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Abstract: The mixture of type-I and type-Il censoring schemes, caledhybrid censoring scheme is quite common in life-testing
or reliability experiments. In this study, we consider tistiraation problem of competing risk model when the dataiobthfrom

the experiments are hybrid censored. It is assumed thaatbsticause of failure have independent Chen distributiotiscommon
shape parameter. Maximum likelihood and Bayes estimatdgahodel parameters are obtained. MCMC techniques likeddelis-
Hastings algorithm and Gibbs sampler has been utilizedt@mmBayes estimates. At the end, a real data study is ateehipestablish
the applicability of the proposed model.
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1 Introduction

In life time data analysis, it is quite common that more thae oause of failure may direct to an object (system) at the
same time. It is often interesting that an investigator segedestimate a specific risk in presence of other risk factors
In statistical literature, this process is known as conmgetisk model. People get sick or die or hardware fails due
to one of the several possible causes. In competing risk halli¢these causes have given probabilities of occurrence
over time and compete to be the first to occur and thus causevi®. Examples in medicine include the analysis
of cause to death data, the analysis of relapse and deatmissien in cancer studies, or right random censoring. In
engineering applications, competing risk model arisesaf@lyzing series systems. Classical competing ri$ldgals
with the modeling of probability of failure in the observettem (crude probabilities) or in system with some causes of
failure removed (net or partial crude probabilities).

Miyawaka 2] obtained the maximum likelihood estimators (MLES) and tim&ormly minimum variance unbiased
estimators (UMVUES) of the failure rates of different fagudistributions under the assuming the failure time distion
as exponential. Kundu and Basg] fonsidered the same model of MiayawaRhaly assuming that every member of a
certain target population either dies of a particular casag cancer, or by other causes. Recently, Bhattachary§4t a
consider the analysis of hybrid censored competing riska, thased on Coxs latent failure time model assumptions.

Although widespread literature is available on the infeesprocedures for the competing risks models under complete
samples, but much attention has not been paid when the daktg/larid censored. Censored data means that some items
were put on test, and some/all of them may not have failecegtrtie of termination of experiment hence lifetimes of such
items/units could not be observed. The conventional TygedI Type-Il censoring schemes are two most popular cergsorin
schemes used for the analysis of such data. In the Type-bdagsscheme, the termination time for the experiment is
pre-fixed but efficiency level cannot be controlled because @annot predict the observed number of failures in such
experiment. Although, the Type-Il censoring scheme ersstina m failures take place during the experiment so the leve
of efficiency is guaranteed, but the termination time cafeatontrolled in this case as the exact time of pre-fixed numbe
of failures i.e. m failures is uncertaib][ So, both Type-l and Type-Il censoring schemes have tespective, merits and
demerits. For these reasons, a mixture of Type-I and Typefisoring schemes, known as hybrid censoring scheme has
been introduced by Epsteifi][and used for the first time in reliability acceptance testMHTD-781C [7]. It is interesting
to note that all the three above-mentioned situations nathelcomplete sample situation, Type-I and Type-Il cemgpri
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schemes can be obtained as special cases of the hybrid iogrsdreme. For a comprehensive review of hybrid censoring
scheme, we refer to Balakrishnan and Kun8lu [

A class of life distributions which has acknowledged sigaifit attention is the class of bathtub shaped failure rate
life distributions. A organized version of such distrilmrts was provided by Rajarshi and Rajardji A lifetime model
is said to have bathtub shaped failure rate if its failure fanctions decreases at first and then remains constant for a
period and finally it increases with time. In other words, fhiture rate function has a bathtub shape. This corresponds
to the three distinct phases of a component or a system: lfarlyseful life and wear-out. During the early life perjod
failures tend to be caused by manufacturing defects or 8é@tacts in the case of human beings. Failures in the uséul li
period can be called chance failures. The wear-out regisrahancreasing failure rate with time because of the older th
unit the more likely it is to fail.
The lifetime distributions like Chen distribution havingthtub shaped hazard rate have attracted the attentionrof ma
researchers as the lifetimes of various industrial iterakutfing electrical and mechanical products, as well asigairv
times of various biological entities exhibit such charéastes (see for instanc®[10]). The probability density function
(pdf) of the two parameter Chen distributi@i (a, 3) wherexis the shape parameter g8id the scale parameter (Chen
[11]) is given by

