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Abstract: The mixture of type-I and type-II censoring schemes, calledthe hybrid censoring scheme is quite common in life-testing
or reliability experiments. In this study, we consider the estimation problem of competing risk model when the data obtained from
the experiments are hybrid censored. It is assumed that the latent cause of failure have independent Chen distributionswith common
shape parameter. Maximum likelihood and Bayes estimates ofthe model parameters are obtained. MCMC techniques like Metropolis-
Hastings algorithm and Gibbs sampler has been utilized to obtain Bayes estimates. At the end, a real data study is attempted to establish
the applicability of the proposed model.
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1 Introduction

In life time data analysis, it is quite common that more than one cause of failure may direct to an object (system) at the
same time. It is often interesting that an investigator needs to estimate a specific risk in presence of other risk factors.
In statistical literature, this process is known as competing risk model. People get sick or die or hardware fails due
to one of the several possible causes. In competing risk model, all these causes have given probabilities of occurrence
over time and compete to be the first to occur and thus cause theevent. Examples in medicine include the analysis
of cause to death data, the analysis of relapse and death in remission in cancer studies, or right random censoring. In
engineering applications, competing risk model arises foranalyzing series systems. Classical competing risk [1] deals
with the modeling of probability of failure in the observed system (crude probabilities) or in system with some causes of
failure removed (net or partial crude probabilities).

Miyawaka [2] obtained the maximum likelihood estimators (MLEs) and theuniformly minimum variance unbiased
estimators (UMVUEs) of the failure rates of different failure distributions under the assuming the failure time distribution
as exponential. Kundu and Basu [3] considered the same model of Miayawaka [2] by assuming that every member of a
certain target population either dies of a particular cause, say cancer, or by other causes. Recently, Bhattacharya et al [4]
consider the analysis of hybrid censored competing risks data, based on Coxs latent failure time model assumptions.

Although widespread literature is available on the inference procedures for the competing risks models under complete
samples, but much attention has not been paid when the data are hybrid censored. Censored data means that some items
were put on test, and some/all of them may not have failed at the time of termination of experiment hence lifetimes of such
items/units could not be observed. The conventional Type-Iand Type-II censoring schemes are two most popular censoring
schemes used for the analysis of such data. In the Type-I censoring scheme, the termination time for the experiment is
pre-fixed but efficiency level cannot be controlled because one cannot predict the observed number of failures in such
experiment. Although, the Type-II censoring scheme ensures that m failures take place during the experiment so the level
of efficiency is guaranteed, but the termination time cannotbe controlled in this case as the exact time of pre-fixed number
of failures i.e. m failures is uncertain [5]. So, both Type-I and Type-II censoring schemes have their respective, merits and
demerits. For these reasons, a mixture of Type-I and Type-IIcensoring schemes, known as hybrid censoring scheme has
been introduced by Epstein [6] and used for the first time in reliability acceptance test MIL-STD-781C [7]. It is interesting
to note that all the three above-mentioned situations namely the complete sample situation, Type-I and Type-II censoring
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schemes can be obtained as special cases of the hybrid censoring scheme. For a comprehensive review of hybrid censoring
scheme, we refer to Balakrishnan and Kundu [8].

A class of life distributions which has acknowledged significant attention is the class of bathtub shaped failure rate
life distributions. A organized version of such distributions was provided by Rajarshi and Rajarshi [9]. A lifetime model
is said to have bathtub shaped failure rate if its failure rate functions decreases at first and then remains constant for a
period and finally it increases with time. In other words, thefailure rate function has a bathtub shape. This corresponds
to the three distinct phases of a component or a system: earlylife, useful life and wear-out. During the early life period,
failures tend to be caused by manufacturing defects or birthdefects in the case of human beings. Failures in the useful life
period can be called chance failures. The wear-out region has an increasing failure rate with time because of the older the
unit the more likely it is to fail.
The lifetime distributions like Chen distribution having bathtub shaped hazard rate have attracted the attention of many
researchers as the lifetimes of various industrial items including electrical and mechanical products, as well as survival
times of various biological entities exhibit such characteristics (see for instance [9,10]). The probability density function
(pdf) of the two parameter Chen distributionCH (α, β ) whereα is the shape parameter andβ is the scale parameter (Chen
[11]) is given by

f (x) = αβxβ−1exp
{

α
(

1−exβ
)

