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Abstract: In this article, we studied one- and two-sample Bayesian prediction intervals based on unified hybrid censored data from
the exponentiated Rayleigh distribution. We use Markov chain Monte Carlo (MCMC) samples to obtain the approximate predictive
survival function, since one- and two- sample Bayesian predictive survival function can not be computed in closed-form. Finally, one-
and two-sample Bayesian prediction intervals are exploredbased on a real data set as illustrative example.
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1 Introduction

Epstein [1] considered a hybrid censored scheme (HCS), which is a mixture of Type-I and Type-II censoring schemes,
these schemes have been used in practice. However, these censoring schemes have some disadvantages. To avoid these
disadvantages, Chandrasekar et al.[2] proposed two new schemes which are called generalized Type-I and Type-II HCS.
In generalized Type-I HCS, fixk,r ∈ (1,2, ...,n) andT ∈ (0,∞) such thatk < r < n. If the kth failure occurs before time
T , the experiment is terminated at min{Xr:n,T}. If the kth failure occurs after timeT , the experiment is terminated at
Xk:n, so, it is clear that this HCS modifies the Type-I HCS by allowing the experiment to continue after timeT if very
few failures had observed until that time. In generalized Type-II HCS, fix r ∈ (1,2, ...,n) andT1,T2 ∈ (0,∞) such that
T2 > T1. If the rth failure occurs before timeT1, the experiment is terminated atT1. If the rth failure occurs betweenT1
andT2, the experiment is terminated atXr:n. If the rth failure occurs afterT2, the experiment is terminated atT2. This
hybrid censoring scheme guarantees that the experiment time will not exceedT2. Although generalized hybrid censoring
schemes are improvements over Type I and Type II hybrid censoring schemes but they have some drawbacks. To avoid the
drawbacks in these schemes, Balakrishnan et al.[3] introduced a mixture of generalized Type-I and Type-II HCSwhich
is called the unified hybrid censoring scheme (UHCS), which can be described as follows, fixr,k ∈ {1, ....,n} where
k < r < n andT1,T2 ∈ (0,∞) whereT2 > T1. If the kth failure occurs before timeT1, the experiment is terminated at
min{max{Xr:n,T1},T2}. If the kth failure occurs betweenT1 andT2, the experiment is terminated at min{Xr:n,T2} and if
thekth failure occurs after timeT2, the experiment is terminated atXk:n. Under this censoring scheme, we can guarantee
that the experiment would be completed at most in timeT2 with at leastk failure and if not, we can guarantee exactlyk
failures.
The exponentiated Rayleigh (ER) distribution has been usedfor the lifetime modelling in reliability analysis, life testing
problems and acceptance sampling plans. The ER distribution is obtained by generalization of the Rayleigh distribution.
It is also called the two parameter (scale and shape) Burr type X distribution. The ER distribution was studied by Sartawi
and Abu-Salih[4], Jaheen[5,6], Ahmad et al.[7], Raqab[8] and Surles and Padgett[9].
The cumulative distribution function (CDF) is given by

F(x;α,β ) = (1− e−β x2
)α
, x > 0, (α, β > 0). (1)
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The probability density function (PDF) is

f (x;α,β ) = 2αβ x e−β x2
(1− e−β x2

)α−1
, x > 0, (α, β > 0). (2)

Hereα andβ are the shape and scale parameters, respectively.
Recently, Surles and Padgett[10] introduced two parameter Burr Type X distribution and correctly named as the ER
distribution. The two parameter ER distribution is a special case of the Weibull distribution originally suggested by
Mudholkar and Srivastava[11]. See also, Kundu and Raqab[12], Raqab and Madi[13], Abd-Elfattah[14], Raqab and
Madi[15] and Mahmoud and Ghazal[16].
Prediction is one of the most important issues in statistical inference and it is equally important and useful as statistical
estimation. Meteorology, medicine, economics, finance, engineering, politics and education are applied disciplinesin
which prediction is essential and is therefore of greet interest. Prediction of future observation comes up quite naturally
in many life-testing experiments. Several researchers have considered Bayesian prediction for future observations based
on different forms of observed data, see, for example; Geisser[17], Dunsmore[18], AL-Hussaini[19], AL-Hussaini and
Ahmad[20], Shafay and Balakrishnan[21] and Balakrishnan and Shafay [22]. Recently, Shafay[23,24] developed
procedures for determining one- and two-sample Bayesian prediction intervals based on generalized Type-II HCS and
generalized Type-I HCS, respectively and Mohie El-Din and Shafay [25] discussed the statistical inference under unified
hybrid censoring scheme
In this paper, we discuss the same problem based on UHCS whichinvolves some additional complications. Let
X1:n < X2:n < ... < Xn:n be the order statistics from a random sample of sizen from an absolutely continuous. LetD j
denote the number ofXi:n ’s that are at mostTj, j = 1,2. Then,D j is a discrete random variable has the binomial
distributionB(n,F(Tj)), j = 1,2, with support{0,1, ...,n}. Therefor, under the UHCS, described above, we have the
following six cases:
Case I: 0< xk:n < xr:n < T1 < T2, the experiment is terminated atT1.
Case II: 0< xk:n < T1 < xr:n < T2, the experiment is terminated atxr:n.
Case III:0< xk:n < T1 < T2 < xr:n, the experiment is terminated atT2.
Case IV: 0< T1 < xk:n < xr:n < T2, the experiment is terminated atxr:n.
Case V: 0< T1 < xk:n < T2 < xr:n, the experiment is terminated atT2.
Case VI: 0< T1 < T2 < xk:n < xr:n, the experiment is terminated atxk:n.
Thus, the likelihood function of the unified hybrid censoredsampleX = (X1:n < X2:n < ... < XR:n) is as follows:

L(x,θ ) =
n!