f(x):anﬁflexp{a(1—eXB)+xB}; x,a,B>0 (1)

with the corresponding survival and failure rate functioreg by

S(x):exp{a(l—exﬁ)}; xa,B>0 2
h(x) = anB*lexp(xB) cx,a,8>0 (3)
1
- 8/ . L .
For B < 1, h(x) has a bathtub-shape and reaches a minimuxz=a: LB P \while for 3 > 1, itis increasing. The case

5 ®

a = 1 corresponds to the exponential power distribution. C2&0Q) has discussed in detail the hazard rate behavior of
the Chen distribution.

In the last decade, many authors considered Chen distibas a lifetime model in different contexts. Wu et al.
[12] discussed the estimation procedure for the shape parawofetiee Chen distribution. Wul[0] obtained MLEs of
parameters of Chen distribution using progressively Tymensoring and also provided exact confidence intervads an
confidence regions for these parameters. Sarhan dt3hti¢rived MLE and Bayes estimators of the unknown parameters
using a complete sample for Chen distribution while Ahmb4] pbtained maximum likelihood and Bayes estimates of
the model parameters, reliability and hazard function#ifersame distribution when sample is available from pragives
Type-ll censoring scheme. Rastogi and Tripalti] [considered the problem of estimating unknown parameteagwo-
parameter Chen distribution using hybrid censored sanR®eently, Pundir and Gupta §] consider the estimation of
m-component load-sharing parameters by assuming theddaile distribution of components as Chen. To the best of
our knowledge, Chen distribution has yet not been consitifmecompeting risks modeling when the data are hybrid
censored.

In view of the above, we present the estimation problem of meting risks model by assuming independent Chen
distribution with common shape parameter. The data olddnoen the experiment are assumed to be hybrid censored. In
section 2, we describe the model and notations of the tefoggaised. Maximum likelihood (ML) and Bayes estimate
of parameters under hybrid censoring scheme is discussgekttion 3. Also the asymptotic distribution of the model
parameters is used to construct the approximate confidertieeval (Cl). Markov Chain Monte Carlo (MCMC)
techniques such as Metropolis-Hastings algorithm and &#&atmpler have been utilized to generate simulated draws
from the posterior density of the model parameter. In saco a real data study has been done to explore the
applicability of the proposed theory.

2 Modél Description and Notations

Here, we assume that there are only two independent cauaguréf although all the methods proposed in the study can
be easily extended for more than two cases. We assume theifodl notations:

X;: lifetime of system i

Xiji: lifetime of the ith individual under causes j, j=1,2

d;j : number of failure due to causes j, j=1,2

F (.): cumulative distribution function oX;
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F; (.): cumulative distribution function oX;;

Sj (.): survival function ofX;;

& indicator variable denoting the cause of the failure ofithéndividual

Ch(a, B): Chen random variable with p.d.f defined in equation (1)

Suppose{Ty;, Toi;i = 1,2,.....n} are n independently and identically distributed randoniatdes. Also, the lifetime
distribution of {Ty;,Ti;i =1,2,.....n} follows Ch(ai,8) and Ch(ay,3) respectively and bothl;; and Ty are
independent to each other.