+ xβ
}

; x,α, β > 0 (1)

with the corresponding survival and failure rate function given by

S(x) = exp
{

α
(

1−exβ
)}

; x, α, β > 0 (2)

h(x) = αβxβ−1exp
(

xβ
)

; x, α, β > 0 (3)

For β < 1, h(x) has a bathtub-shape and reaches a minimum atx=
{

1−β
β

}1/β
while for β ≥ 1, it is increasing. The case

α = 1 corresponds to the exponential power distribution. Chen (2000) has discussed in detail the hazard rate behavior of
the Chen distribution.

In the last decade, many authors considered Chen distribution as a lifetime model in different contexts. Wu et al.
[12] discussed the estimation procedure for the shape parameter of the Chen distribution. Wu [10] obtained MLEs of
parameters of Chen distribution using progressively Type-II censoring and also provided exact confidence intervals and
confidence regions for these parameters. Sarhan et al. [13] derived MLE and Bayes estimators of the unknown parameters
using a complete sample for Chen distribution while Ahmad [14] obtained maximum likelihood and Bayes estimates of
the model parameters, reliability and hazard functions forthe same distribution when sample is available from progressive
Type-II censoring scheme. Rastogi and Tripathi [15] considered the problem of estimating unknown parameters of a two-
parameter Chen distribution using hybrid censored sample.Recently, Pundir and Gupta [16] consider the estimation of
m-component load-sharing parameters by assuming the failure time distribution of components as Chen. To the best of
our knowledge, Chen distribution has yet not been considered for competing risks modeling when the data are hybrid
censored.

In view of the above, we present the estimation problem of competing risks model by assuming independent Chen
distribution with common shape parameter. The data obtained from the experiment are assumed to be hybrid censored. In
section 2, we describe the model and notations of the terminology used. Maximum likelihood (ML) and Bayes estimate
of parameters under hybrid censoring scheme is discussed insection 3. Also the asymptotic distribution of the model
parameters is used to construct the approximate confidence interval (CI). Markov Chain Monte Carlo (MCMC)
techniques such as Metropolis-Hastings algorithm and Gibbs sampler have been utilized to generate simulated draws
from the posterior density of the model parameter. In section 4, a real data study has been done to explore the
applicability of the proposed theory.

2 Model Description and Notations

Here, we assume that there are only two independent cause of failure, although all the methods proposed in the study can
be easily extended for more than two cases. We assume the following notations:
Xi : lifetime of system i
Xji : lifetime of the ith individual under causes j, j=1,2
d j : number of failure due to causes j, j=1,2
F (.): cumulative distribution function ofXi
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Fj (.): cumulative distribution function ofXji
Sj (.): survival function ofXji
δi : indicator variable denoting the cause of the failure of theith individual
Ch(α,β ): Chen random variable with p.d.f defined in equation (1)
Suppose{T1i,T2i ; i = 1,2, .....n} are n independently and identically distributed random variables. Also, the lifetime
distribution of {T1i ,T2i ; i = 1,2, .....n} follows Ch(α1,β ) and Ch(α2,β ) respectively and bothT1i and T2i are
independent to each other.