(n−R)!

[ R

∏
i=1

f (xi)
][

1−F(C)
]n−R

, (3)

(R,C) =



















(D1,T1), for Case I,
(r,xr:n), for Case II and Case IV,
(D2,T2), for Case III and for Case V,
(k,xk:n), for Case VI,

(4)

whereR indicates the number of the total failures in experiment up to timeC (the stopping time point) andD1 andD2
indicate the number of failures that occur before time pointsT1 andT2, respectively,
In the Bayesian approach, the unknown parameter is regardedas a realization of a random variable, which has some prior
distribution. We assume thatα andβ are independent and have the following gamma prior distributions

π1(α) ∝ αa1−1e−b1α
, α > 0, (5)

π2(β ) ∝ β a2−1e−b2β
, β > 0. (6)

Here all the hyper parametersa1,a2,b1 andb2 are assumed to be known and non-negative.
The joint prior distribution forα andβ is

π(α,β ) ∝ αa1−1β a2−1e−(b1α+b2β )
. (7)

From (3) and (7) we obtain the joint posterior density function

π∗(α,β |x) ∝αa1+R−1β a2+R−1e−β (b2+∑R
i=1 x2

i )e−α [b1−∑R
i=1 ln(1−e−βx2

i )]

e−∑R
i=1 ln(1−e−βx2

i )
[

1− (1− e−βC2
)α
]n−R

.

(8)
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The rest of the paper is organized as follows: In Section 2, wediscuss the Bayesian prediction intervals based on UHCS
from the ER distribution. In Section 3, we apply MCMC technique to obtaine the Bayesian prediction intervals. Real data
set has been analyzed for illustrative purposes in Section 4. Finally, conclusions are given in Section 5.

2 Bayesian Prediction Intervals

2.1 One-sample Bayesian prediction

In this section, based on the observed UHCSX = (X1:n < X2:n < ... < XR:n), we develop a general procedure for deriving
the interval predictions for thesth future order statisticXs:n for ER distribution, whereR < s ≤ n. For more details about
Bayesian prediction, see for example, Shafay [23,24] and Mohie El-Din and Shafay [25] the conditional density function
of Xs:n, based on UHCSX = (X1:n < X2:n < ... < XR:n), is as follows:

f (xs|x) =



















f1(xs|x) if (R,C) = (D1,T1), for Case I,
f2(xs|x) if (R,C) = (r,xr:n), for Case II and Case IV,
f3(xs|x) if (R,C) = (D2,T2), for Case III and for Case V,
f4(xs|x) if (R,C) = (k,xk:n), for Case VI,

(9)

where

f1(xs|x) =
1

P(r ≤ D1 ≤ s−1)

s−1

∑
d=r

f (xs|,x,D1 = d)P(D1 = d),

=
s−1

∑
d=r

(n− d)!φd(T1)

(s− d−1)!(n− s)!

×
[F(xs)−F(T1)]

s−d−1[1−F(xs)]
n−s f (xs)

[1−F(T1)]n−d ,

with x = (x1, . . .xD1), xs > T1 andφd(T1) =
P(D1=d)

∑s−1
j=r P(D1= j)

,

from (2.1), we get

f1(xs|x) =
s−1

∑
d=r

s−d−1

∑
ω=0

n−s

∑
q=0

A1[F(xs)]
s−d−ω+q−1[F(T1)]

ω+d f (xs)ψ j(T1), (10)

where

A1 =

(−1)ω+q(n− d)!

(

n
d

)(

s− d−1
ω

)(

n− s
q

)

(s− d−1)!(n− s)!
,

and

ψ j(T1) =
1

∑s−1
j=r

(

n
j

)

[

F(T1)
] j[

1−F(T1)
](n− j)

.

And, for xs > xr, we get

f2(xs|x) = f2(xs|xr) =
(n− r)!

(s− r−1)!(n− s)!

×
[F(xs)−F(xr)]

s−r−1[1−F(xs)]
n−s f (xs)

[1−F(xr)]n−r ,

with x = (x1, . . . ,xr), so, we can get

f2(xs|xr) =
s−r−1

∑
ω=0

n−s

∑
q=0

A2[F(xs)]
s−r−ω+q−1[F(xr)]

ω f (xs)

[1−F(xr)]n−r , (11)

with

A2 =

(−1)ω+q(n− r)!

(

s− r−1
ω

)(

n− s
q

)

(s− r−1)!(n− s)!
.
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Also, for xs > T2, we have

f3(xs|x) =
1

P(k ≤ D2 ≤ r∗−1)

r∗−1

∑
d=k

f (xs|,x,D2 = d)P(D2 = d),

=
r∗−1

∑
d=k

(n− d)!φd(T2)

(s− d−1)!(n− s)!

×
[F(xs)−F(T2)]

s−d−1[1−F(xs)]
n−s f (xs)

[1−F(T2)]n−d ,

with x = (x1, . . . ,xD2), φd(T2) =
P(D2=d)

∑r∗−1
j=k P(D2= j)

andr∗ = min(r,s). So, forxs > T2, we get

f3(xs|x) =
r∗−1

∑
d=k

s−d−1

∑
ω=0

n−s

∑
q=0

A3[F(xs)]
s−d−ω+q−1[F(T2)]

ω+d f (xs)ψ j(T2), (12)

where

A3 =

(−1)ω+q(n− d)!

(

n
d

)(

s− d−1
ω

)(

n− s
q

)

(s− d−1)!(n− s)!
,

and

ψ j(T2) =
1

∑r∗−1
j=k

(

n
j

)

[

F(T2)
] j[

1−F(T2)
](n− j)

.

Finally, for xs > xk, we have

f4(xs|x) = f (xs|xk) =
(n− k)!