3 Estimation Procedure

3.1 Maximum Likelihood Estimation and Asymptotic Confiddnterval
Based on the observed data discussed in section 2, théabkelifunction of( a1, az, 8) is given by
d 4.8
di 0o pd 1 +B—1 2 i
L (datgay, a2,8) Oayta;?B _|'|ti et exp{—(a1+a2)&(B)} (4)
=
where,
d
E(B):Z(etiﬁ—l)+(n—d)<ezg—l); d=d;+d; ()
i=

The corresponding log-likelihood function (sja1, a2, 3)) for equation in (4) without the additive constants is given
by

[ (a1,00,8) Odilnay+dzinaz+dInB+ (B — 1)Zlnti + Ztiﬁ —(a1+ o) & (B) (6)

The MLEs ofay, asand say a;, a» andB can be obtained as the solutions of the following equations:

o0 o

a/¢ dy

2 -2 g0 ©®
ot _d +3 Int (1+t-ﬁ) — (a1 +a2) & (B) (9)
B B 4 '

where,&' (B) = {zetiﬁtiﬁlnti + (n—d)ezfzf InZP

From equation (7) and (8), we get the MLE¥, 2)of (a1, az)as a function of3

PR 1
Lo

Replacing the expression @fy (3)and &, (B) in log-likelihood function, we obtain the profile log-likhbod of
Bwithout the additive constant is

p(B) O dInB—dIn&(B)+B Y Inti+ S tf (12)
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Now, the MLE of 3 can be obtained by solving the equatip'niB) = 0. Therefore, iﬁ is the MLE of 3 , then it can be
obtained as the fixed point solution of the following

d< (B)

B=h(p) =
A’ (B) & (B)3 (1+1 ) int

(13)

The equation in (13) can be solved ﬂﬁfoy using the following simple iterative procedure[iu’s a fixed point solution
of this non-linear equation

h(Bw) = Bk

Where y)is the Kihiteration oﬁ. The iteration procedure should be stopped Wt’@@ —B(k+1>|is sufficiently small.
However, one can also use the uniroot() function of R sofwarsolve equation in (9). Now, usifigwe can obtain
a,anda, from equation (7) and (8) a& = a0, (B)ancﬁz =0, (B)

/

Using large sample theory of MLEs, the asymptotic samplirigtribution of (&1— ay, 0 — asp, [3—3) is
N3 (0, A*l)whereﬁthe observed Fisher information matrix is. The element8 afe given by

2 2 2
D= —2% s App= —24 A3z = —LL| A= 0231=0
(30{1 ay=01 502 =05 op B=B
2 2
Az =Ag = —52 4 L andAzz=Agy = — 525> .
) 90108 |0, =&y, p=p 90208 | ap=éip, p=Pp
Where, 2% = — %
oas as

& _ e+ 3P {log(t))? (a1 + o) " (B)

0% 9%¢ . 0U %
d0.0B ~ 9Bdar —& (B); 00,08 ~ 0Bday —-& (B)

Where &" (B) = 5 {log(t;) } 2! t (1+¢) +(n- d) {log(z.)}’e* 2° (1+2f)

The asymptoti¢1 — y) x 100% confidence intervals (C.1.) f@ = (a1, az, B)isQ + z,21/Var (Q) HereVar (Q)is the
variance ofQ obtained fromAandz,, is the upper10& (y/2)th percentile of a standard normal distribution.

4 Bayesian Estimation and HPD Interval of R

In many practical situations, it is observed that the betraaf the parameters representing the various model

characteristics cannot be treated as fixed constant thontgiie life testing period. Therefore, it would be reasdeéd

assume the parameters involved in the life time model asorandariables. While thinking for Bayesian analysis, first

thing to contract with the problem of constructing prior fboe unknown parameters involved in the model. We all know
that the choice of a wrong prior may lead to misleading infation, so the selection of prior becomes more and more
important part of the Bayesian analysis. In practice, imfative and non-informative priors are used to represent

uncertainties about the model parameters. Bergjgrgointed out that when there is no information or very diffico
gather regarding the prior variations in the parameteris, litetter to use non-informative prior distribution. Howev
non-informative priors generally lack invariance progemder one-to-one transformation, thereby leading toliecent

analysis. On the other hand, informative priors are basetth@investigators experience about the random behavior of
the process under consideration. In lieu of this, we comgiue Bayesian method of estimation with both informative

and non-informative priors. First, we assume that the giistributions ofa;, a,andBare assumed to be gamma with
respective pdf's as

