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Abstract: In the present paper, a new lifetime distribution has be@oduced by the use of Minimum Guarantee transformation as
suggested by Kumar et al. (2017). For the purpose, Lindlsyildution is considered as a baseline distribution. Sohtleeostatistical
properties of this distribution has been studied and dabsstimators like maximum likelihood estimator (MLE ga$t square estimator
(LSE) and maximum product of spacing estimator (MPSE) has lodtained and their performance is carried out throughilsiion
study. Further, a real data has been taken to show its appiida the real scenario.
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1 Introduction

Survival Analysis is a branch of statistics for analyzingedahere the outcome variable is the time until the occumenc
of a biological organism or failure of any electronic devittecan be measured in days, weeks, years etc. In statistical
literature, for modeling any lifetime data, a number of @ombus distributions such as exponential, gamma, log-abrm
and Weibull distributions etc are available. It is to be tecthhere that exponential distribution is applicable te tlata
having constant failure rate pattern and its applicatidhéodata having non-constant failure rate pattern may adsiee
result. Log normal and Weibull distributions are extenlsivesed for modeling skewed data (see, Kundu and Manglick
(2004)). Gamma distribution also fit such type of data (semdG and Gupta (2004)). The applicability of a distribution
can also be identified from the nature of their hazard ratetfon. Thus any distribution is not suitable for all types of
data. In the field of medical sciences, biological scieneesn in engineering, Lindley distribution has been widedgdi
and suitable for the data having increasing hazard rateiitmdt was introduced by Lindley (1958). The probability
density function (pdf) and cumulative distribution furgsti(cdf) of Lindley distribution with the shape paramefeare
given by,

2
f(x) = %1(1“)@9& x>0, 6>0 )
and
F(x):1—<ee—:1>e‘ex; x>0, 6>0 ()
respectively.

Ghitany et al. (2008(b)) have studied various statisticapprties of Lindley distribution. Its different forms hawalso
been studied by several authors such as Ghitany et al. (2)d&0posed zero-truncated Poisson-Lindley distriloytio
Deniz and Ojeda (2011) proposed discrete Lindley distidioytNadarajah et al. (2011) proposed two parameter Lindley
distribution using the concept of exponentiated geneatitin of distribution as proposed by Gupta et al. (1998) eRdy,
Rashid and Jan (2016) proposed Lindley power series diiritn
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As mentioned by Kumar et al. (2017), that it is the era of geliwng or transforming any available distribution
with a hope to get more flexible distribution as compared ®dbnsidered distribution and other distrbutions too. In
order to achieve this goal, they have suggested minimunagtee (MG) transformation and derived, studied and showed
application of a new lifetime distribution by consideringpenential distribution as a baseline distribution.

In the present paper, we have derived a new lifetime didtdhwsing MG transformation and the considered baseline
distribution is Lindley distribution having pdf (1). We wilse the abbreviation MG8) distribution to denote this new
distribution. The cdf, pdf and hazard rate function of M®) distribution are given by;

—(1+99+—X1) exp 6%

GX) = exp (FFF T x50, 950 3)
expl—(1+e—z’rl )exp*ex 2 P
g(x) = . 55 1(1+x)exp X x>0, >0 (4)
(- (1+57g) exp )0 F
and,
- ((1+ B% ))exp* eex ,
expt (Far1)ee ™ O (1.4 x) exp O
h(x) = + : x>0 6>0 5
( ) 7(1+99T><x1)ex,reex , ( )
1—expt (Fa)oP ™ (1 (14 25) exp )
respectively,

The shapes of the cdf, pdf and hazard rate function of_ MG has been shown in Figurds 2 and3 respectively, for
different value off. Figure 3 shows that M@ 6) distribution has non monotonic hazard rate function .
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Fig. 1: Plots of Cumulative distribution function G(x) of M&6) distribution for different values o
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Fig. 2: Plots of Probability density function g(x) of MG@6) distribution for different values of
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Fig. 3: Plots of Hazard Rate Function h(x) of M) distribution for different values o
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The rest of the paper is organized as follows: The statigticaerties of MG (0) distribution such as mean, median,
raw moments, skewness and kurtosis have been derived iars2cEstimation of the paramet@iof MG (8) distribution
is carried out in section 3. Section 4 deals with the simotattudy. A Real data application is carried out in section 5
and conclusion has been drawn in section 6.

2 Some Statistical properties

2.1 Mean

If uis the mean of M@(8) distribution, we have

u=E(X) :/ xg(x)dx
0
(1 gy o O
exp 1* e+1)8Xp Ox 62
The above integral is not solvable analyt|cally. To solvauinerically for any given value @, one have to use some

numerical integration technique such as Gauss-Lagurrdrgtiae formula or Monte-carlo integration or some other
methods may be used.

(1+x) exp ¥ dx (6)

2.2 Median

If M is the median of the M@(0) distribution, we have

[ atx

(1+B—)exp
M (1+ ox )exp x 2
/ exp” e o (1+x)exp Pdx= = !
o (1- (1 ) exp 9 O :

After simplification, it reduces to,

—(1+ BGJer ) exp*eM

(o M
expt (r)ew o _ % @)

which is not solvable analytically, some numerical itevattechnique will be used for its numerical solution for any
given value off.

