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Abstract: In recent work, the operator method and other methods have been introduced to solve the sequential linear conformable
differential equations with constant coefficients. This paper deals with the analytic candidate solutions of the conformable differential
equations. The conformable integral operator is the main key of this paper and is an additional method to get the candidate solutions of
the conformable differential equations. Several examplesare given to illustrate our main results of this paper.
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1 Introduction

During the last years, much work gave some important resultsabout the role of fractional calculus in physics, control
engineering and signal processing [1,2,3,4,5,6]. There exist various fractional derivative operators in fractional calculus
as: Riemann-Liouville fractional derivative [7], Caputo fractional derivative [7], Atangana-Baleanu fractional derivative in
Caputo sense and Riemann-Liouville sense [8], Atangana Koca fractional derivative, Caputo-Fabrizio fractional derivative
[9], and other.

Recently conformable derivative operator was introduced in the literature by Khalil [10]. Many problems appear with
this conformable derivative operator. Cauchy problem is known very important in many field of science and engineering.
This paper contribute also to give solution for Cauchy problem in the context of conformable differential equations.

Finding the solution of the conformable differential equations with or without perturbation terms play important role
in the stability analysis. Many results to get the candidatesolutions of the conformable differential equations can befound
in [5,11]. But there are many other classes of the differential equations of which we do not have the explicit solutions.
There are many methods to get the analytic candidate solutions of the conformable differential equations, we can cite:
the Lie symmetry method, the Invariant subspace method [12], the Wronskianand [13], Abel’s formula [14], D’Alambert
approach [14] and others.

This paper deals with the analytic candidate solutions of the conformable differential equations. We give the candidate
solutions of the particular class of the conformable differential equations. Here we use conformable integral operator to
get the analytic candidate solutions of the conformable differential equations.

The paper is organized as follows : in section2, after recalling some necessary definitions, we describe the classes of
the conformable differential equations, and provide our main results. In section4, we give some numerical examples to
illustrate our main results.

2 Preliminary Concepts and Main Results

2.1 Preliminary definitions

In this section, we introduce some definitions of the fractional calculus and several lemmas. We use them to establish the
main results in this paper. We begin by recalling the conformable derivative operator introduced by Khalil and al. in [10].
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494 N. Sene: Solutions for some conformable differential equations

We prove conformable derivative operator is not in general monotone.
Definition 1 Given a functionf : [0,+∞[−→R. Then the conformable derivative off of orderα is defined by

Tα( f )(t) = lim
ε→0

f (t + εt1−α)− f (t)
ε

(1)

all t > 0, α ∈ (0,1) . If f is α-differentiable in(0,a) , a> 0, and limε→0+ f (α)(t) exists, then define

f (α)(0) = lim
ε→0+

f (α)(t).

Definition 2 We denote byC∞ ((0,+∞),Rn) the set of functiony ∈ C∞ ((0,+∞),Rn) such thatTα(y)(t) exists and is
continuous on(0,+∞).
Lemma 1Let α ∈ (0,1) and f is α-differentiable at pointt > 0. If f is differentiable, then

Tα( f )(t) = t1−α d f
dt

. (2)

From expression given by (2), it is clear ifα = 1, we recover the classical derivative. Khalil’s definition ofconformable
derivative satisfies the following properties (see [10] for details):
Lemma 2Let α ∈ (0,1) and f , g beα-differentiable at pointt > 0. Then

1.Tα(a f +bg) = aTα( f )+bTα(g) for all constanta,b∈R.
2.Tα(λ ) = 0, for all constant functionf (t) = λ .
3.Tα( f g) = f Tα (g)+gTα( f ).

4.Tα(
f
g ) =

f Tα (g)−gTα ( f )
g2 .

5.The following triangular inequality:
Tα(| f +g|)≤ Tα (| f |)+Tα (|g|) (3)

does not in general hold.