01 (a1) Do’ texp(—61a1) ; (a1, 61, A1 > 0) (14)
02 (02) O a2 L exp(—6202) ; (02, 62, A2 > 0) (15)
and
gs(B) OB Lexp(—63B); (B, 63, A3, > 0) (16)
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Using the likelihood function in (4) and prior distributisin (14)-(16), the joint distribution odr1, a», 3 given the
data is

L (dataay, az, B)01(01)92(02)g3(B)
[ [ JL(datajay, az, B)g1(a1)92(a2)g3(B)daidazdf

ajaz 3

|'| (o, az, B|data) =

d 4.8
K (a1, 02, B|data) O aftH - tgfetAz-tgdtas—1 ”tflezlt' o [(a1+2)& (B)+6101+6,05+63B)] (17)
i=

The joint posterior density in (17) is very complicated arehte no closed-form inferences appear to be possible.
We, therefore, make use of Gibbs sampler, a MCMC method,gzep by Geman and Gemalt§]. It makes us easy
to generate a sequence of random variables from the fulligondl probability distributions using the current vatue
of the given parameters. MCMC is a class of methods in whidhean simulate draws that are slightly dependent and
approximately from the posterior distribution. By meangtdé procedure, our aim is to get the ergodic chains of the
parameters which are irreducible, aperiodic and positieeirent. For implementing Gibbs sampling procedure, tlie f
conditional posterior distributions; , a,andf are

4 (a1|data ap, B) "Gammdd; + A1, € (B) + 61] (18)

e (az|data a1, B) "Gammddz + A2, & (B) + 62 (19)
d d.p

s (B|data ay, ap) O 4431 rltiﬁlezlt' g {(a1+a2)&(B)+65B} (20)
=

For obtaining Bayes estimates with Non-informative prieg can work along the same lines by only putting the
values of all prior parameter equal to zero Ag= A, = A3 = 6, = 6, = 63 = 0. For generating samples from (18)-(20),
we make use of the foolwing Gibbs algorithm:

Gibbs Algorithm:

1.Generate; from the posterior densityn (a1 |data a», ) as given in (18).

2.Generater, from the posterior density (a;|data ai,8) as given in (19).

3.Generatg8from the posterior densitys (B|data a1, a2) as given in (20) using Metropolis-Hastings algorithh®,[
20].

4 Repeat steps 1-3 N times and record the sequenée-of(a1, ay, B)after M burn-in iterations have occurred to
eliminate the effects of the starting values(igs 1, Am+2-...... An)

5.The Bayes estimate dfsayA*under squared error loss function is

N = A
N-M k:%Jrl
6.The posterior variance & is
V) =y 3 (A
N=M k=M+1

7.Let A" (a1 < A msz) < oo < AT(n) respectively denote the ordered valueg\ @i 1,A*m+2,....,/A"N. Then,

following Chen and Sha@fl], the respective 100(% y) % HPD intervals for/\is(A*<M+j*>, A*(M+J’*+[(17v)(NfM>]))-
Where,j* is chosen so that
/\>k j* _ _ —/\* i*) — min /\* i _ _ —/\* i
Al AT = N (G aonoem) = A )

i.e., we pick that 100(% y) % credible interval which has smallest width among all drkdintervals.
Here, it is notable that the sampling from the posterionitistion given in (20) is not easy as they cannot be simplified
to the well-known distributions. Therefore, Metropolig$iings algorithm 20,21] has been used to generate
13 (B|data ai,a7) in step 3. The Metropolis-Hastings algorithm is as follows-
Metropolis-Hastings Algorithm:

Step-1: Start with any value satisfying target densily(ﬁ“’)) >0
Step-2:  Using current v(© value, generate a proposal pointv_prop from the proposal
density (B<1>,B<2>) =P (B(1> — B(2>) i.e., the probability of returning a value @2 given a previous value gfb.
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Table 1: Summary for the electrical appliances data

