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Abstract: In recent work, the operator method and other methods hase inéroduced to solve the sequential linear conformable
differential equations with constant coefficients. Thipgradeals with the analytic candidate solutions of the conéile differential
equations. The conformable integral operator is the majrokéhis paper and is an additional method to get the canglisiaiutions of
the conformable differential equations. Several examptesjiven to illustrate our main results of this paper.
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1 Introduction

During the last years, much work gave some important resibltait the role of fractional calculus in physics, control
engineering and signal processirigd, 3,4,5,6]. There exist various fractional derivative operatorsracfional calculus
as: Riemann-Liouville fractional derivativé]| Caputo fractional derivativer], Atangana-Baleanu fractional derivative in
Caputo sense and Riemann-Liouville sergjeAtangana Koca fractional derivative, Caputo-Fabrizaxtional derivative
[9], and other.

Recently conformable derivative operator was introduoat¢ literature by Khalil10]. Many problems appear with
this conformable derivative operator. Cauchy problem @&mvery important in many field of science and engineering.
This paper contribute also to give solution for Cauchy peabln the context of conformable differential equations.

Finding the solution of the conformable differential eqoas with or without perturbation terms play important role
in the stability analysis. Many results to get the candidatations of the conformable differential equations cafoomd
in [5,11]. But there are many other classes of the differential égnatof which we do not have the explicit solutions.
There are many methods to get the analytic candidate sofutbthe conformable differential equations, we can cite:
the Lie symmetry method, the Invariant subspace methgd the Wronskianand[3], Abel’s formula [L4], D’Alambert
approach4] and others.

This paper deals with the analytic candidate solutions@ttmformable differential equations. We give the candidat
solutions of the particular class of the conformable déferal equations. Here we use conformable integral opetato
get the analytic candidate solutions of the conformabledhtial equations.

The paper is organized as follows : in sect@yrafter recalling some necessary definitions, we describeltisses of
the conformable differential equations, and provide ouinmesults. In sectiod, we give some numerical examples to
illustrate our main results.

2 Preliminary Concepts and Main Results

2.1 Preliminary definitions

In this section, we introduce some definitions of the frawiacalculus and several lemmas. We use them to establish the
main results in this paper. We begin by recalling the confdsta derivative operator introduced by Khalil and al. 1]
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We prove conformable derivative operator is not in genex@hatone.
Definition 1 Given a functionf : [0,4+-o[— R. Then the conformable derivative dfof ordera is defined by

Ta(F)0) = lim f(t+et1:’) —f(t)

1)
allt >0, a € (0,1). If fisa-differentiable in(0,a), a> 0, and lim,_,q+ f(@)(t) exists, then define

mengm;ﬂ”a)

Definition 2 We denote byC., ((0,+),R") the set of functiory € Cs ((0,+),R") such thatT,(y)(t) exists and is
continuous or{0, 4).
Lemma lLeta € (0,1) andf is a-differentiable at point > 0. If f is differentiable, then

df
_tl-a*’”
Ta(F)(t) =t at (2)
From expression given by, itis clear ifa = 1, we recover the classical derivative. Khalil's definitiorcohformable
derivative satisfies the following properties (s&@][for details):
Lemma 2Leta € (0,1) andf, g be a-differentiable at point > 0. Then

1.Tq(af +bg) =aTy(f)+bTy(g) for all constant, b € R.
2.T4(A) =0, for all constant functiorf(t) = A.
3Ta(10) = fTa(9) -+ gTa(f).
Ta(9)—9gTa
4-Ta(é) = Ma(@—gTa(f),
5.The following triangular inequality:
Ta(If+9)) < Ta (If]) + Ta (9]) (©)
does not in general hold.

We give the following counterexample to illustrate the itefh). The proof of the other items can be foundif][
Counterexample To see that, let the functiofi(t) = t? andg(t) =t on interval[0, 1], we have thatf| = f < g <|g|.
But Ty (| f|) (1) =2 andTy (|g]) (1) = 1. And remark thafly (|g]) (1) < Ts (| f]) (1). ThenT, is not a monotone operator.
In this condition the triangular inequality is not satisfied

Definition 3 The conformable integral starting froaof a function f of ordem € (0,1] is defined by

t
12 (t) = / X@Lf (x)dx )
a
Lemma 3Leta € (0,1 and fis any continuous function in a domainlgf fort > awe have
Talg(f)(t) = f(1). (%)

Consequently, it follows that
Lemma 4 Leta € (0,1] and f is any continuous function in a domainlgf for t > a we have

d 1oy - FO)
SO0 = 15 ©)

This lemma is fundamental to get the analytic solution ofdbeformable differential equations.
Definition 4 The conformable exponential function is defined for ex&ery0 by

= (A,s):exp(x\%), (7)

wherea € (0,1) andA € R.