We give the following counterexample to illustrate the items (5). The proof of the other items can be found in [10].
Counterexample: To see that, let the functionf (t) = t2 andg(t) = t on interval[0,1] , we have that| f | = f ≤ g≤ |g|.
But Tα (| f |)(1) = 2 andTα (|g|)(1) = 1. And remark thatTα (|g|) (1)≤ Tα (| f |)(1). ThenTα is not a monotone operator.
In this condition the triangular inequality is not satisfied.
Definition 3 The conformable integral starting froma of a function f of orderα ∈ (0,1] is defined by

Ia
α f (t) =

∫ t

a
xα−1 f (x)dx. (4)

Lemma 3Let α ∈ (0,1] and f is any continuous function in a domain ofIα , for t > a we have

Tα Ia
α( f )(t) = f (t). (5)

Consequently, it follows that
Lemma 4 Let α ∈ (0,1] and f is any continuous function in a domain ofIα , for t > a we have

d
dt

[Ia
α( f )(t)] =

f (t)
t1−α . (6)

This lemma is fundamental to get the analytic solution of theconformable differential equations.
Definition 4 The conformable exponential function is defined for everys≥ 0 by

Eα (λ ,s) = exp

(

λ
sα

α

)

, (7)

whereα ∈ (0,1) andλ ∈ R.

2.2 Main results

The similar conformable differential equations were solved in [15,16,17,18], and the methods used to solve these
equations use some transformations. We can cite, for example the operator method. In this paper, we solve the
conformable differential equations using the conformableintegral operator (an additional method) rather than
transforming it into an ordinary one with a singularity.
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2.2.1 Conformable differential equations of orderα

We are now ready to state the main results of this paper on the conformable differential equations called here ”the
conformable differential equations of orderα”. Generally the conformable differential equations of order α which we
consider in this paper is mathematically represented by thefollowing form

Tα(y)+ f (t)y= g(t), (8)

where 0< α < 1, y∈ Rn, Tα(y) denotes the conformable derivative ofy and f ,g : R→ R areα-differentiable functions.
If α = 1 we recover the classical differential equations of first order expressed asy′+ f (t)y= g(t). We first take the case
in whichg= 0. The particular conformable differential equation whichwe obtain is

Tα(y)+ f (t)y= 0. (9)

The conformable differential equation defined by (9) is called the homogeneous differential equation. We have the
following result.
Theorem 1 The homogeneous solution of the conformable differential equation (9) is given by

yh(t) = y0e−I0
α ( f )(t).

where f is any continuous function in the domain ofI0
α .

Proof: To prove Theorem 1, we have just verified that the equation (9) is satisfied by getting the function
y(t) = y0e−I0

α ( f )(t). By replacing above candidate solution into the conformabledifferential equation (9), and using the
Lemma 4, we get :

Tα(yh)+ f (t)yh = y0t
1−α d

dt

[

e−I0
α ( f )(t)

]

+ y0e
−I0

α ( f )(t)

= −y0t
1−α d

dt

[

I0
α( f )(t)

]

e−I0
α ( f )(t)+ y0 f (t)e−I0

α ( f )(t)

= −y0t
1−α f (t)

t1−α e−I0
α ( f )(t)+ y0 f (t)e−I0

α ( f )(t)

= 0.

Then we conclude that the homogeneous solution of the conformable differential equation (9) is given by
yh(t) = y0e−I0

α ( f )(t). That ends the proof of Theorem 1.
To get the general solution of the conformable differentialequation defined by (9), we calculate particular solutionyp
obtained by the following theorem.
Theorem 2 The particular solution of the conformable differential equation (9) is given by

yp(t) = λ (t)e−I0
α ( f )(t),

wheref is any continuous function in the domain ofI0
α and the functionλ : R→R is obtained by the following condition

λ (t) = I0
α(g(t)e

I0
α ( f )(t)).