Estimation ay ay B
Estimate (SE/PSE) Estimate (SE/PSE) Estimate (SE/PSE)
[Confidence/HPD Interval]  [Confidence/HPD Interval]  [Calgince/HPD Interval]
ML Method 0.001082 (0.000925) 0.000608 (0.000537) 0.28390.016754)
[0, 0.002895] [0, 0.001662] [0.20106 , 0.26674]
Jeffreys Bayes 0.001321 (0.000442) 0.000739 (0.000308) 2300705 (0.004652)
[0.000538 , 0.002142] [0.000193, 0.001295] [0.220911384B1]
Gamma Bayes 0.001193 (0.000421) 0.000672 (0.000297) 1823D.004176)
[0.000559 , 0.002097] [0.000199, 0.001219] [0.22098938219]

We assume proposal density for the distribution in (20)\Ie(§,62) respectively. The values df, 5%have been set
according to the corresponding assumed valugs of

(B-prop)a(B_prop.vi—)
(BU=D)a(B(=Y,B_prop)

Step-3: Calculate the ratio at the proposal pofhprop and currenpl—b as:p = log :

Step-4: Generate U from uniform on (0, 1) and take Z=log U.
Step-5: If Z < p, accept the move i.e3_propand sef3(®) = B_propand return to Step 1. Otherwise reject it and return
to Step- 2.

5 Real Data Application

Here, analysis of a real data set is considered for illugg@urposes. We consider the data from an experiment intwhic
small electrical appliances were being tested, and it has keken from Lawles2P]. The appliances were operated
repeatedly by an automatic testing machine; the lifetimiesrgwere the number of cycles of use until the appliances
failed. Total 36 appliances were used, and there were 18rdifft modes according to which the appliance could have
failed. Failure due to ninth mode was considered as causal Thenremaining as cause 2. This data set has already
been analysed by Kundu and Basu (2000) and Bhattacharya(20ak) using Weibull latent failure time distributions
with equal shape parameter in context of complete and hyeidored setup. For the analysis purpose, first, we have
created artificial hybrid censored data from the completepta (n=36) and considering R=25 and T=3000 similarly as
considered in Bhattacharya et al. (2014). The hybrid ddte ses follows:

(11, 1), (35, 1), (49, 1), (170, 1), (329, 1), (381, 1), (708,258, 1), (1062, 1), (1167, 2), (1594, 1), (1925, 2), (L9H0
(2223, 2), (2327, 1), (2400, 2), (2451, 1), (2471, 2), (2551(2565, 1), (2568, 2), (2694, 2), (2702, 1), (2761, 1),
(2831,1)

Based on the above data, we computed the MLEs, and Bayesgsdifor the model parameters along with SE/PSEs and
confidence/HPD interval.

To obtain MLEs for the model parameters, First of all, we hased the iterative procedure given in equation (13)
to get the ML estimate of until the absolute difference of two consecutive iterai®fess than a very small quantity
(0.0001 in our case). To start the iterative procedure iragqgn (13), initial value have guess by plotting the profilg-l
likelihood function given in equation (12). Plot of profileg-likelihood in figure 1 clearly shows that the initial valtor
the iterative procedure can be taken near 0.23. After oibgML estimate o, one can easily calculate ML estimates of
a1 anday using equation (10) and (11) respectively.