(s− k−1)!(n− s)!

×
[F(xs)−F(xk)]

s−k−1[1−F(xs)]
n−s f (xs)

[1−F(xk)]n−k
,

with x = (x1, . . . ,xr), so, we can get

f4(xs|xk) =
s−k−1

∑
ω=0

n−s

∑
q=0

A4[F(xs)]
s−k−ω+q−1[F(xk)]

ω f (xs)

[1−F(xk)]n−k , (13)

where

A4 =

(−1)ω+q(n− k)!

(

s− k−1
ω

)(

n− s
q

)

(s− k−1)!(n− s)!
.

Upon substituting (1) and (2) in (10), (11), (12) and (13), we obtain the conditional density functions ofXs:n, given the
UHCS, as follows

f1(xs|x) =
s−1

∑
d=r

s−d−1

∑
ω=0

n−s

∑
q=0

A12αβ xs e−β x2
s [1− e−β x2

s ]α(s−d−ω+q)−1[1− e−β T2
1 ]α(ω+d)ψ j(T1), (14)

where

ψ j(T1) =
1

∑s−1
j=r

(

n
j

)

[

1− e−β T2
1
]αd[

1− (1− e−β T2
1 )α

](n−d)
,

f2(xs|xr) =
s−r−1

∑
ω=0

n−s

∑
q=0

A22αβ xs e−β x2
s [1− e−β x2

s ]α(s−r−ω+q)−1[1− e−β x2
r ]αω

[1− (1− e−β x2
r)α ]n−r

, (15)

c© 2018 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. Lett.5, No. 3, 103-118 (2018) /www.naturalspublishing.com/Journals.asp 107

f3(xs|x) =
r∗−1

∑
d=k

s−d−1

∑
ω=0

n−s

∑
q=0

A32αβ xs e−β x2
s [1− e−β x2

s ]α(s−d−ω+q)−1[1− e−β T2
2 ]α(ω+d)ψ j(T2), (16)

where

ψ j(T2) =
1

∑r∗−1
j=k

(

n
j

)

[

1− e−β T2
2
]αd[

1− (1− e−β T2
2 )α

](n− j)
,

and

f4(xs|xk) =
s−k−1

∑
ω=0

n−s

∑
q=0

A42αβ xs e−β x2
s [1− e−β x2

s ]α(s−k−ω+q)−1[1− e−β x2
k ]αω

[1− (1− e−β x2
k)α ]n−k

. (17)

From (8) and (9), we obtain the Bayesian predictive density function ofXs:n, given the UHCS as follows:

f ∗(xs|x) =



















f ∗1 (xs|x) if (R,C) = (D1,T1), for Case I,
f ∗2 (xs|x) if (R,C) = (r,xr:n), for Case II and Case IV,
f ∗3 (xs|x) if (R,C) = (D2,T2), for Case III and for Case V,
f ∗4 (xs|x) if (R,C) = (k,xk:n), for Case VI,

(18)

where, forxs > T1

f ∗1 (xs|x) =
∫ ∞

0

∫ ∞

0
f1(xs|x)π∗(α,β |x)dαdβ

=
s−1

∑
d=r

s−d−1

∑
ω=0

n−s

∑
q=0

∫ ∞

0

∫ ∞

0
A12αβ xs e−β x2

s [1− e−β x2
s ]α(s−d−ω+q)−1[1− e−β T2

1 ]α(ω+d)ψ j(T1)

×π∗(α,β |x)dαdβ ,

(19)

with x = (x1, . . .xD1). Forxs > xr,

f ∗2 (xs|x) =
∫ ∞

0

∫ ∞

0
f2(xs|x)π∗(α,β |x)dαdβ

=
s−r−1

∑
ω=0

n−s

∑
q=0

∫ ∞

0

∫ ∞

0

A22αβ xs e−β x2
s [1− e−β x2

s ]α(s−r−ω+q)−1[1− e−β x2
r ]αω

[1− (1− e−β x2
r)α ]n−r

×π∗(α,β |x)dαdβ ,

(20)

with x = (x1, . . . ,xr). Forxs > T2,

f ∗3 (xs|x) =
∫ ∞

0

∫ ∞

0
f3(xs|x)π∗(α,β |x)dαdβ

=
r−1

∑
d=k

s−d−1

∑
ω=0

n−s

∑
q=0

∫ ∞

0

∫ ∞

0
A32αβ xs e−β x2

s [1− e−β x2
s ]α(s−d−ω+q)−1[1− e−β T2

2 ]α(ω+d)ψ j(T2)

×π∗(α,β |x)dαdβ ,

(21)

with x = (x1, . . . ,xD2). And for xs > xk,

f ∗4 (xs|x) =
∫ ∞

0

∫ ∞

0
f4(xs|x)π∗(α,β |x)dαdβ

=
s−k−1

∑
ω=0

n−s

∑
q=0

∫ ∞

0

∫ ∞

0

A42αβ xs e−β x2
s [1− e−β x2

s ]α(s−k−ω+q)−1[1− e−β x2
k ]αω

[1− (1− e−β x2
k)α ]n−k

×π∗(α,β |x)dαdβ ,

(22)
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with x = (x1, . . . ,xk), for xs > xk.
From (18), for thesth future UHCS we obtain the predictive survival functionP(Xs > t|x) = F̄∗(t|x), for t ≥ 0, as follows