2.2 Main results

The similar conformable differential equations were sdhie [15,16,17,18], and the methods used to solve these
equations use some transformations. We can cite, for exanmgl operator method. In this paper, we solve the
conformable differential equations using the conformalvigegral operator (an additional method) rather than
transforming it into an ordinary one with a singularity.
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2.2.1 Conformable differential equations of order

We are now ready to state the main results of this paper ondh&éenable differential equations called here "the
conformable differential equations of ordet. Generally the conformable differential equations of@rd which we
consider in this paper is mathematically represented bjoll@ving form

Ta(y)+ f(O)y=9(t), (8)

where 0< a < 1,y € R", T, (y) denotes the conformable derivativeyoadind f,g : R — R area-differentiable functions.
If o =1 we recover the classical differential equations of firsteorexpressed 36+ f(t)y = g(t). We first take the case
in whichg = 0. The particular conformable differential equation whieé obtain is

Ta(y) + f(t)y=0. (9)

The conformable differential equation defined 19) (s called the homogeneous differential equation. We haee t
following result.
Theorem 1 The homogeneous solution of the conformable differentjakgion Q) is given by

yh(t) — yoe_lg(f)(t)'

wheref is any continuous function in the domainIgf
Proof: To prove Theorem 1, we have just verified that the equati®nig satisfied by getting the function

y(t) = yoe~'@(N® By replacing above candidate solution into the conformalifferential equationg), and using the
Lemma4, we get:

d
Ta(Yh) + f(t)yn = yot' 9 — [e"g‘”“)}+yoe"3‘”<‘>

_q4d [0
= ot [9(H)] 5O 4y e 8O0
_ —yotl“’tfl(,tg,e 200 4 yof (1)e 8 (N0
—0.

Then we conclude that the homogeneous solution of the cowfole differential equation9)f is given by

yh(t) = yoe 'a(N®_ That ends the proof of Theorem 1.

To get the general solution of the conformable differergi@biation defined bydj, we calculate particular solutioy
obtained by the following theorem.

Theorem 2 The particular solution of the conformable differentialiation @) is given by

yp(t) :)\(t)e—lg(f)(t)’

wheref is any continuous function in the domainigfand the functiord : R — R is obtained by the following condition

Proof: To prove this theorem, we have just verified that the equa@® is satisfied by getting the functioy,(t) =

A(t)e'a(N® Replacing above candidate solution into the conformalfleréitial equationg), and using the Lemma 4,
we have that:

Ta(yp) + f(0)Yp = Ta(13(g(0)e "= O)e #00)) 1 £ (1)1 §(g(t)es Ve (MY
= g(t)e® —12(g(t)e " aNO)  (1)e'a (DO 1 £(1)19(g(t)e'a(N®)g-1a(HO
= g(t).

Then we conclude that the particular solution of the contte differential equation 9§ is given by

yp(t) = A(t)e"'«(NU_ That ends the proof of Theorem 2.
The general candidate solution of the conformable diffeataquations defined by is given by the following

Y(t) = Yn(t) +yp(t).
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2.2.2 Conformable differential equations of order 2

In this section, we are ready to state the main results onitfeeehtial equations called here "the conformable difetial
equations of order@’. Generally the conformable differential equations of@réa which we consider in this paper are
mathematically represented by the following form

T2 () +aTaly) + by=0, (10)

where a,.b € R, 0 < a < 1, Tq(y) denotes the conformable derivative of the-differentiable functiony,

Téz) (Y) = Ta(Ta(y)). We make the following theorems.
Theorem 3 If a+ 1= 0 andb = 0 then the candidate solution of the conformable diffeedriguation 10) is given by

y(t) = yoe 2@ |
Proof: Let Ty (y) = w, equation 10) becomesl,(w) + aw = 0 whose solution is given by applying Theorem 1. Then

ta

w(t) = wpe @ . To get the solutioty we apply the inverse operattff and we obtain

a

(1) = 18 (Woe ) = yoe *7
Theorem 4 If the characteristic equation ofQ) defined byr? + ar 4-b = 0 have two distinct solutiong andr; then the
candidate solution of the conformable differential equiiL0) is given by
y(t) = AdLT 1 Bd?'T