For obtaining Bayes estimates of the parameters, we hawidarad both the informative and non-informative priors.
We use Gibbs sampler to generate Markov chains with 25,G0izagions. Initially, we run algorithm several times with
different starting values of the parameters to check theeagence of the sequencesaf, a, andf for the stationary
distributions. It was observed that all the markov chairehed to the stationary condition very rapidly. Howevell, st
for removing the effect of initial values of the model pardens, 1000 burn-in iterations have been discarded from the
study. Also, strong autocorrelation is observed among &megated chain of model parameters. Therefore, for reducin
the autocorrelation among the generated values of modahters, we only record every 10th generated values of each
parameter. The resulting sampling run, posterior densityning mean, and autocorrelation for each model pararaster
plotted in Figure 2-4. Note that, for obtaining Bayes estasavith gamma priors, we set the values of priors parameters
by considering; = E[a1] = A1/61,02 = E[a2] = A2/ 6.and3 = E[B] = A3/6sand put the values of all priors parameters
as zero to obtain Bayes estimates with non-informativerpfibe results of the study have been summarized in Table
1. From Table 1, it is clear that, Bayes estimates with infatime prior perform better than non-informative prior as
well as ML estimates in terms SE and length of the intervat.the numerical computations of various estimates and
confidence/HPD intervals, the programs are developed iniranment and are available with the authors.

(@© 2018 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. Let5, No. 2, 63-72 (2018) www.naturalspublishing.com/Journals.asp

= ]
o ]
A
e
g =
£
o
=
(]
s & .|
L
S
@
—
oa ]
-~
(o |
o R
o
I I T I T
0.0 01 02 03 04
B
Fig. 1: : profile log-likelihood function foi3
Diagnostics for alphat
g _ _
ol LEE L
g s
z- B o=
= 4 o v e e i i e L LS
=1 1 1 1 1 1 1 1
B a 5 1 15 20 25 0
-
g Lesg
g
5 587
-
28]
. &
g =2
1 1 1 1 1 1 1 1 1 1 1 1 1
0000 Q0005 20010 0015 LAl . 00025 Q0030 0I5 [} 200 =00 G800 800
algfurl lerasan
L] Ea i
g7
L= 1 1 1 1 1
a 200 200 B00 500
Feradan
Fig. 2: : : Diagnostics forg
(@© 2018 NSP

Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

70 NS 2 P. S. Pundir, P. K. Gupta: Analysis of hybrid censored compeatsks model...
Diagnostics for alpha2
- g S
£ i
E sl
3 -
- =4 =i w e AL} o 3 L . LA T
=5 - 1 | 1 1 1 1 1
- a 5 1a 15 0 25 30
-
g Lsig
o
FE-
— TN
| 1 1 1 1 1 1 g_ 1 1 1 1 1
Q0000 0.0005 2.0010 0as L0020 00025 Q0030 [+ 200 =00 SO0 800
alpfe? Mexaban
=2
- | |
g | i 1 1
= 1 1 1 1 1
4] 200 =00 800 500
Fexazdan
Fig. 3: : : Diagnostics for;
Diagnostics for beta
. =
5 - £
Eoa-
E o
8 S = s e e e e o
1 I 1 1 1 I 1
[u] 5 1d 15 0 25 30
=
k9o B
F - 5 S I
B R
B e
= - 7 -
| 1 1 1 } 1 B 1 = 1 1 1 1 1
a215 0220 0225 0230 Q235 0240 0245 Q250 4} 200 =00 SO0 800
fenn Mexaban
g .|
g i
1 1 1 1 1
4] 200 =00 800 500
Fexazdan
Fig. 4: :: Diagnostics foi3
(© 2018 NSP

Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. Let5, No. 2, 63-72 (2018) www.naturalspublishing.com/Journals.asp %ﬁ NS p) 71

Acknowledgement

The authors are grateful to the anonymous referees for futarecking of the details and for helpful comments that
improved this paper.

References

[1] David, HA and Moeschberger, ML (1978) The Theory of Comipg Risks. Griffin, London.

[2] Miyawaka, M (1984) Analysis of incomplete data in conipgtrisk model. IEEE Trans. Reliability Anal. 33 (4): 293&9

[3] Kundu D, Basu S (2000) Analysis of incomplete data in pree of competing risks. J Statist Plann Inference. 872381 -

[4] Bhattacharya S, Pradhan B, Kundu D (2014), Analysis difrftdycensored competing risks data, Statistics, 48(5)31111%54.