2.3 Raw Moments

Ther™™ moments about origip; (raw moments) of MG(8) distribution is obtained as follows;

- (1+66TX1 ) exp 0%

L Gl 75D Ak S
92 o expl—(1+ﬁ)ex;rex
I

610 (1 (14 ) exp @)’

w = 5 (1+x) exp ™ dx (8)
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2.4 Skewness and Kurtosis

The coefficient of Skewness is a measure of the degree of symnofehe distribution (see, Sheskin (2011)). It come in
the form of negative skewness or positive skewness, depgrfi whether data points are skewed to the left or to the
right of the data average. Similarly, the coefficient of Kisit is a measure for the degree of tailed-ness in the digtib
(see, Westfall (2014)). There are three categories of kigrthat can be displayed by set of data and they are mesgkurti
leptokurtic and platykurtic.

The measure of skewneg$ ] and measure of kurtosig) can be calculated using the following expressions,

(15 — 3pppg +2(pp)3)?
(M5 — (Hq)?)3

p, — (Ha—AH5H + 6L (H1)* — 3(1y)*)
(k= (uy)?)?
The values of3; andf3, are calculated for ME 0) distribution for different values of and for all considered values

of 6, we getp; > 0 andf; > 3. Thus we may conclude that M@) distribution is positively skewed and leptokurtic.
The graphs of values ¢, andf3, for different values oB are shown in Figure4 and5 respectively.

Pr=

(9)

(10)
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Fig. 4. Plots of the values g8, for different values 0B
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Fig. 5: Plots of the values g8, for different values oB
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3 Different methods of estimation

In this section, we have derived some classical estimafdhegarameteé of MG (0) distribution for complete sample
taken from this distribution. The estimators derived areximam likelihood estimator (MLE), least square estimator
(LSE) and maximum product of spacing estimator (MPSE).

3.1 Maximum likelihood estimator

Let X = (X1,X2,...,%Xn) is @ random sample of size n from M@) distribution. Then the likelihood function fof is
given by,

5 (6T1>nﬂ{(l+xj)expgxi} (11)

and hence the log likelihood function is,

6+1 -2

62 ) n (1+ %) exp %%
=11— (1+ :—ﬁ) exp i

) n ) n GXJ —Ox;
InL =nlin ( - GZXJ + len(1+x,) —Zzlln {1— (1+ m) exp M| (12)

Now, the log likelihood equation for estimatirtyis given by,

dInL_

55 =0 (13)

which is not solvable analytically fa® and we have used Newton-Raphson method to solve it numigrical

3.2 Least sguare estimator

Least square method of estimation was introduced by Swaih €1988) to estimate the parameter of Beta distribution.
The expression of empirical cdf fof = (X1, Xo, ..., Xn) is given by,

E[G(Xj)]:%ﬂ_,j —1.2..n (14)

The least square estimator of the parametet of MG (6) distribution is obtained by minimizing Pf with respect
to 6, where

n : 2
J
P(6) = G(xj;0)) — —— 15
=3 (1e0500 1) (a5)
and the normal equation for estimatifigs given by
JoP(0 n j
00 = 3 G500 ((e0:6) - 115 ) =0 (16)

which is not solvable fof analytically, we have again used Newton-Raphson methoitsfoumerical solution.
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3.3 Maximum product of spacing estimator

Cheng and Amin (1983) have proposed maximum product of sganithod for estimating the unknown parameter and
they have defined product of spacing as the geometric meaof €ppcings Di.e ,

n+1
G= " []D; (17)
=1

.
Dj:/m g(x;0)dx;j=1,2,...,n+1 (18)

X(j-1)

such thatG(xq); 8) = 0 andG(X(n41); 6) = 1.

where the differenceB; is defined as

The maximum product of spacing estimator (MPSE) is thatevalil6 which maximizes G and hence In G.

Now taking log of both sides of (17), we get

1 n+1
6= — J;m [(G(x});8)) — (G(x_1):0))] (19)

and the normal equation for estimatifigs
aInG

o6 0

oInG 1 "M Gplx(j);6) — Gp(X(j-1)6)
960 n+14 | G(x;):6)—G(x;-1:0)

=0 (20)

which is not solvable analytically, to solve it numericalllome numerical iteration technique will be used,
particularly, we have used Newton-Raphson method for itserical solution.

4 Simulation Study

In this section, the simulation study is carried out to assles performance of the proposed estimator8 of terms of

their MSEs with varying sample sizes . The valuéas arbitrarily chosen a8=1 and the different considered values of
nare 5,10,15,...,35. The process is repeated 2000 timebBd, LSEs and MPSEs have been computed based on each
generated samples and consequently their mean squares @MSEs) have been calculated and reported in Table 1.
Also approximate 95% confidence interval (Cls) and covermgbabilities (CPs) of the estimators are noted in this
table.

