follows that the problehQj has at least one
weak solution defined ofi, €.
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