Proof: To prove this theorem, we have just verified that the equation (9) is satisfied by getting the functionyp(t) =

λ (t)e−I0
α ( f )(t). Replacing above candidate solution into the conformable differential equation (9), and using the Lemma 4,

we have that:

Tα(yp)+ f (t)yp = Tα(I
0
α(g(t)e

−I0
α ( f )(t))e−I0

α ( f )(t)))+ f (t)I0
α(g(t)e

I0
α ( f )(t))e−I0

α ( f )(t)

= g(t)e0− I0
α(g(t)e

−I0
α ( f )(t)) f (t)e−I0

α ( f )(t)+ f (t)I0
α(g(t)e

−I0
α ( f )(t))e−I0

α ( f )(t)

= g(t).

Then we conclude that the particular solution of the conformable differential equation (9) is given by
yp(t) = λ (t)e−Iα ( f )(t). That ends the proof of Theorem 2.
The general candidate solution of the conformable differential equations defined by (9) is given by the following

y(t) = yh(t)+ yp(t).
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2.2.2 Conformable differential equations of order 2α

In this section, we are ready to state the main results on the differential equations called here ”the conformable differential
equations of order 2α”. Generally the conformable differential equations of order 2α which we consider in this paper are
mathematically represented by the following form

T(2)
α (y)+aTα(y)+by= 0, (10)

where a,b ∈ R, 0 < α ≤ 1, Tα(y) denotes the conformable derivative of theα-differentiable function y,

T(2)
α (y) = Tα(Tα(y)). We make the following theorems.

Theorem 3 If a+1= 0 andb= 0 then the candidate solution of the conformable differential equation (10) is given by

y(t) = y0e−a tα
α .

Proof: Let Tα(y) = w, equation (10) becomesTα(w) + aw= 0 whose solution is given by applying Theorem 1. Then

w(t) = w0e−a tα
α . To get the solutiony we apply the inverse operatorI0

α and we obtain

y(t) = I0
α(w0e−a tα

α ) = y0e−a tα
α .

Theorem 4 If the characteristic equation of (10) defined byr2+ar+b= 0 have two distinct solutionsr1 andr2 then the
candidate solution of the conformable differential equation (10) is given by

y(t) = Aer1
tα
α +Ber2

tα
α .

Proof: Let r1 ∈ C and r2 ∈ C be two solutions of the characteristic equation of (10) defined byr2 + ar + b = 0. Let

y = zer1
tα
α , then Tα(y) = [Tα(z)+ r1z]er1

tα
α and Tα(Tα(y)) =

[

Tα(Tα(z))+2r1Tα(z)+ r2
1z
]

er1
tα
α . Replacing into the

conformable differential equation (10), we have that

T(2)
α (y)+aTα(y)+by= [Tα(Tα(z))+ (2r1+a)Tα(z)]e

r1
tα
α = 0.

We can observe ify is the solution of (10) thenT(z) is also the solution of the conformable differential equation of order
α defined byTα(w)+ (2r1+a)w= 0. Using the fact that 2r1+a= r1− r2, we obtain

Tα(w)+ (r1− r2)w= 0,

whose solution is obtained using the conformable integral operator

w(t) = w0e−I0
α (r1−r2)

= w0e(r2−r1)
tα
α .

Using the operatorIα starting at non zero constantd, it follows that

z(t) = Id
α

[

w0e(r2−r1)
tα
α
]

=
w0

r2− r1
e(r2−r1)

tα
α +β ,

whereβ is a constant. Finally replacing iny= zer1
tα
α , we have that

y(t) =
w0

r2− r1
er2

tα
α +βer1

tα
α .

LettingB= w0
r2−r1

andA= β , we gety(t) = Aer2
tα
α +Ber2

tα
α . That ends the proof of the theorem.

Theorem 5 If the characteristic equation of (10) defined byr2+ar+b = 0 admits a double solutionr which satisfies
2r +a= 0 then the candidate solution of the conformable differential equation (10) is given by

y(t) = (A+B
tα

α
)er tα

α .
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Proof: Let r ∈ C be the double solution of the characteristic equation of (10) defined byr2+ar+b= 0. Lety= zer1
tα
α .