3 Estimation Procedure

3.1 Maximum Likelihood Estimation and Asymptotic Confidence Interval

Based on the observed data discussed in section 2, the likelihood function of(α1,α2,β ) is given by

L(data|α1,α2,β ) ∝ αd1
1 αd2

1 β d
d

∏
i=1

tβ−1
i e

d
∑

i=1
tβ
i

exp{−(α1+α2)ξ (β )} (4)

where,

ξ (β ) =
d

∑
i=1

(

etβ
i −1

)

+(n−d)

(

ezβ
∗ −1

)

; d = d1+d2 (5)

The corresponding log-likelihood function (sayl (α1,α2,β )) for equation in (4) without the additive constants is given
by

l (α1,α2,β ) ∝ d1 lnα1+d2 lnα2+d lnβ +(β −1)∑
i

ln ti + ∑
i

tβ
i − (α1+α2)ξ (β ) (6)

The MLEs ofα1, α2andβ say α̂1, α̂2 andβ̂ can be obtained as the solutions of the following equations:

∂ℓ
∂α1

=
d1

α1
− ξ (β ) = 0 (7)

∂ℓ
∂α2

=
d2

α2
− ξ (β ) = 0 (8)

∂ℓ
∂β

=
d
β

+∑
i

ln ti
(

1+ tβ
i

)

− (α1+α2)ξ
′
(β ) (9)

where,ξ ′
(β ) =

{

∑
i

etβ
i tβ

i ln ti + (n−d)eZβ
∗ Zβ

∗ lnZβ
∗

}

From equation (7) and (8), we get the MLEs(α̂1, α̂2)of (α1,α2)as a function ofβ

α̂1 (β ) =
d1

ξ (β )
(10)

α̂2 (β ) =
d2

ξ (β )
(11)

Replacing the expression of̂α1 (β )and α̂2 (β ) in log-likelihood function, we obtain the profile log-likelihood of
βwithout the additive constant is

p(β ) ∝ d lnβ −d lnξ (β )+β ∑
i

ln ti + ∑
i

tβ
i (12)
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Now, the MLE ofβ can be obtained by solving the equationp
′
(β ) = 0. Therefore, if̂β is the MLE ofβ , then it can be

obtained as the fixed point solution of the following

β = h(β ) =
dξ (β )

dξ ′
(β )− ξ (β )∑

i

(

1+ tβ
i

)

ln ti
(13)

The equation in (13) can be solved forβ̂ by using the following simple iterative procedure asβ̂ is a fixed point solution
of this non-linear equation

h
(

β(k)

)

= β(k+1)

Whereβ(k)is the kthiteration ofβ̂ . The iteration procedure should be stopped when
∣

∣β(k)−β(k+1)

∣

∣is sufficiently small.

However, one can also use the uniroot() function of R software to solve equation in (9). Now, usingβ̂ , we can obtain

α̂1andα̂2 from equation (7) and (8) aŝα1 = α̂1

(

β̂
)

andα̂2 = α̂2

(

β̂
)

.

Using large sample theory of MLEs, the asymptotic sampling distribution of
(

α̂1− α1, α̂2− α2, β̂ −β
)′

is

N3
(

0, ∆−1
)

where∆ the observed Fisher information matrix is. The elements of∆ are given by

∆11 = − ∂ 2ℓ
∂α2

1

∣

∣

∣

α1=α̂1

; ∆22 = − ∂ 2ℓ
∂α2

2

∣

∣

∣

α2=α̂2

; ∆33 = − ∂ 2ℓ
∂β 2

∣

∣

∣

β=β̂
;∆12 = ∆21 = 0

∆13 = ∆31 = − ∂ 2ℓ
∂α1∂β

∣

∣

∣

α1=α̂1,β=β̂
and∆23 = ∆32 = − ∂ 2ℓ

∂α2∂β

∣

∣

∣

α2=α̂2,β=β̂

Where, ∂ 2ℓ
∂α2

2
=− d2

α2
2

δ 2ℓ
δβ 2 =− d

β 2 +∑
i
tiβ{log(ti)}

2− (α1+α2)ξ ′′
(β )

∂ 2ℓ
∂α1∂β = ∂ 2ℓ

∂β ∂α1
=−ξ ′′

(β ) ; ∂ 2ℓ
∂α2∂β = ∂ 2ℓ

∂β ∂α2
=−ξ ′′

(β )