Proof: Letr; € C andr; € C be two solutions of the characteristic equation bd)(defined byr? 4 ar +b = 0. Let
y = zé1'@, then Ta(y) = [Ta(2) + 117 di'T and Ta(Ta(y) = [Ta(Ta(2) +2r1Ta(2) + 117 1T, Replacing into the

conformable differential equatioi @), we have that
Ta2 () +aTa(y) + by = [Ta(Ta(2) + (211 + A)Ta(2)] €27 =0,

We can observe ¥ is the solution of 10) thenT (z) is also the solution of the conformable differential eqoaif order
a defined byTy (W) + (2r1 +a)w= 0. Using the fact that& +a=r; —r,, we obtain

Ta (W) + (rp —r2)w=0,
whose solution is obtained using the conformable intequalator
W(t) — Woe_lg(rl_rZ)
— Woe(rZ*rl)%.
Using the operatdly starting at non zero constaatit follows that
a
z(t) =19 {Woe“Z"l)tF}
— WO e(rZ*rl)% + B’
fo—1rq
wheref is a constant. Finally replacing in= zél%, we have that
W a a
y(t) = _0 gy _|_Bef1t7.
ro—1rq
a a
LettingB = rZWTOrl andA = B, we gety(t) = Ad2'T + Bd2'@. That ends the proof of the theorem.

Theorem 5 If the characteristic equation o1@) defined byr? +ar +b = 0 admits a double solutionwhich satisfies
2r +a= 0 then the candidate solution of the conformable diffesdrtijuation 10) is given by

y(t) = (A+ B%)er%
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Proof: Letr € C be the double solution of the characteristic equatioriLof (efined byr?+ar+b=0. Lety = 2617 .
We have that 2+ a = 0. We do the same work as in Theorem 4, it follows thatig solution of (0) thenT,(2) is also
the solution of the conformable differential equation ofl@ra defined byT,(w) = 0, whose solution is got using the
conformable integral operator

w(t) = woe a0
Using the operatdr, starting at non zero constaahtit follows that
Z(t) = 13 [wo

td
=Wo— +p,
0 B

a
wheref is a constant. Finally replacing in= zél%, we obtain that
ta @
a

y(t) = (o + B)E

. a, %
Letting A= B andB = wo, we havey(t) = (A+BL- )€ @ . That ends the proof of the theorem.

3 Numerical Examples

In this section, many examples are given to illustrate ttoppsed theorems.
e For illustration of Theorem 1, let Cauchy conformable diffetial equation defined as

Ta(y) =Ay. (11)
Applying Theorem 1, the analytic candidate solution is gitog
y(t) = yoed )0
= yOEU ()\ vt)
e For illustration of Theorem 1, let Cauchy conformable diffietial equation defined as
Ty/2(y) +y=0. (12)
Applying Theorem 1, the analytic solution is given by
y(t) — yoe7|8/2(l>
= yoe ' =YoEy 2 (—1Lt).
e For illustration of Theorem 1 and 2, let the following confable differential equation defined as
Ti/a(y) +vxy=xe ™ (13)
Applying Theorem 1, the homogeneous solution is given by
Yh(X) = yoe 22V
= y067X =YoE:1 (—1,X) .
To get the particular solution, applying Theorem 2, we abtai

Yp(X) = A(x)e™,

where

NIl

A(t) =19(xe ™*e) =

wI N
X
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and then the particular solution is thgi(x) = %x;z§ e *. Finally the general candidate solution is given by

2
Y(X) = Yn(X) +Yp(X) = Yoe ™+ §X% e
e Let’s the following particular conformable differentiajeation defined as
TC{ (y) +t1_ay= 0. (14)

This conformable differential equation is equivalent te trdinary differential equatioyl +y = 0 and we easily prove
its solution is independent . Applying Theorem 1, the candidate solution is given by

y(x) = yoe d%)
=yope %
e For illustration of Theorem 3, let the following conformelulifferential equation defined as
T/2(Ty/2(Y)) — Tyja(y) = 0. (15)
Applying Theorem 3, the candidate solution is given by
y(t) = ce!

wherec is an constant.
e For illustration of Theorem 4, let the following conformeldifferential equation defined as

Ta/2(T/2(y)) — 3Tyy2(y) +2y = 0. (16)

The characteristic equationii$ — 3r +2 = 0, and have two distinct solutiomg = —1 andr, = —2. Applying Theorem
4, the candidate solution is given by

y(t) = Ae Vi +Be 2t
whereA andB are constants.

e For illustration of Theorem 5, let the following conformelulifferential equation defined as
T1/2(Ty/2(Y) + 2Ty 2(y) +y=0. (7)

The characteristic equation i + 2r + 1 = 0, and has double solutian= —1 which satisfies the conditiorr 2-a =
—2+2=0. Applying Theorem 5, the candidate solution is given by

y(t) = (A+Bvhe v,
whereA andB are constants.