We have that 2r +a= 0. We do the same work as in Theorem 4, it follows that ify is solution of (10) thenTα(z) is also
the solution of the conformable differential equation of order α defined byTα(w) = 0, whose solution is got using the
conformable integral operator

w(t) = w0e−I0
α (0)

= w0

Using the operatorIα starting at non zero constantd, it follows that

z(t) = Id
α [w0]

= w0
tα

α
+β ,

whereβ is a constant. Finally replacing iny= zer1
tα
α , we obtain that

y(t) = (w0
tα

α
+β )er tα

α .

LettingA= β andB= w0, we havey(t) = (A+Btα

α )er tα
α . That ends the proof of the theorem.

3 Numerical Examples

In this section, many examples are given to illustrate the proposed theorems.
• For illustration of Theorem 1, let Cauchy conformable differential equation defined as

Tα(y) = λy. (11)

Applying Theorem 1, the analytic candidate solution is given by

y(t) = y0eI0
α (λ )(t)

= y0Eα (λ , t)

• For illustration of Theorem 1, let Cauchy conformable differential equation defined as

T1/2(y)+ y= 0. (12)

Applying Theorem 1, the analytic solution is given by

y(t) = y0e
−I0

1/2(1)

= y0e−t = y0E1/2(−1, t) .

• For illustration of Theorem 1 and 2, let the following conformable differential equation defined as

T1/2(y)+
√

xy= xe−x. (13)

Applying Theorem 1, the homogeneous solution is given by

yh(x) = y0e
−I0

1/2(
√

x)

= y0e−x = y0E1 (−1,x) .

To get the particular solution, applying Theorem 2, we obtain

yp(x) = λ (x)e−x,

where

λ (t) = I0
α(xe−xex) =

2
3

x
3
2
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and then the particular solution is thatyp(x) = 2
3x

3
2 e−x. Finally the general candidate solution is given by

y(x) = yh(x)+ yp(x) = y0e−x+
2
3

x
3
2 e−x.

• Let’s the following particular conformable differential equation defined as

Tα(y)+ t1−αy= 0. (14)

This conformable differential equation is equivalent to the ordinary differential equationy′+ y= 0 and we easily prove
its solution is independent toα. Applying Theorem 1, the candidate solution is given by

y(x) = y0e−I0
α (t

1−α )

= y0e−x.

• For illustration of Theorem 3, let the following conformable differential equation defined as

T1/2(T1/2(y))−T1/2(y) = 0. (15)

Applying Theorem 3, the candidate solution is given by

y(t) = ce2
√

t

wherec is an constant.
• For illustration of Theorem 4, let the following conformable differential equation defined as

T1/2(T1/2(y))−3T1/2(y)+2y= 0. (16)

The characteristic equation isr2−3r +2= 0, and have two distinct solutionsr1 = −1 andr2 = −2. Applying Theorem
4, the candidate solution is given by

y(t) = Ae−
√

t +Be−2
√

t

whereA andB are constants.

• For illustration of Theorem 5, let the following conformable differential equation defined as

T1/2(T1/2(y))+2T1/2(y)+ y= 0. (17)

The characteristic equation isr2 + 2r + 1 = 0, and has double solutionr = −1 which satisfies the condition 2r + a =
−2+2= 0. Applying Theorem 5, the candidate solution is given by

y(t) = (A+B
√

t)e−
√

t ,

whereA andB are constants.

4 Cauchy Conformable Differential Equations

In this section we investigate to find solution of the conformable differential equation defined by

Tαx= Ax+g(t,x), (18)

wherex∈Rn is state variable,A is an matrix inRn×n andg :R+×Rn →Rn continuous function and satisfyingg(t,0) = 0.
Let now get the solutions of the perturbed conformable fractional differential equations (18). The solutions of (18) are

fundamental in many problems with conformable fractional derivative.
Proposition 1 Let α ∈ (0,1). Then the unique solution of the following initial value problem Tαx = Ax+ g(t,x) with
initial conditionx(t0) = η ∈ Rn is given by

x(t) = ηEα (A, t − t0)+
∫ t

t0
(t − s)α−1Eα (−A,s− t0)Eα (A, t − t0)g(s,x(s))ds. (19)
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Proof: We first get the homogeneous solution of the conformable differential equation defined by

Tαx= Ax. (20)

Applying integral operator described in Theorem 1, the homogeneous solution is given by

xh(t) = ηEα (A, t − t0)

We now get the particular solution of the equation (18) obtained by the method described in Theorem 2, and is given by

xp(t) =
∫ t

t0
(t − s)α−1Eα (−A,s− t0)Eα (A, t − t0)g(s,x(s))ds.