Where,ξ ′′
(β ) = ∑

i
{log(ti)}

2etβ
i tβ

i

(

1+ tβ
i

)

+(n−d){log(Z∗)}
2eZβ

∗ Zβ
∗

(

1+Zβ
∗

)

The asymptotic(1− γ)×100% confidence intervals (C.I.) forΩ = (α1,α2,β )isΩ̂ ± zγ/2

√

Var
(

Ω̂
)

HereVar
(

Ω̂
)

is the

variance ofΩ̂ obtained from∆andzγ/2 is the upper100× (γ/2)th percentile of a standard normal distribution.

4 Bayesian Estimation and HPD Interval of R

In many practical situations, it is observed that the behavior of the parameters representing the various model
characteristics cannot be treated as fixed constant throughout the life testing period. Therefore, it would be reasonable to
assume the parameters involved in the life time model as random variables. While thinking for Bayesian analysis, first
thing to contract with the problem of constructing prior forthe unknown parameters involved in the model. We all know
that the choice of a wrong prior may lead to misleading information, so the selection of prior becomes more and more
important part of the Bayesian analysis. In practice, informative and non-informative priors are used to represent
uncertainties about the model parameters. Berger [17] pointed out that when there is no information or very difficult to
gather regarding the prior variations in the parameters, itis better to use non-informative prior distribution. However,
non-informative priors generally lack invariance property under one-to-one transformation, thereby leading to incoherent
analysis. On the other hand, informative priors are based onthe investigators experience about the random behavior of
the process under consideration. In lieu of this, we consider the Bayesian method of estimation with both informative
and non-informative priors. First, we assume that the priordistributions ofα1, α2andβare assumed to be gamma with
respective pdf’s as

g1 (α1) ∝ α1
λ1−1 exp(−θ1α1) ; (α1, θ1, λ1 > 0) (14)

g2 (α2) ∝ α2
λ2−1 exp(−θ2α2) ; (α2, θ2, λ2 > 0) (15)

and

g3(β ) ∝ β λ3−1exp(−θ3β ) ; (β , θ3, λ3, > 0) (16)
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Using the likelihood function in (4) and prior distributions in (14)-(16), the joint distribution ofα1, α2, β given the
data is

∏(α1, α2, β |data) =
L(data|α1, α2, β )g1(α1)g2 (α2)g3(β )

∫

α1

∫

α2

∫

β
L(data|α1, α2, β )g1(α1)g2 (α2)g3(β )dα1dα2dβ

K (α1,α2,β |data) ∝ αd1+λ1−1
1 αd2+λ2−1

2 β d+λ3−1
d

∏
i=1

tβ−1
i e

d
∑

i=1
tβ
i

e− [(α1+α2)ξ (β )+θ1α1+θ2α2+θ3β ] (17)

The joint posterior density in (17) is very complicated and hence no closed-form inferences appear to be possible.
We, therefore, make use of Gibbs sampler, a MCMC method, proposed by Geman and Geman [18]. It makes us easy
to generate a sequence of random variables from the full conditional probability distributions using the current values
of the given parameters. MCMC is a class of methods in which one can simulate draws that are slightly dependent and
approximately from the posterior distribution. By means ofthis procedure, our aim is to get the ergodic chains of the
parameters which are irreducible, aperiodic and positive recurrent. For implementing Gibbs sampling procedure, the full
conditional posterior distributionsα1, α2andβ are

π1 (α1|data,α2,β ) ˜Gamma[d1+λ1,ξ (β ) +θ1] (18)

π2 (α2|data,α1,β ) ˜Gamma[d2+λ2,ξ (β ) +θ2] (19)

π3 (β |data,α1,α2) ∝ β d+λ3−1
d

∏
i=1

tβ−1
i e

d
∑

i=1
tβ
i
e−{(α1+α2)ξ (β )+θ3β} (20)