F̄∗(t|x) =



















F̄∗
1 (t|x) if (R,C) = (D1,T1), for Case I,

F̄∗
2 (t|x) if (R,C) = (r,xr:n), for Case II and Case IV,

F̄∗
3 (t|x) if (R,C) = (D2,T2), for Case III and for Case V,

F̄∗
4 (t|x) if (R,C) = (k,xk:n), for Case VI,

(23)

where
F̄i

∗
(t|x) =

∫ ∞

0

∫ ∞

0
h(xs|x)π∗(α,β |x)dαdβ , i = 1, 2, 3, 4, (24)

where

h(u|x) =



















h1(t|x) if (R,C) = (D1,T1), for Case I,
h2(t|x) if (R,C) = (r,xr:n), for Case II and Case IV,
h3(t|x) if (R,C) = (D2,T2), for Case III and for Case V,
h4(t|x) if (R,C) = (k,xk:n), for Case VI,

(25)

where
hi(xs|x) =

∫ ∞

t
fi(xs|x)dxs, i = 1, 2, 3, 4,

h1(xs|x) =
s−1

∑
d=r

s−d−1

∑
ω=0

n−s

∑
q=0

A1

[

1−
(

1− e−β t2
)α(s−d−ω+q)

]

[1− e−β T2
1 ]α(ω+d)ψ j(T1)

(s− d−ω + q)
, (26)

h2(xs|xr) =
s−r−1

∑
ω=0

n−s

∑
q=0

A2

[

1−
(

1− e−β t2
)α(s−r−ω+q)

]

[1− e−β x2
r ]αω

[1− (1− e−β x2
r)α ]n−r(s− r−ω + q)

, (27)

h3(xs|x) =
r∗−1

∑
d=k

s−d−1

∑
ω=0

n−s

∑
q=0

A3

[

1−
(

1− e−β t2
)α(s−d−ω+q)

]

[1− e−β T2
2 ]α(ω+d)ψ j(T2)

(s− d−ω + q)
, (28)

and

h4(xs|xk) =
s−k−1

∑
ω=0

n−s

∑
q=0

A4

[

1−
(

1− e−β t2
)α(s−k−ω+q)

]

[1− e−β x2
k ]αω

[1− (1− e−β x2
k)α ]n−k(s− k−ω + q)

. (29)

Then, the Bayesian predictive bounds of a two-sided equi-tailed 100(1− γ)% interval forXs:n, R < s ≤ n, can be obtained
by solving the following two equations:

F̄∗(LXs:n |x) = 1−
γ
2

and F̄∗(UXs:n |x) =
γ
2
, (30)

whereF̄∗(t|x) is given as in (23), andLXs:n andUXs:n indicate the lower and upper bounds, respectively.

2.2 Two-sample Bayesian prediction

Let Y1:m ≤ Y2:m ≤ . . .≤ Ym:m be the order statistics from a future random sample of sizem from the same population. We
develop in this section a general procedure for deriving theinterval predictions forYs:m, 1≤ s ≤ m for ER distribution
based on UHCS. It is well known that the marginal density function of thesth order statistic from a sample of sizem from
a continuous distribution with CDFF(x) and PDFf (x) is given by

fYs:m (ys|θ ) =
m!

(s−1)!(m− s)!
[F(ys)]

s−1[1−F(ys)]
m−s f (ys),

=
m−s

∑
q=0

(−1)q

(

m− s
q

)

m!

(s−1)!(m− s)!
[F(ys)]

s+q−1 f (ys), (31)
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whereys > 0 and 1≤ s ≤ m, see Arnold et al. [26].
Upon substituting (1) and (2) in (31), the marginal density function ofYs:m becomes

fYs:m(ys|α,β ) =
m−s

∑
q=0

(−1)q

(

m− s
q

)

m!

(s−1)!(m− s)!
[1− e−β y2

s ]α(s+q−1)2αβ ys e−β y2
s
[

1− e−β y2
s
]α−1

,

fYs:m (ys|α,β ) =
m−s

∑
q=0

(−1)q

(

m− s
q

)

m!

(s−1)!(m− s)!
2αβ ys e−β y2

s [1− e−β y2
s ]α(s+q)−1

, (32)

From (8) and (32), we obtain the Bayesian predictive density function ofYs:m, given the UHCS as follows:

f ∗(ys|x) =
∫ ∞

0

∫ ∞

0
f (ys|x)π∗(α,β |x)dαdβ ,

f ∗(ys|x) =
m−s

∑
q=0

(−1)q

(

m− s
q

)

m!

(s−1)!(m− s)!

∫ ∞

0

∫ ∞

0
2αβ ys e−β y2

s [1− e−β y2
s ]α(s+q)−1

×π∗(α,β |x)dαdβ .

(33)

The predictive survival function̄F∗
Ys:m

(t|x), for t ≥ 0

F̄∗(t|x) =
∫ ∞

0

∫ ∞

0
h(ys|x)π∗(α,β |x)dαdβ , (34)

where

h(ys|x) =
∫ ∞

t
f (ys|x)dys,

h(ys|x) =
m−s

∑
q=0

(−1)q

(

m− s
q

)

m!

(s−1)!(m− s)!(s+ q)

[

1−
(

1− e−β t2)α(s+q)
]

, (35)

Then, the Bayesian predictive bounds of a two-sided equi-tailed 100(1− γ)% interval forys:n, 1 ≤ s ≤ m, can be
obtained by solving the following two equations:

F̄∗(LYs:n |x) = 1−
γ
2

and F̄∗(UYs:n |x) =
γ
2
, (36)

whereF∗
Ys:m

(t|x) is given as in (34), andLYs:n andUYs:n indicate the lower and upper bounds, respectively.
It is evident that is not possible to compute (24) and (34) analytically. Then, we suggested using MCMC method for
constructing the Bayesian prediction intervals.

3 MCMC Method

We suggested using MCMC to generate(α,β ) from the posterior density function (8). The
Metropolis-Hastings-within-Gibbs sampling is given as follow:

Algorithm 3.1

1.Take some initial guess ofα andβ , sayα(0) andβ (0) respectively, M = burn-in.
2.Set j = 1.