We have used the symbafiy, , 8.5 and Byips to denote MLE, LSE and MPSE o respectively. The formula used to

calculate 95% Cl foB is [0 — 1.96,/Var (6),0 + 1.96,/Var(6) ], where T is the considered estimator@f
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Table 1: MSEs, Cls and CPs of MLEs, LSEs and MPSEs@ct 1 with varying n

n OmL s Bmps
MSE 0.1598 0.042 0.0717

5 | Confidence Interval| (0.2520,1.0639)| (0.5493,1.2495)| (0.5234,1.0511)
coverage probability] 30.1 99.6 73.9
MSE 0.1237 0.0192 0.0329

10 | Confidence Interval| (0.3351,1.0694) (0.0695,1.2067) (0.6644,1.0608)
coverage probability] 26.95 99.8 79.25
MSE 0.0922 0.0093 0.0135

20 | Confidence Interval| (0.8885,1.1405) (0.7945,1.1671)| (0.7622,1.0631)
coverage probability] 34.4 99.5 86.8
MSE 0.0664 0.0055 0.0067

40 | Confidence Interval| (0.4483,1.2168) (0.8442,1.1343) (0.8231,1.0718)
coverage probability] 50.5 99.9 88.9
MSE 0.0621 0.0045 0.0046

60 | Confidence Interval| (0.4675,1.2051) (0.8607,1.2200)| (0.8509,1.0778)
coverage probability] 49.15 100 92.05
MSE 0.0485 0.0032 0.0032

80 | Confidence Interval| (0.5167,1.2517) (0.8866,1.1116)| (0.8749,1.0770)
coverage probability] 62.8 100 91.45

From gbove taple, it is clear that MSEs of all estimators el@ses as n increases and MSE?)L@‘is least as compared
to that of6yL andByps.

5 Real Data Application

In this section, a real data set has been considered for iclgeskitability and superiority of the proposed distrilourti
over some existing distribution such as DUS Exponentialridigtion (DUSED) and Transmuted Inverse Rayleigh
Distribution (TIRD). The data set has been extracted frora Bad Wang (2003) and shows the remission times (in
months) of a random sample of 128 bladder cancer patienesdata is as shown below:

X =(0.08, 2.09, 3.48, 4.87,6.94, 8.66, 13.11, 23.63, 0.2B,A.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.08, 7.
9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47,44£2.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31,0
2.62,3.82,5.32,7.32,10.06, 14.77, 32.15, 2.64, 3.82,5.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7086l
15.96, 36.66, 1.05, 2.69, 4.23,5.41, 7.62, 10.75, 16.6D143.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, Z 83,
5.49,7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.8BA4117.36, 1.40, 3.02, 4.34,5.71, 7.93, 1.46, 18.10, 14.79,
5.85, 8.26, 11.98, 19.13, 1.76, 3.25 ,4.50, 6.25, 8.37212.02, 13.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 330,71
6.76, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69).

Kumar et al.(2017) had considered this data set and shoveedtHSED fit better than TIRD in terms of Akaike
information criterion (AIC), Bayesian information criten (BIC), Kolmogorov-Smirnov test (K-S) statistics critns.
These criterions are defined as follows,

AIC = —-2In(k) +2p
BIC = —2In(k) 4+ px*In(n)
Dn = sup|F (x) — Fa(X)|
where n is the sample size, p is the no. of unknown parameteheimodel, k is the maximized value of the likelihood
function andr,(x) is empirical distribution function.

We have computed MLE of the parameéeof MG (6)-distribution having pdf (4) for the considered data set fanohd
it as 03569373 and corresponding to it, AIC, BIC and K-S test diatissalues have been calculated and are shown in
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Table 2. Also, the values of AIC, BIC and K-S test statisti@sthis data set for DUSED and TIRD have been extracted
from Kumar et al. (2017) and shown in Talde

Table 2: AIC, BIC, -LL and K-S test statistics value for bladder canpatients data

Distributions AIC BIC -LL K-S test statistics valug
MG (6)-distribution | 555.32 | 563.02 | 276.65 0.216
DUSED 834.04 | 836.89| 416.02 0.418
TIRD 1424.4| 1424.6| 710.2 0.676

From table 2, we observed that M®)-distribution fits better as compared to DUSED and TIRD todh& set of
remission times of 128 bladder cancer patients, in termdGf BIC and K-S test values, as the criterion values are least
for MG (6)-distribution as compared to those for DUSED and TIRD.

6 Conclusions

A single parameter lifetime distribution M®8) distribution has been introduced by the use of MG transftionas
suggested by Kumar et al. (2017). Some of its statisticgbgnties such as mean, median, raw moments, skewness and
kurtosis have been discussed. A real dataset has been emtsihd it is found that MG6) distribution fits better as
compared to DUSED and TIRD in terms of AIC, BIC and K-S testueal The classical estimators MLE, LSE and
MPSE of the parametdét has been obtained. Simulation study is also carried outddtse performance of MLE, LSE

and MPSE for their long run use and it is found that for all ¢desed values of n, LSE out performs the other two
estimators MLE and MPSE as its MSE is always least as comparddose of MPSE and MLE. Thus, we may
recommend M@(6) distribution for its further use in medical science with aphoto get better model for exact
prediction of disease and related problems.
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