For obtaining Bayes estimates with Non-informative prior,we can work along the same lines by only putting the
values of all prior parameter equal to zero i.e.λ1 = λ2 = λ3 = θ1 = θ2 = θ3 = 0. For generating samples from (18)-(20),
we make use of the foolwing Gibbs algorithm:
Gibbs Algorithm:

1.Generateα1 from the posterior densityπ1(α1|data,α2,β )as given in (18).
2.Generateα2 from the posterior densityπ2(α2|data,α1,β ) as given in (19).
3.Generateβ from the posterior densityπ3 (β |data,α1,α2) as given in (20) using Metropolis-Hastings algorithm [19,

20].
4.Repeat steps 1-3 N times and record the sequence of∆ = (α1,α2,β )after M burn-in iterations have occurred to

eliminate the effects of the starting values i.e.(∆M+1,∆M+2.......∆N)
5.The Bayes estimate ofΛsayΛ∗under squared error loss function is

Λ∗ = 1
N−M

n
∑

k=M+1
Λk

6.The posterior variance ofΛ is

V (Λ∗) = 1
N−M

N
∑

k=M+1
(Λk−Λ∗)2

7.Let Λ∗
(M+1) ≤ Λ∗

(M+2) ≤ .... ≤ Λ∗
(N) respectively denote the ordered values ofΛ∗

M+1,Λ∗
M+2, ....,Λ∗

N. Then,
following Chen and Shao [21], the respective 100(1− γ) % HPD intervals forΛ is

(

Λ∗
(M+ j∗), Λ∗

(M+ j∗+[(1−γ)(N−M)])

)

.
Where, j∗ is chosen so that
Λ∗

(M+ j∗+[(1−γ)(N−M)])−Λ∗
(M+ j∗) = min

M ≤ j ≤ (N−M)−[(1−γ)(N−M)

(

Λ∗
(M+ j+[(1−γ)(N−M)])−Λ∗

(M+ j)
)

i.e., we pick that 100(1− γ) % credible interval which has smallest width among all credible intervals.

Here, it is notable that the sampling from the posterior distribution given in (20) is not easy as they cannot be simplified
to the well-known distributions. Therefore, Metropolis-Hastings algorithm [20,21] has been used to generate
π3 (β |data,α1,α2) in step 3. The Metropolis-Hastings algorithm is as follows-
Metropolis-Hastings Algorithm:

Step-1: Start with any value satisfying target densityπ3

(

β (0)
)

> 0

Step-2: Using current ν(0) value, generate a proposal pointν prop from the proposal

densityq
(

β (1),β (2)
)

= P
(

β (1) → β (2)
)

i.e., the probability of returning a value ofβ (2) given a previous value ofβ (1).
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Table 1: Summary for the electrical appliances data
Estimation α1 α2 β

Estimate (SE/PSE) Estimate (SE/PSE) Estimate (SE/PSE)
[Confidence/HPD Interval] [Confidence/HPD Interval] [Confidence/HPD Interval]

ML Method 0.001082 (0.000925) 0.000608 (0.000537) 0.2339084 (0.016754)
[0, 0.002895] [0, 0.001662] [0.20106 , 0.26674]

Jeffreys Bayes 0.001321 (0.000442) 0.000739 (0.000308) 0.2301705 (0.004652)
[0.000538 , 0.002142] [0.000193, 0.001295] [0.220911, 0.238491]

Gamma Bayes 0.001193 (0.000421) 0.000672 (0.000297) 0.231781 (0.004176)
[0.000559 , 0.002097] [0.000199, 0.001219] [0.220989, 0.238219]

We assume proposal density for the distribution in (20) asN
(

ϑ ,δ 2
)

respectively. The values ofϑ ,δ 2have been set
according to the corresponding assumed values ofβ .