3.Generateα( j) from Gamma(a1+R,b1−∑R
i=1 ln(1− e−β ( j−1)x2

i )).
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4.Using Metropolis-Hastings see Metropolis et al. [27], generateβ ( j) from π∗
2(β |α,x) with theN(β ( j−1),σ2) proposal

distribution whereσ2 is the variance ofβ obtained using variance-covariance matrix.
(i) Calculate the acceptance probability

r = min

[

1,
π∗

2(β
∗|α j

,x)
π∗

2(β j−1|α j ,x)

]

. (37)

(ii) Generateu from a Uniform(0,1) distribution.
(iii) If u ≤ r, accept the proposal and setβ i = β ∗, else setβ i = β i−1.

5.Computeα( j) andβ ( j).
6.Set j = j+1.
7.Repeat steps 3−6 N times and obtainα( j) andβ ( j) where j = M+1, ...,N.
8.In case of one-sample Bayesian prediction, the approximate value of
∫ ∞

0

∫ ∞
0 h(xs|x)π∗(α,β |x)dαdβ is obtained as

∫ ∞

0

∫ ∞

0
h(xs|x)π∗(α,β |x)dαdβ =

1
N −M

N

∑
i=M+1

h(xs|x),

where

h(t|x) =



















h1(t|x), for Case I,
h2(t|x), for Case II and Case IV,
h3(t|x), for Case III and for Case V,
h4(t|x), for case VI.

9.In case of two-sample Bayesian prediction, the approximate value of
∫ ∞

0

∫ ∞
0 h(ys|x)π∗(α,β |x)dαdβ is obtained as

∫ ∞

0

∫ ∞

0
h(ys|x)π∗(α,β |x)dαdβ =

1
N −M

N

∑
i=M+1

h(ys|x),

where

h(ys|x) =
m−s

∑
q=0

(−1)q

(

m− s
q

)

m!

(s−1)!(m− s)!(s+ q)

[

1−
(

1− e−β t2)α(s+q)
]

.

4 Real Life Data

We have taken the daily average wind speeds from 1 / 3 / 2015 to 30 / 3 / 2015 for Cairo city as follows:

4.3 5.2 3.7 4.7 5.9 6.8 3.1 3.2 4.4 7.6 11.3 5.0 3.2 4.5 6.2
5.7 6.5 5.6 4.0 3.4 5.2 3.4 6 7.8 8.8 8.5 4.1 4.6 5.3 5.2.

This data was produced by the national climatic data center (NCDC) in Asheville in the United States of America. Now,
one of the most important subjects is type of distribution ofany set of data will be known during statistical tests which
are called the goodness of fit. We depended on Kolmogorov-Smirnov (K-S) test to fit whether the data distribution as
ER distribution or not. The calculated value of the K-S test is 0.102956 for the ER distribution and this value is smaller
than their corresponding values expected at 5% significancelevel, which is 0.24175 atn = 30. We have just plotted the
empiricalS(t) and the fittedS(t) in Figure (1). Observe that the ER distribution can be a good model fittingthis data. In
Figure (2) we present the P-P plot for this data. This plot shows a strong relationship supporting the appropriateness of
the ER distribution. So, it can be seen that the ER distribution fits the data very well. P-value = 0.876157, therefore, the
high p-value indicates that ER distribution can be used to analyze this data set.

Now, we consider the case when the data are censored. We have six cases as following:
Case I:T1 = 5.25,T2 = 5.8,k = 15,r = 16. In this case:R = 17,C = T1 = 5.25.
Case II:T1 = 5.25,T2 = 5.8,k = 16,r = 18. In this case:R = 18,C = xr:n = 5.5.
Case III:T1 = 5.65,T2 = 5.8,k = 18,r = 21. In this case:R = 20,C = T2 = 5.8.
Case IV:T1 = 5.75,T2 = 6.7,k = 21,r = 22. In this case:R = 22,C = xr:n = 6.1.
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Fig. 1: Empirical and fitted survival functions.

Fig. 2: P−P plot compare data to a specific distribution.

Case V:T1 = 5.95,T2 = 6.4,k = 22,r = 24. In this case:R = 23,C = T2 = 6.4.
Case VI:T1 = 5.95,T2 = 6.4,k = 25,r = 26. In this case:R = 25,C = xk:n = 7.

Based on the above six UHCS, we used the results presented earlier in Section 2 to construct 95% one-sample Bayesian
prediction intervals for future order statisticsXs:n, from the same sample as well as 95% two-sample Bayesian prediction
intervals for future order statisticsYs:m, wheres = 1,2, . . . ,20, from a future unobserved sample with sizem = 20. To
examine the sensitivity of the Bayesian prediction intervals with respect to the hyper-parameters(a1,a2,b1,b2), we used
two different choices of the hyper-parameters Prior 1(a1,a2,b1,b2) = (0,0,0,0), Prior 2(a1,a2,b1,b2) = (0.9,0.4,4,5).
Tables1, 2, 3, 4, 5 and6 presents the results for one-sample predictions, for two choices of the hyper-parameters and
Tables7, 8, 9, 10, 11 and12 presents the results for two-sample predictions, for two choices of the hyper-parameters. In
all casesα = 3.0746 andβ = 0.0567 are considered.
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Table 1: 95% One-sample Bayesian prediction bounds forXs:n, s= 18, . . . ,30 from the ER distribution in Case I of UHCS
for C = 5.25 andR = 17.