The general solution obtained withx(t) = xh(t)+ xp(t) is expressed as

x(t) = ηEα (A, t − t0)+
∫ t

t0
(t − s)α−1Eα (−A,s− t0)Eα (A, t − t0)g(s,x(s))ds.

The exponential functionEα (A, t − t0) is calculated using the propositions described later. We distinguish two cases:
when the matrixA is diagonalizable and when the matrixA is not diagonalizable.
Proposition 2 If the matrix A is diagonalizable the solution of equation (18) with g(t,x) = 0 is obtained doing the
following classical procedure:

• Determine the matrixP ∈ R
n×n and the matrixD ∈ R

n×n such thatD = P−1AP, whereP is a invertible matrix of
eigenvectors andD is diagonal matrix.

• Resolve using integral operator the conformable differential equation defined byTα(y) = Dy, wherey∈Rn.
• The solution is obtained using the transformationx= Py.

Example: We give example to illustrate of the Proposition 2. Let the particular conformable differential equation of (18)
defined by

Tαx = −x+ y+ z,
Tαy = x− y+ z,
Tαz = x+ y− z,

whereX =





x
y
z



 ∈ R
3. Calculating the eigenvalues of the matrixA we obtainλ1 = 1 andλ2 = −2. The eigenvectors

related to the eigenvaluesλ1 andλ2 are respectively given by

u=





1
1
1



 v=





−1
1
0



 w=





−1
0
1



 .

Thus in the first step of the resolution, the matrixP andD are given by

D =





1 0 0
0 −2 0
0 0 −2



 P=





1 −1 −1
1 1 0
1 0 1



 .

In the second step of the resolution, we resolve the conformable differential equationTα(Y) = DY, whereY =





y1
y2
y3



,

using integral operator. We have the following equation

Tαy1 = y1
Tαy2 = −2y2
Tαy3 = −2y3

Applying Theorem 1, we obtain the following solutions

y1 = y10exp
(

tα

α

)

= y10Eα (1, t)

y2 = y20exp
(

−2tα

α

)

= y20Eα (−2, t)

y3 = y30exp
(

−2tα

α

)

= y30Eα (−2, t)
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wherey10 ∈ R, y20 ∈ R and y30 ∈ R are constants. To obtain the solutions of the conformable fractional differential

equation defined by (18), we use the transformationX = PY, whereX =





x
y
z



 andY =





y1
y2
y3



. Finally, we obtain

x = y10Eα (1, t)− y20Eα (−2, t)− y30Eα (−2, t)
y = y10Eα (1, t)+ y20Eα (−2, t)
z = y10Eα (1, t)+ y30Eα (−2, t)

The second case is obtained when the matrixA is not diagonalizable, we use the Jordan matrix. The solution of the
conformable differential equation (18) with g(t,x) = 0 is described in the following proposition.
Proposition 2 If the matrix A is not diagonalizable the solution of (18) with g(t,x) = 0 is obtained as follows:

• Determine the matrixP∈ Rn×n and the matrixJ ∈ Rn×n such thatJ = P−1AP, whereP is a invertible matrix andJ
is Jordan matrix.

• Resolve using integral operator the conformable differential equation defined byTα(y) = Dy, wherey∈ Rn.
• The solution is obtained using the transformationx= Py.

5 Conclusions

It is not easy to find the form of the general solution of the conformable differential equations. We know that the
conformable differential equation has many possible solutions. This paper contributes to give the explicit form of the
first-candidate solution of the conformable differential equation. We have also discuss on Cauchy problem.
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