Step-3: Calculate the ratio at the proposal pointβ prop and currentβ (i−1) as:ρ = log

[

f (β prop)q(β prop,ν(i−1))
f(β (i−1))q(β (i−1),β prop)

]

Step-4: Generate U from uniform on (0, 1) and take Z=log U.
Step-5: If Z < ρ , accept the move i.e.,β propand setβ (0) = β prop and return to Step 1. Otherwise reject it and return
to Step- 2.

5 Real Data Application

Here, analysis of a real data set is considered for illustrative purposes. We consider the data from an experiment in which
small electrical appliances were being tested, and it has been taken from Lawless [22]. The appliances were operated
repeatedly by an automatic testing machine; the lifetimes given were the number of cycles of use until the appliances
failed. Total 36 appliances were used, and there were 18 different modes according to which the appliance could have
failed. Failure due to ninth mode was considered as cause 1 and the remaining as cause 2. This data set has already
been analysed by Kundu and Basu (2000) and Bhattacharya et al. (2014) using Weibull latent failure time distributions
with equal shape parameter in context of complete and hybridcensored setup. For the analysis purpose, first, we have
created artificial hybrid censored data from the complete sample (n=36) and considering R=25 and T=3000 similarly as
considered in Bhattacharya et al. (2014). The hybrid data set is as follows:
(11, 1), (35, 1), (49, 1), (170, 1), (329, 1), (381, 1), (708, 1), (958, 1), (1062, 1), (1167, 2), (1594, 1), (1925, 2), (1990, 2),
(2223, 2), (2327, 1), (2400, 2), (2451, 1), (2471, 2), (2551,2), (2565, 1), (2568, 2), (2694, 2), (2702, 1), (2761, 1),
(2831, 1)
Based on the above data, we computed the MLEs, and Bayes estimates for the model parameters along with SE/PSEs and
confidence/HPD interval.

To obtain MLEs for the model parameters, First of all, we haveused the iterative procedure given in equation (13)
to get the ML estimate ofβ until the absolute difference of two consecutive iterationis less than a very small quantity
(0.0001 in our case). To start the iterative procedure in equation (13), initial value have guess by plotting the profile log-
likelihood function given in equation (12). Plot of profile log-likelihood in figure 1 clearly shows that the initial value for
the iterative procedure can be taken near 0.23. After obtaining ML estimate ofβ , one can easily calculate ML estimates of
α1 andα2 using equation (10) and (11) respectively.

For obtaining Bayes estimates of the parameters, we have considered both the informative and non-informative priors.
We use Gibbs sampler to generate Markov chains with 25,000 realizations. Initially, we run algorithm several times with
different starting values of the parameters to check the convergence of the sequences ofα1,α2 andβ for the stationary
distributions. It was observed that all the markov chains reached to the stationary condition very rapidly. However, still
for removing the effect of initial values of the model parameters, 1000 burn-in iterations have been discarded from the
study. Also, strong autocorrelation is observed among the generated chain of model parameters. Therefore, for reducing
the autocorrelation among the generated values of model parameters, we only record every 10th generated values of each
parameter. The resulting sampling run, posterior density,running mean, and autocorrelation for each model parameterare
plotted in Figure 2-4. Note that, for obtaining Bayes estimates with gamma priors, we set the values of priors parameters
by consideringα1 = E[α1] = λ1/θ1,α2 = E[α2] = λ2/θ2andβ = E[β ] = λ3/θ3and put the values of all priors parameters
as zero to obtain Bayes estimates with non-informative prior. The results of the study have been summarized in Table
1. From Table 1, it is clear that, Bayes estimates with informative prior perform better than non-informative prior as
well as ML estimates in terms SE and length of the interval. For the numerical computations of various estimates and
confidence/HPD intervals, the programs are developed in R-environment and are available with the authors.
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Fig. 1: : profile log-likelihood function forβ

Fig. 2: : : Diagnostics forα1
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Fig. 3: : : Diagnostics forα2

Fig. 4: :: Diagnostics forβ
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