Prior 1 Prior 2
s Lower Upper Length Lower Upper Length

18 5.2583 6.7420 1.4837 5.2597 6.9283 1.6686
19 5.2688 7.3699 2.1011 5.2711 7.5346 2.2634
20 5.2876 8.2001 2.9124 5.2897 8.5011 3.2114
21 5.3178 9.2626 3.9448 5.3246 9.7108 4.3861
22 5.3674 10.1791 4.8116 5.3777 10.752 5.3748
23 5.4614 11.5279 6.0664 5.4746 11.9939 6.5192
24 5.6195 12.345 6.7255 5.6400 13.2272 7.5871
25 5.8347 13.4844 7.6496 5.8809 14.5485 8.6675
26 6.1227 15.9364 9.8136 6.2222 16.6770 10.4548
27 6.5059 16.9762 10.4702 6.7299 18.7970 12.0671
28 6.9712 19.0909 12.1197 7.2480 20.6904 13.4423
29 7.4873 22.1440 14.6567 7.8949 24.2879 16.3930
30 8.4439 29.3684 20.9245 8.9541 33.1461 24.1920

Table 2: 95% One-sample Bayesian prediction bounds forXs:n, s = 19, . . . ,30 from the ER distribution in Case II of
UHCS forC = 5.5 andR = 18.

Prior 1 Prior 2
s Lower Upper Length Lower Upper Length

19 5.5078 6.8626 1.3547 5.5092 7.0546 1.5454
20 5.5753 7.7084 2.1331 5.5899 8.0472 2.4572
21 5.6864 8.5074 2.8210 5.7325 9.0336 3.3011
22 5.8361 9.2688 3.4327 5.9142 9.9399 4.0257
23 6.0033 10.3284 4.3250 6.1294 11.2708 5.1413
24 6.1987 11.149 4.9502 6.3603 12.1335 5.7731
25 6.4379 12.3422 5.9043 6.6491 13.5354 6.8862
26 6.6984 13.6546 6.9560 6.9337 14.5700 7.6362
27 6.9858 14.9344 7.9485 7.3050 16.8767 9.5716
28 7.4393 17.9919 10.5525 7.7752 18.3696 10.5944
29 7.8649 19.1721 11.3071 8.4182 22.5021 14.0838
30 8.5891 25.1613 16.5722 9.3513 27.6087 18.2574

Table 3: 95% One-sample Bayesian prediction bounds forXs:n, s = s = 21, . . . ,30 from the ER distribution in Case III of
UHCS forC = 5.8 andR = 20.

Prior 1 Prior 2
s Lower Upper Length Lower Upper Length

21 5.2449 7.8110 2.5661 5.7065 8.1813 2.4747
22 5.9905 8.3729 2.3824 6.0404 8.8870 2.8465
23 6.1352 9.0416 2.9064 6.2106 9.6706 3.4600
24 6.2937 9.7166 3.4229 6.4077 10.4150 4.0072
25 6.4693 10.2314 3.7619 6.6601 11.4072 4.7471
26 6.6725 11.381 4.7084 6.8926 12.227 5.3348
27 6.9541 12.0946 5.1403 7.2595 13.7240 6.4644
28 7.2638 13.6558 6.3920 7.6520 15.3159 7.6638
29 7.6517 15.4312 7.7794 8.1007 17.3353 9.2345
30 8.2676 18.8062 10.5386 8.8844 21.1293 12.2448
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Table 4: 95% One-sample Bayesian prediction bounds forXs:n, s = 23, . . . ,30 from the ER distribution in Case IV of
UHCS forC = 6.1 andR = 22.

Prior 1 Prior 2
s Lower Upper Length Lower Upper Length

23 6.1068 7.1587 1.0519 6.1089 7.4516 1.3427
24 6.1672 7.8078 1.6405 6.1890 8.3082 2.1191
25 6.2772 8.4225 2.1453 6.3321 9.0594 2.7272
26 6.4316 9.1828 2.7511 6.5345 9.9564 3.4218
27 6.6316 9.9974 3.3657 6.7944 11.0657 4.2711
28 6.8780 11.0606 4.1825 7.1092 12.2021 5.0927
29 7.2102 12.4691 5.2588 7.5622 14.1063 6.5440
30 7.7321 15.1425 7.4103 8.2822 17.7015 9.4192

Table 5: 95% One-sample Bayesian prediction bounds forXs:n, s = 24, . . . ,30 from the ER distribution in Case V of
UHCS forC = 6.4 andR = 23.

Prior 1 Prior 2
s Lower Upper Length Lower Upper Length

24 6.4612 7.9386 1.4773 6.3306 8.3850 2.0543
25 6.5614 8.5094 1.9480 6.6173 9.1825 2.5651
26 6.7007 9.1668 2.4661 6.7966 9.8963 3.0997
27 6.8818 9.9120 3.0302 7.0317 10.8972 3.8653
28 7.1177 10.9309 3.8132 7.3343 12.0055 4.6712
29 7.4088 12.1345 4.7256 7.7568 13.7806 6.0237
30 7.9421 14.8530 6.91079 8.4071 17.1061 8.6989

Table 6: 95% One-sample Bayesian prediction bounds forXs:n, s = 26, . . . ,30 from the ER distribution in Case VI of
UHCS forC = 7 andR = 25.

Prior 1 Prior 2
s Lower Upper Length Lower Upper Length

26 7.0079 8.1991 1.1912 7.0107 8.5847 1.5740
27 7.0825 8.9853 1.9028 7.1106 9.5881 2.4775
28 7.2311 9.8379 2.6068 7.3158 10.7799 3.4640
29 7.4641 11.0639 3.5996 7.6372 12.2854 4.64812
30 7.8835 13.6134 5.7298 8.1856 15.2973 7.1116
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Table 7: 95% Two-sample Bayesian prediction bounds forYs:m, s = 1, . . . ,20 from the ER distribution in Case I of UHCS
for C = 5.25 andR = 17.