[5] Singh SK, Sharma VK (2016) Estimation and prediction Tgpe-I hybrid censored data from generalized Lindley thstion.
Journal of Statistics & Management Systems. 19(3):367-396

[6] Epstein B (1954) Life tests in the exponential case. Ann&Mathematical Statistics, vol. 25, pp. 555- 564.

[7] MIL-STD-781-C (1977) Reliability design qualificatisrand production acceptance test. Exponential distributicS. Government
Printing Office, Washington, DC

[8] Balakrishnan N, Kundu D (2013) Hybrid censoring: Modeéfserential results and applications (with discussip@)mputational
Statistics and Data Analysis, 57, 166-209.

[9] Rajarshi S, Rajarshi MB (1988) Bathtub distributiongesiew. Communications in Statistics - Theory and Method8)2597-
2621.

[10] Wu SJ (2008) Estimation of the two-parameter bathtubped lifetime distribution with progressive censoringAgpl. Statist.
35:1139-1150.

[11] Chen Z (2000) A new two-parameter lifetime distributiovith bathtub shape or increasing failure rate functioratiStics
Probability Letters 49(2):155-161.

[12] Wu JW, Lu HL, Chen CH, Wu CH (2004) Statistical infereradmut the shape parameter of the new two-parameter bathaged
lifetime distribution. Quality Reliability Engineeringiternational 20:607-616.

[13] Sarhan AM, Hamilton DC, Smith B (2012) Parameter Estiore for a two-parameter bathtub-shaped lifetime distidm. Appl.
Math. Modeling 36(11): 5380-5392.

[14] Ahmed EA (2014) Bayesian estimation based on progressype-1l censoring from two-parameter bathtub-shapésitie
model: an Markov chain Monte Carlo approach, Journal of AgupStatistics, 41(4):752-768.

[15] Rastogi MK, Tripathi YM (2013) Estimation using hybr@nsored data from a two-parameter distribution with lditlshape.
Computation Statistics and Data Analysis 67:268-281.

[16] Pundir PS & Gupta PK (2017) Reliability estimation iratbsharing system model with application to real data. Avata. Sci.
https://doi.org/10.1007/s40745-017-0120-5

[17] Berger JO (1985) Statistical decision theory and Beyeanalysis. Springer-Verlag, New York.

[18] Geman S, Geman A (1984) Stochastic relaxation, Gibssibutions and the Bayesian restoration of images. |[EEHRJactions
on Pattern analysis and Machine Intelligence 6: 721-740.

[19] Metropolis N and Ulam S (1949) The Monte Carlo method\rder. Statist. Assoc. 44, pp. 335 - 341.

[20] Hastings WK (1970) Monte Carlo sampling methods usirgyidv Chains and their applications, Biometrika. 57, pp109.

[21] Chen MH, Shao QM (1999) Monte Carlo estimation of Bagastredible and HPD intervals. Journal of Computational and
Graphical Statistics 8:69-92.

[22] Lawless JF, Statistical models and methods for lifetoata. NewYork: John Wiley & Sons; 2003.

Pramendra Singh Pundir received his Ph.D. degree in Statistics from
the CCS University, Meerut, India. Currently, Serving as si8&nt Professor
in the Department of Statistics, University of Allahabad,llahabad, India.
His research interests include Applied Statistics, Bayesinference, load-sharing
models, distribution theory, and reliability analysis.

(@© 2018 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

72 NS P. S. Pundir, P. K. Gupta: Analysis of hybrid censored compeatsks model...

Puneet Kumar Gupta received his M Phil degree in Statistics from
the CCS University, Meerut, India. Currently, researchotzhat Department of Statistics,
University of Allahabad, Allahabad India. His researclkenessts include Applied Statistics,
Bayesian inference, load-sharing models, distributi@oti, and reliability analysis.

(@© 2018 NSP
Natural Sciences Publishing Cor.



	Introduction
	Model Description and Notations
	Estimation Procedure
	Bayesian Estimation and HPD Interval of R
	Real Data Application