4 Cauchy Conformable Differential Equations
In this section we investigate to find solution of the confahie differential equation defined by
TaX = AX+g(t,X), (18)

wherex € R" is state variabled is an matrix inR™" andg: R* x R" — R" continuous function and satisfyirmgt, 0) = 0.
Let now get the solutions of the perturbed conformable foaet differential equationsl@). The solutions of18) are

fundamental in many problems with conformable fractioreivhtive.

Proposition 1 Let o € (0,1). Then the unique solution of the following initial value ptem Tyx = Ax+ g(t,x) with

initial conditionx(tg) = n € R" is given by

X(t) = nEq (Ajt —to) + t(t — s)"‘lEa (—A,;s—10) Eq (At —to) g(s,X(S))ds (19)

fo
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Proof: We first get the homogeneous solution of the conformabferdintial equation defined by
TaX = AX. (20)
Applying integral operator described in Theorem 1, the hgem@ous solution is given by
Xn(t) = NEa (At —1o)
We now get the particular solution of the equati@B)(obtained by the method described in Theorem 2, and is giyen b

Xp(t) = /tt (t—5) % 1By (—A,5—1t0) Eq (At —to) g(s,X(s))ds

0

The general solution obtained wikiit) = X(t) + Xp(t) is expressed as
t
X(t) = NEa (At —to)+ | (t—9)7 'Ea (~A5—to) Ea (At —to)g(s,X(s))ds
to
The exponential functioky (A,t —tp) is calculated using the propositions described later. \&ngdjuish two cases:
when the matriXA is diagonalizable and when the matfis not diagonalizable.
Proposition 2 If the matrix A is diagonalizable the solution of equatiob8| with g(t,x) = 0 is obtained doing the
following classical procedure:
e Determine the matri® € R™" and the matriXD € R™" such thaD = P~1AP, whereP is a invertible matrix of
eigenvectors anb is diagonal matrix.
¢ Resolve using integral operator the conformable difféatrtjuation defined by, (y) = Dy, wherey € R".
e The solution is obtained using the transformatiea Py.

Example: We give example to illustrate of the Proposition 2. Let tletigular conformable differential equation dfg)
defined by

TaX = —X+Yy+2z

TC{y = X— )H' Za

Taz= X+y-—2z

X
whereX = | y | € RS, Calculating the eigenvalues of the matfxwe obtainA; = 1 andA, = —2. The eigenvectors
z
related to the eigenvaluds andA, are respectively given by
1 -1 -1
u=11 v=1| 1 w=1| 0
1 0 1

Thus in the first step of the resolution, the ma#irndD are given by

100 1-1-1
D=|10-20 P=111 0
00 -2 10 1
Y1
In the second step of the resolution, we resolve the confolerdifferential equatioy (Y) = DY, whereY = | y> |,
Y3
using integral operator. We have the following equation
TaYi= %
TaY2 = —2y7
Tays = —2y3

Applying Theorem 1, we obtain the following solutions
y1= Y1oeXp(%a) = Y10Eq (L;1)
Y2 = Ya0exp( =2~ ) = yaoEq (—2,1)
Y3 = ya0exp( ~2% ) = ysoEq (—2,t)
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whereyig € R, Y20 € R andyzg € R are constants. To obtain the solutions of the conformalaletirnal differential

X Y1
equation defined byl®), we use the transformatiofi= PY, whereX = | y | andY = | y> |. Finally, we obtain
z Y3

X = Y10Ea (1,t) — Y20Eq (—2,) — Y30Ea (—2,1)
y= V10Eq (1,1) + Y20Eq (—2,1)
Z= Y10Eq (1,t) + Y30Eq (—2,1)

The second case is obtained when the maftrig not diagonalizable, we use the Jordan matrix. The saluifche
conformable differential equatiod®) with g(t,x) = 0 is described in the following proposition.
Proposition 2 If the matrix A is not diagonalizable the solution dfg) with g(t,x) = 0 is obtained as follows:

e Determine the matri® € R"™" and the matrixJ € R™" such thatl = P~1AP, whereP is a invertible matrix and
is Jordan matrix.

¢ Resolve using integral operator the conformable difféategjuation defined by, (y) = Dy, wherey € R".

e The solution is obtained using the transformatica Py.

5 Conclusions

It is not easy to find the form of the general solution of the foomable differential equations. We know that the
conformable differential equation has many possible smist This paper contributes to give the explicit form of the
first-candidate solution of the conformable differentigliation. We have also discuss on Cauchy problem.
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