Prior 1 Prior 2
s Lower Upper Length Lower Upper Length
1 0.0047 2.7823 2.7775 0.0034 2.2532 2.2497
2 0.0943 3.4682 3.3739 0.0470 3.0289 2.9819
3 0.2517 4.0598 3.8080 0.1435 3.6829 3.5394
4 0.4080 4.5832 4.1751 0.2901 4.3263 4.0362
5 0.7321 5.0964 4.3642 0.5065 4.9353 4.4287
6 1.1015 5.5837 4.4822 0.7512 5.5848 4.8335
7 1.4089 6.2402 4.8313 1.0200 6.3202 5.3002
8 1.7798 6.8334 5.0536 1.3828 6.9364 5.5535
9 2.1378 7.5092 5.3714 1.6952 7.8231 6.1278
10 2.5392 8.3284 5.7892 2.1461 8.5926 6.4465
11 2.9822 8.9162 5.9340 2.5777 9.5093 6.9315
12 3.3911 10.2106 6.8194 3.0177 10.3971 7.3794
13 3.8008 11.4846 7.6837 3.4719 11.3975 7.9255
14 4.2480 12.6501 8.4020 3.9764 12.9553 8.9788
15 4.7236 13.7418 9.0181 4.5015 14.5857 10.0842
16 5.1912 14.8206 9.6294 5.0134 15.8043 10.7909
17 5.6756 18.3652 12.6896 5.6404 17.7703 12.1299
18 6.2409 19.1960 12.955 6.3639 21.0906 14.7267
19 6.9423 22.6758 15.7334 7.1269 25.6580 18.5310
20 7.8467 28.5914 20.7446 8.3482 30.4278 22.0795

Table 8: 95% Two-sample Bayesian prediction bounds forYs:m, s= 1, . . . ,20 from the ER distribution in Case II of UHCS
for C = 5.5 andR = 18.

Prior 1 Prior 2
s Lower Upper Length Lower Upper Length
1 0.0219 2.8943 2.8724 0.0064 2.3619 2.3554
2 0.1517 3.5479 3.3962 0.0697 3.1071 3.0373
3 0.3948 4.1010 3.7062 0.2046 3.7296 3.5249
4 0.6132 4.5978 3.9846 0.3968 4.3346 3.9378
5 0.8952 5.0764 4.1811 0.6346 4.8993 4.2647
6 1.2430 5.5586 4.3156 0.8966 5.4639 4.5672
7 1.6165 6.0555 4.4390 1.2181 6.0637 4.8455
8 1.9622 6.5984 4.6362 1.5414 6.6995 5.1581
9 2.3633 7.1676 4.8043 1.9439 7.3426 5.3987
10 2.7050 7.8464 5.1414 2.2903 8.0986 5.8082
11 3.0846 8.6862 5.6015 2.7206 8.8536 6.1330
12 3.5044 9.1350 5.6305 3.1601 9.7162 6.5561
13 3.9189 10.0689 6.1499 3.5765 10.5035 6.9269
14 4.3321 10.7794 6.4472 4.0803 11.7723 7.6920
15 4.7708 12.3505 7.5796 4.5209 13.3308 8.8098
16 5.1907 13.0916 7.9008 5.0423 14.1968 9.1544
17 5.6865 14.2786 8.5920 5.5992 15.8504 10.2511
18 6.2113 16.7492 10.5379 6.2725 17.8564 11.5839
19 6.8266 19.2227 12.3961 6.9966 20.8534 13.8568
20 7.7594 23.8182 16.0588 8.2385 27.2911 19.0525
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Table 9: 95% Two-sample Bayesian prediction bounds forYs:m, s = 1, . . . ,20 from the ER distribution in Case III of
UHCS forC = 5.8 andR = 20.

Prior 1 Prior 2
s Lower Upper Length Lower Upper Length
1 0.1088 3.1312 3.0224 0.0330 2.5665 2.5334
2 0.4058 3.7306 3.3248 0.1939 3.2673 3.0734
3 0.7136 4.1851 3.4715 0.4061 3.8140 3.4079
4 1.0805 4.6026 3.5221 0.6722 4.3183 3.6460
5 1.3967 5.0000 3.6033 0.9710 4.7896 3.8186
6 1.7639 5.3712 3.6072 1.2692 5.2826 4.0133
7 2.0900 5.7849 3.6949 1.5881 5.7461 4.1579
8 2.3934 6.1904 3.7969 1.9368 6.2483 4.3114
9 2.7925 6.5972 3.8046 2.2729 6.7552 4.4822
10 3.1013 7.0491 3.9477 2.6255 7.2798 4.6543
11 3.4066 7.6401 4.2335 2.9659 7.9730 5.0071
12 3.7650 8.1504 4.3854 3.3500 8.5213 5.1712
13 4.1000 8.5667 4.4666 3.7457 9.0178 5.2721
14 4.4469 9.1987 4.7518 4.1286 10.1122 5.9835
15 4.8046 10.0141 5.2094 4.5456 10.8188 6.2731
16 5.1599 10.9094 5.74947 5.0187 11.9029 6.8842
17 5.5439 11.7243 6.1803 5.4879 13.0679 7.5799
18 5.9772 12.6954 6.7182 6.0633 15.0606 8.9972
19 6.5780 14.5732 7.9952 6.7372 16.8791 10.1419
20 7.2556 17.9675 10.7119 7.7747 20.9054 13.1307

Table 10: 95% Two-sample Bayesian prediction bounds forYs:m, s = 1, . . . ,20 from the ER distribution in Case IV of
UHCS forC = 6.1 andR = 22.

Prior 1 Prior 2
s Lower Upper Length Lower Upper Length
1 0.2746 3.3610 3.0863 0.08142 2.7572 2.6757
2 0.7673 3.8809 3.1136 0.3472 3.3948 3.0475
3 1.1544 4.2752 3.1208 0.6728 3.8960 3.2231
4 1.51208 4.63518 3.1231 0.9608 4.3400 3.3791
5 1.8689 4.9598 3.0908 1.2958 4.7463 3.4505
6 2.2360 5.2782 3.0422 1.5871 5.1580 3.5709
7 2.5176 5.5865 3.0688 1.9004 5.5619 3.6615
8 2.8301 5.9019 3.0718 2.2432 5.9870 3.7437
9 3.1291 6.2749 3.1458 2.5508 6.4184 3.8675
10 3.4209 6.6192 3.1983 2.8730 6.9029 4.0299
11 3.6865 7.0051 3.3185 3.2024 7.3317 4.1293
12 3.9645 7.4670 3.5025 3.5274 7.8424 4.3149
13 4.2596 7.8439 3.5842 3.8797 8.3816 4.5018
14 4.5372 8.2571 3.7199 4.2300 8.9940 4.7639
15 4.8338 8.8411 4.0073 4.5996 9.6926 5.0930
16 5.1392 9.5823 4.4431 4.9733 10.4600 5.4866
17 5.4791 10.2492 4.7700 5.4374 11.3847 5.9472
18 5.8727 11.1925 5.3198 5.9062 12.6783 6.7719
19 6.3370 12.7138 6.3767 6.5415 14.2753 7.7337
20 7.0154 15.1784 8.1630 7.3999 17.7655 10.3656
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Table 11: 95% Two-sample Bayesian prediction bounds forYs:m, s = 1, . . . ,20 from the ER distribution in Case V of
UHCS forC = 6.4 andR = 23.

Prior 1 Prior 2
s Lower Upper Length Lower Upper Length
1 0.3710 3.4431 3.0720 0.1130 2.8377 2.7247
2 0.8856 3.9499 3.0643 0.43709 3.4643 3.0272
3 1.3199 4.3234 3.0035 0.7548 3.9408 3.1860
4 1.7200 4.6635 2.9434 1.0806 4.3740 3.2934
5 2.0484 4.9711 2.9226 1.3964 4.7750 3.3785
6 2.3724 5.2828 2.9103 1.7484 5.1605 3.4120
7 2.6719 5.5981 2.9261 2.0154 5.5651 3.5496
8 2.9325 5.9296 2.9971 2.3499 5.9619 3.6119
9 3.1970 6.2686 3.0716 2.6710 6.3472 3.6762
10 3.5109 6.5690 3.0581 2.9820 6.7342 3.7522
11 3.7713 6.8873 3.1160 3.2828 7.2376 3.9548
12 4.0564 7.2944 3.2379 3.6162 7.6657 4.0495
13 4.3109 7.7044 3.3934 3.9549 8.2125 4.2576
14 4.5857 8.1957 3.6099 4.2866 8.8544 4.5677
15 4.8666 8.5364 3.6698 4.6291 9.3400 4.7109
16 5.1851 9.2926 4.1075 5.0097 10.1861 5.1763
17 5.4844 9.9110 4.4265 5.4172 10.9506 5.5333
18 5.8770 10.8206 4.9436 5.8811 12.0961 6.2150
19 6.3348 12.2402 5.9052 6.4967 13.7538 7.2571
20 6.9785 14.5531 7.5745 7.3661 16.9324 9.5663

Table 12: 95% Two-sample Bayesian prediction bounds forYs:m, s = 1, . . . ,20 from the ER distribution in Case VI of
UHCS forC = 7 andR = 25.

Prior 1 Prior 2
s Lower Upper Length Lower Upper Length
1 0.5922 3.5937 3.0015 0.1969 2.9956 2.7987
2 1.2016 4.0698 2.8683 0.6017 3.5832 2.9814
3 1.6310 4.4113 2.7802 0.9785 4.0366 3.0581
4 2.0469 4.7313 2.6844 1.3310 4.4188 3.0877
5 2.3623 5.0166 2.6543 1.6662 4.8032 3.1369
6 2.6377 5.3135 2.6758 1.9735 5.1521 3.1786
7 2.9158 5.5782 2.6624 2.2746 5.5179 3.2432
8 3.2096 5.8618 2.6521 2.5922 5.8564 3.2642
9 3.4600 6.1374 2.6773 2.8724 6.2224 3.3499
10 3.7113 6.4094 2.6980 3.1753 6.5925 3.4171
11 3.9357 6.7696 2.8338 3.4726 7.0084 3.5357
12 4.2030 7.0554 2.8523 3.7720 7.4056 3.6335
13 4.4330 7.4358 3.0028 4.0689 7.8494 3.7805
14 4.6873 7.8827 3.1953 4.3806 8.2952 3.9145
15 4.9552 8.2799 3.3247 4.7046 8.9168 4.2121
16 5.2168 8.7480 3.5312 5.0626 9.5966 4.5340
17 5.5151 9.3342 3.8190 5.4338 10.3184 4.8846
18 5.8473 10.1979 4.3505 5.8722 11.2973 5.4250
19 6.2772 11.2341 4.9568 6.4446 12.8177 6.3729
20 6.8876 13.4857 6.5980 7.1927 15.4572 8.2644
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5 Conclusion

1.From Tables1−6 and7−12, we notic that, whens increase the lower and upper increase.
2.It is clear from Tables1, 2, 3, 4, 5 and6 that, the lower bounds are relatively insensitive to the specification of the

hyper-parameters(a1,a2,b1,b2) while the upper bounds are somewhat sensitive.
3.It is clear from Tables7, 8, 9, 10, 11 and12 that, the lower and upper bounds are sensitive to the specification of the

hyper-parameters(a1,a2,b1,b2).
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